//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This contains a MachineSchedStrategy implementation for maximizing wave /// occupancy on GCN hardware. /// /// This pass will apply multiple scheduling stages to the same function. /// Regions are first recorded in GCNScheduleDAGMILive::schedule. The actual /// entry point for the scheduling of those regions is /// GCNScheduleDAGMILive::runSchedStages. /// Generally, the reason for having multiple scheduling stages is to account /// for the kernel-wide effect of register usage on occupancy. Usually, only a /// few scheduling regions will have register pressure high enough to limit /// occupancy for the kernel, so constraints can be relaxed to improve ILP in /// other regions. /// //===----------------------------------------------------------------------===// #include "GCNSchedStrategy.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/RegisterClassInfo.h" #define DEBUG_TYPE "machine-scheduler" using namespace llvm; GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( const MachineSchedContext *C) : GenericScheduler(C), TargetOccupancy(0), MF(nullptr), HasClusteredNodes(false), HasExcessPressure(false) {} void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { GenericScheduler::initialize(DAG); MF = &DAG->MF; const GCNSubtarget &ST = MF->getSubtarget(); // FIXME: This is also necessary, because some passes that run after // scheduling and before regalloc increase register pressure. const unsigned ErrorMargin = 3; SGPRExcessLimit = Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass); VGPRExcessLimit = Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass); SIMachineFunctionInfo &MFI = *MF->getInfo(); // Set the initial TargetOccupnacy to the maximum occupancy that we can // achieve for this function. This effectively sets a lower bound on the // 'Critical' register limits in the scheduler. TargetOccupancy = MFI.getOccupancy(); SGPRCriticalLimit = std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit); VGPRCriticalLimit = std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit); // Subtract error margin from register limits and avoid overflow. SGPRCriticalLimit = std::min(SGPRCriticalLimit - ErrorMargin, SGPRCriticalLimit); VGPRCriticalLimit = std::min(VGPRCriticalLimit - ErrorMargin, VGPRCriticalLimit); SGPRExcessLimit = std::min(SGPRExcessLimit - ErrorMargin, SGPRExcessLimit); VGPRExcessLimit = std::min(VGPRExcessLimit - ErrorMargin, VGPRExcessLimit); } void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, const RegPressureTracker &RPTracker, const SIRegisterInfo *SRI, unsigned SGPRPressure, unsigned VGPRPressure) { Cand.SU = SU; Cand.AtTop = AtTop; // getDownwardPressure() and getUpwardPressure() make temporary changes to // the tracker, so we need to pass those function a non-const copy. RegPressureTracker &TempTracker = const_cast(RPTracker); Pressure.clear(); MaxPressure.clear(); if (AtTop) TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); else { // FIXME: I think for bottom up scheduling, the register pressure is cached // and can be retrieved by DAG->getPressureDif(SU). TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); } unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32]; unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32]; // If two instructions increase the pressure of different register sets // by the same amount, the generic scheduler will prefer to schedule the // instruction that increases the set with the least amount of registers, // which in our case would be SGPRs. This is rarely what we want, so // when we report excess/critical register pressure, we do it either // only for VGPRs or only for SGPRs. // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. const unsigned MaxVGPRPressureInc = 16; bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; // FIXME: We have to enter REG-EXCESS before we reach the actual threshold // to increase the likelihood we don't go over the limits. We should improve // the analysis to look through dependencies to find the path with the least // register pressure. // We only need to update the RPDelta for instructions that increase register // pressure. Instructions that decrease or keep reg pressure the same will be // marked as RegExcess in tryCandidate() when they are compared with // instructions that increase the register pressure. if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { HasExcessPressure = true; Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32); Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); } if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { HasExcessPressure = true; Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32); Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); } // Register pressure is considered 'CRITICAL' if it is approaching a value // that would reduce the wave occupancy for the execution unit. When // register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both // has the same cost, so we don't need to prefer one over the other. int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; if (SGPRDelta >= 0 || VGPRDelta >= 0) { HasExcessPressure = true; if (SGPRDelta > VGPRDelta) { Cand.RPDelta.CriticalMax = PressureChange(AMDGPU::RegisterPressureSets::SReg_32); Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); } else { Cand.RPDelta.CriticalMax = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32); Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); } } } // This function is mostly cut and pasted from // GenericScheduler::pickNodeFromQueue() void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy, const RegPressureTracker &RPTracker, SchedCandidate &Cand) { const SIRegisterInfo *SRI = static_cast(TRI); ArrayRef Pressure = RPTracker.getRegSetPressureAtPos(); unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32]; unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32]; ReadyQueue &Q = Zone.Available; for (SUnit *SU : Q) { SchedCandidate TryCand(ZonePolicy); initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, SGPRPressure, VGPRPressure); // Pass SchedBoundary only when comparing nodes from the same boundary. SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); if (TryCand.Reason != NoCand) { // Initialize resource delta if needed in case future heuristics query it. if (TryCand.ResDelta == SchedResourceDelta()) TryCand.initResourceDelta(Zone.DAG, SchedModel); Cand.setBest(TryCand); LLVM_DEBUG(traceCandidate(Cand)); } } } // This function is mostly cut and pasted from // GenericScheduler::pickNodeBidirectional() SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { // Schedule as far as possible in the direction of no choice. This is most // efficient, but also provides the best heuristics for CriticalPSets. if (SUnit *SU = Bot.pickOnlyChoice()) { IsTopNode = false; return SU; } if (SUnit *SU = Top.pickOnlyChoice()) { IsTopNode = true; return SU; } // Set the bottom-up policy based on the state of the current bottom zone and // the instructions outside the zone, including the top zone. CandPolicy BotPolicy; setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); // Set the top-down policy based on the state of the current top zone and // the instructions outside the zone, including the bottom zone. CandPolicy TopPolicy; setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); // See if BotCand is still valid (because we previously scheduled from Top). LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); if (!BotCand.isValid() || BotCand.SU->isScheduled || BotCand.Policy != BotPolicy) { BotCand.reset(CandPolicy()); pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find the first candidate"); } else { LLVM_DEBUG(traceCandidate(BotCand)); #ifndef NDEBUG if (VerifyScheduling) { SchedCandidate TCand; TCand.reset(CandPolicy()); pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); assert(TCand.SU == BotCand.SU && "Last pick result should correspond to re-picking right now"); } #endif } // Check if the top Q has a better candidate. LLVM_DEBUG(dbgs() << "Picking from Top:\n"); if (!TopCand.isValid() || TopCand.SU->isScheduled || TopCand.Policy != TopPolicy) { TopCand.reset(CandPolicy()); pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find the first candidate"); } else { LLVM_DEBUG(traceCandidate(TopCand)); #ifndef NDEBUG if (VerifyScheduling) { SchedCandidate TCand; TCand.reset(CandPolicy()); pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); assert(TCand.SU == TopCand.SU && "Last pick result should correspond to re-picking right now"); } #endif } // Pick best from BotCand and TopCand. LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand); dbgs() << "Bot Cand: "; traceCandidate(BotCand);); SchedCandidate Cand = BotCand; TopCand.Reason = NoCand; GenericScheduler::tryCandidate(Cand, TopCand, nullptr); if (TopCand.Reason != NoCand) { Cand.setBest(TopCand); } LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand);); IsTopNode = Cand.AtTop; return Cand.SU; } // This function is mostly cut and pasted from // GenericScheduler::pickNode() SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { if (DAG->top() == DAG->bottom()) { assert(Top.Available.empty() && Top.Pending.empty() && Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); return nullptr; } SUnit *SU; do { if (RegionPolicy.OnlyTopDown) { SU = Top.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; TopCand.reset(NoPolicy); pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find a candidate"); SU = TopCand.SU; } IsTopNode = true; } else if (RegionPolicy.OnlyBottomUp) { SU = Bot.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; BotCand.reset(NoPolicy); pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find a candidate"); SU = BotCand.SU; } IsTopNode = false; } else { SU = pickNodeBidirectional(IsTopNode); } } while (SU->isScheduled); if (SU->isTopReady()) Top.removeReady(SU); if (SU->isBottomReady()) Bot.removeReady(SU); if (!HasClusteredNodes && SU->getInstr()->mayLoadOrStore()) { for (SDep &Dep : SU->Preds) { if (Dep.isCluster()) { HasClusteredNodes = true; break; } } } LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); return SU; } GCNScheduleDAGMILive::GCNScheduleDAGMILive( MachineSchedContext *C, std::unique_ptr S) : ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget()), MFI(*MF.getInfo()), StartingOccupancy(MFI.getOccupancy()), MinOccupancy(StartingOccupancy) { LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); } void GCNScheduleDAGMILive::schedule() { // Collect all scheduling regions. The actual scheduling is performed in // GCNScheduleDAGMILive::finalizeSchedule. Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); } GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure(unsigned RegionIdx) const { GCNDownwardRPTracker RPTracker(*LIS); RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]); return RPTracker.moveMaxPressure(); } void GCNScheduleDAGMILive::computeBlockPressure(unsigned RegionIdx, const MachineBasicBlock *MBB) { GCNDownwardRPTracker RPTracker(*LIS); // If the block has the only successor then live-ins of that successor are // live-outs of the current block. We can reuse calculated live set if the // successor will be sent to scheduling past current block. const MachineBasicBlock *OnlySucc = nullptr; if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) { SlotIndexes *Ind = LIS->getSlotIndexes(); if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin())) OnlySucc = *MBB->succ_begin(); } // Scheduler sends regions from the end of the block upwards. size_t CurRegion = RegionIdx; for (size_t E = Regions.size(); CurRegion != E; ++CurRegion) if (Regions[CurRegion].first->getParent() != MBB) break; --CurRegion; auto I = MBB->begin(); auto LiveInIt = MBBLiveIns.find(MBB); auto &Rgn = Regions[CurRegion]; auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second); if (LiveInIt != MBBLiveIns.end()) { auto LiveIn = std::move(LiveInIt->second); RPTracker.reset(*MBB->begin(), &LiveIn); MBBLiveIns.erase(LiveInIt); } else { I = Rgn.first; auto LRS = BBLiveInMap.lookup(NonDbgMI); #ifdef EXPENSIVE_CHECKS assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS)); #endif RPTracker.reset(*I, &LRS); } for (;;) { I = RPTracker.getNext(); if (Regions[CurRegion].first == I || NonDbgMI == I) { LiveIns[CurRegion] = RPTracker.getLiveRegs(); RPTracker.clearMaxPressure(); } if (Regions[CurRegion].second == I) { Pressure[CurRegion] = RPTracker.moveMaxPressure(); if (CurRegion-- == RegionIdx) break; } RPTracker.advanceToNext(); RPTracker.advanceBeforeNext(); } if (OnlySucc) { if (I != MBB->end()) { RPTracker.advanceToNext(); RPTracker.advance(MBB->end()); } RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs()); RPTracker.advanceBeforeNext(); MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs(); } } DenseMap GCNScheduleDAGMILive::getBBLiveInMap() const { assert(!Regions.empty()); std::vector BBStarters; BBStarters.reserve(Regions.size()); auto I = Regions.rbegin(), E = Regions.rend(); auto *BB = I->first->getParent(); do { auto *MI = &*skipDebugInstructionsForward(I->first, I->second); BBStarters.push_back(MI); do { ++I; } while (I != E && I->first->getParent() == BB); } while (I != E); return getLiveRegMap(BBStarters, false /*After*/, *LIS); } void GCNScheduleDAGMILive::finalizeSchedule() { // Start actual scheduling here. This function is called by the base // MachineScheduler after all regions have been recorded by // GCNScheduleDAGMILive::schedule(). LiveIns.resize(Regions.size()); Pressure.resize(Regions.size()); RescheduleRegions.resize(Regions.size()); RegionsWithClusters.resize(Regions.size()); RegionsWithHighRP.resize(Regions.size()); RegionsWithMinOcc.resize(Regions.size()); RescheduleRegions.set(); RegionsWithClusters.reset(); RegionsWithHighRP.reset(); RegionsWithMinOcc.reset(); runSchedStages(); } void GCNScheduleDAGMILive::runSchedStages() { LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n"); InitialScheduleStage S0(GCNSchedStageID::InitialSchedule, *this); UnclusteredRescheduleStage S1(GCNSchedStageID::UnclusteredReschedule, *this); ClusteredLowOccStage S2(GCNSchedStageID::ClusteredLowOccupancyReschedule, *this); PreRARematStage S3(GCNSchedStageID::PreRARematerialize, *this); GCNSchedStage *SchedStages[] = {&S0, &S1, &S2, &S3}; if (!Regions.empty()) BBLiveInMap = getBBLiveInMap(); for (auto *Stage : SchedStages) { if (!Stage->initGCNSchedStage()) continue; for (auto Region : Regions) { RegionBegin = Region.first; RegionEnd = Region.second; // Setup for scheduling the region and check whether it should be skipped. if (!Stage->initGCNRegion()) { Stage->advanceRegion(); exitRegion(); continue; } ScheduleDAGMILive::schedule(); Stage->finalizeGCNRegion(); } Stage->finalizeGCNSchedStage(); } } #ifndef NDEBUG raw_ostream &llvm::operator<<(raw_ostream &OS, const GCNSchedStageID &StageID) { switch (StageID) { case GCNSchedStageID::InitialSchedule: OS << "Initial Schedule"; break; case GCNSchedStageID::UnclusteredReschedule: OS << "Unclustered Reschedule"; break; case GCNSchedStageID::ClusteredLowOccupancyReschedule: OS << "Clustered Low Occupancy Reschedule"; break; case GCNSchedStageID::PreRARematerialize: OS << "Pre-RA Rematerialize"; break; } return OS; } #endif GCNSchedStage::GCNSchedStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG) : DAG(DAG), S(static_cast(*DAG.SchedImpl)), MF(DAG.MF), MFI(DAG.MFI), ST(DAG.ST), StageID(StageID) {} bool GCNSchedStage::initGCNSchedStage() { if (!DAG.LIS) return false; LLVM_DEBUG(dbgs() << "Starting scheduling stage: " << StageID << "\n"); return true; } bool UnclusteredRescheduleStage::initGCNSchedStage() { if (!GCNSchedStage::initGCNSchedStage()) return false; if (DAG.RescheduleRegions.none()) return false; SavedMutations.swap(DAG.Mutations); LLVM_DEBUG(dbgs() << "Retrying function scheduling without clustering.\n"); return true; } bool ClusteredLowOccStage::initGCNSchedStage() { if (!GCNSchedStage::initGCNSchedStage()) return false; // Don't bother trying to improve ILP in lower RP regions if occupancy has not // been dropped. All regions will have already been scheduled with the ideal // occupancy targets. if (DAG.StartingOccupancy <= DAG.MinOccupancy) return false; LLVM_DEBUG( dbgs() << "Retrying function scheduling with lowest recorded occupancy " << DAG.MinOccupancy << ".\n"); return true; } bool PreRARematStage::initGCNSchedStage() { if (!GCNSchedStage::initGCNSchedStage()) return false; if (DAG.RegionsWithMinOcc.none() || DAG.Regions.size() == 1) return false; const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); // Check maximum occupancy if (ST.computeOccupancy(MF.getFunction(), MFI.getLDSSize()) == DAG.MinOccupancy) return false; // FIXME: This pass will invalidate cached MBBLiveIns for regions // inbetween the defs and region we sinked the def to. Cached pressure // for regions where a def is sinked from will also be invalidated. Will // need to be fixed if there is another pass after this pass. collectRematerializableInstructions(); if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII)) return false; LLVM_DEBUG( dbgs() << "Retrying function scheduling with improved occupancy of " << DAG.MinOccupancy << " from rematerializing\n"); return true; } void GCNSchedStage::finalizeGCNSchedStage() { DAG.finishBlock(); LLVM_DEBUG(dbgs() << "Ending scheduling stage: " << StageID << "\n"); } void UnclusteredRescheduleStage::finalizeGCNSchedStage() { SavedMutations.swap(DAG.Mutations); GCNSchedStage::finalizeGCNSchedStage(); } bool GCNSchedStage::initGCNRegion() { // Check whether this new region is also a new block. if (DAG.RegionBegin->getParent() != CurrentMBB) setupNewBlock(); unsigned NumRegionInstrs = std::distance(DAG.begin(), DAG.end()); DAG.enterRegion(CurrentMBB, DAG.begin(), DAG.end(), NumRegionInstrs); // Skip empty scheduling regions (0 or 1 schedulable instructions). if (DAG.begin() == DAG.end() || DAG.begin() == std::prev(DAG.end())) return false; LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*CurrentMBB) << " " << CurrentMBB->getName() << "\n From: " << *DAG.begin() << " To: "; if (DAG.RegionEnd != CurrentMBB->end()) dbgs() << *DAG.RegionEnd; else dbgs() << "End"; dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); // Save original instruction order before scheduling for possible revert. Unsched.clear(); Unsched.reserve(DAG.NumRegionInstrs); for (auto &I : DAG) Unsched.push_back(&I); PressureBefore = DAG.Pressure[RegionIdx]; LLVM_DEBUG( dbgs() << "Pressure before scheduling:\nRegion live-ins:"; GCNRPTracker::printLiveRegs(dbgs(), DAG.LiveIns[RegionIdx], DAG.MRI); dbgs() << "Region live-in pressure: "; llvm::getRegPressure(DAG.MRI, DAG.LiveIns[RegionIdx]).print(dbgs()); dbgs() << "Region register pressure: "; PressureBefore.print(dbgs())); // Set HasClusteredNodes to true for late stages where we have already // collected it. That way pickNode() will not scan SDep's when not needed. S.HasClusteredNodes = StageID > GCNSchedStageID::InitialSchedule; S.HasExcessPressure = false; return true; } bool UnclusteredRescheduleStage::initGCNRegion() { if (!DAG.RescheduleRegions[RegionIdx]) return false; return GCNSchedStage::initGCNRegion(); } bool ClusteredLowOccStage::initGCNRegion() { // We may need to reschedule this region if it doesn't have clusters so it // wasn't rescheduled in the last stage, or if we found it was testing // critical register pressure limits in the unclustered reschedule stage. The // later is because we may not have been able to raise the min occupancy in // the previous stage so the region may be overly constrained even if it was // already rescheduled. if (!DAG.RegionsWithClusters[RegionIdx] && !DAG.RegionsWithHighRP[RegionIdx]) return false; return GCNSchedStage::initGCNRegion(); } bool PreRARematStage::initGCNRegion() { if (!DAG.RescheduleRegions[RegionIdx]) return false; return GCNSchedStage::initGCNRegion(); } void GCNSchedStage::setupNewBlock() { if (CurrentMBB) DAG.finishBlock(); CurrentMBB = DAG.RegionBegin->getParent(); DAG.startBlock(CurrentMBB); // Get real RP for the region if it hasn't be calculated before. After the // initial schedule stage real RP will be collected after scheduling. if (StageID == GCNSchedStageID::InitialSchedule) DAG.computeBlockPressure(RegionIdx, CurrentMBB); } void GCNSchedStage::finalizeGCNRegion() { DAG.Regions[RegionIdx] = std::make_pair(DAG.RegionBegin, DAG.RegionEnd); DAG.RescheduleRegions[RegionIdx] = false; if (S.HasExcessPressure) DAG.RegionsWithHighRP[RegionIdx] = true; // Revert scheduling if we have dropped occupancy or there is some other // reason that the original schedule is better. checkScheduling(); DAG.exitRegion(); RegionIdx++; } void InitialScheduleStage::finalizeGCNRegion() { // Record which regions have clustered nodes for the next unclustered // reschedule stage. assert(nextStage(StageID) == GCNSchedStageID::UnclusteredReschedule); if (S.HasClusteredNodes) DAG.RegionsWithClusters[RegionIdx] = true; GCNSchedStage::finalizeGCNRegion(); } void GCNSchedStage::checkScheduling() { // Check the results of scheduling. PressureAfter = DAG.getRealRegPressure(RegionIdx); LLVM_DEBUG(dbgs() << "Pressure after scheduling: "; PressureAfter.print(dbgs())); if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit && PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) { DAG.Pressure[RegionIdx] = PressureAfter; DAG.RegionsWithMinOcc[RegionIdx] = PressureAfter.getOccupancy(ST) == DAG.MinOccupancy; // Early out if we have achieve the occupancy target. LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n"); return; } unsigned WavesAfter = std::min(S.getTargetOccupancy(), PressureAfter.getOccupancy(ST)); unsigned WavesBefore = std::min(S.getTargetOccupancy(), PressureBefore.getOccupancy(ST)); LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore << ", after " << WavesAfter << ".\n"); // We may not be able to keep the current target occupancy because of the just // scheduled region. We might still be able to revert scheduling if the // occupancy before was higher, or if the current schedule has register // pressure higher than the excess limits which could lead to more spilling. unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); // Allow memory bound functions to drop to 4 waves if not limited by an // attribute. if (WavesAfter < WavesBefore && WavesAfter < DAG.MinOccupancy && WavesAfter >= MFI.getMinAllowedOccupancy()) { LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to " << MFI.getMinAllowedOccupancy() << " waves\n"); NewOccupancy = WavesAfter; } if (NewOccupancy < DAG.MinOccupancy) { DAG.MinOccupancy = NewOccupancy; MFI.limitOccupancy(DAG.MinOccupancy); DAG.RegionsWithMinOcc.reset(); LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to " << DAG.MinOccupancy << ".\n"); } unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF); unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF); if (PressureAfter.getVGPRNum(false) > MaxVGPRs || PressureAfter.getAGPRNum() > MaxVGPRs || PressureAfter.getSGPRNum() > MaxSGPRs) { DAG.RescheduleRegions[RegionIdx] = true; DAG.RegionsWithHighRP[RegionIdx] = true; } // Revert if this region's schedule would cause a drop in occupancy or // spilling. if (shouldRevertScheduling(WavesAfter)) { revertScheduling(); } else { DAG.Pressure[RegionIdx] = PressureAfter; DAG.RegionsWithMinOcc[RegionIdx] = PressureAfter.getOccupancy(ST) == DAG.MinOccupancy; } } bool GCNSchedStage::shouldRevertScheduling(unsigned WavesAfter) { if (WavesAfter < DAG.MinOccupancy) return true; return false; } bool InitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) { if (GCNSchedStage::shouldRevertScheduling(WavesAfter)) return true; if (mayCauseSpilling(WavesAfter)) return true; assert(nextStage(StageID) == GCNSchedStageID::UnclusteredReschedule); // Don't reschedule the region in the next stage if it doesn't have clusters. if (!DAG.RegionsWithClusters[RegionIdx]) DAG.RescheduleRegions[RegionIdx] = false; return false; } bool UnclusteredRescheduleStage::shouldRevertScheduling(unsigned WavesAfter) { if (GCNSchedStage::shouldRevertScheduling(WavesAfter)) return true; // If RP is not reduced in the unclustred reschedule stage, revert to the old // schedule. if (!PressureAfter.less(ST, PressureBefore)) { LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n"); return true; } return false; } bool ClusteredLowOccStage::shouldRevertScheduling(unsigned WavesAfter) { if (GCNSchedStage::shouldRevertScheduling(WavesAfter)) return true; if (mayCauseSpilling(WavesAfter)) return true; return false; } bool PreRARematStage::shouldRevertScheduling(unsigned WavesAfter) { if (GCNSchedStage::shouldRevertScheduling(WavesAfter)) return true; if (mayCauseSpilling(WavesAfter)) return true; return false; } bool GCNSchedStage::mayCauseSpilling(unsigned WavesAfter) { if (WavesAfter <= MFI.getMinWavesPerEU() && !PressureAfter.less(ST, PressureBefore) && DAG.RescheduleRegions[RegionIdx]) { LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n"); return true; } return false; } void GCNSchedStage::revertScheduling() { DAG.RegionsWithMinOcc[RegionIdx] = PressureBefore.getOccupancy(ST) == DAG.MinOccupancy; LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n"); DAG.RescheduleRegions[RegionIdx] = DAG.RegionsWithClusters[RegionIdx] || (nextStage(StageID)) != GCNSchedStageID::UnclusteredReschedule; DAG.RegionEnd = DAG.RegionBegin; int SkippedDebugInstr = 0; for (MachineInstr *MI : Unsched) { if (MI->isDebugInstr()) { ++SkippedDebugInstr; continue; } if (MI->getIterator() != DAG.RegionEnd) { DAG.BB->remove(MI); DAG.BB->insert(DAG.RegionEnd, MI); if (!MI->isDebugInstr()) DAG.LIS->handleMove(*MI, true); } // Reset read-undef flags and update them later. for (auto &Op : MI->operands()) if (Op.isReg() && Op.isDef()) Op.setIsUndef(false); RegisterOperands RegOpers; RegOpers.collect(*MI, *DAG.TRI, DAG.MRI, DAG.ShouldTrackLaneMasks, false); if (!MI->isDebugInstr()) { if (DAG.ShouldTrackLaneMasks) { // Adjust liveness and add missing dead+read-undef flags. SlotIndex SlotIdx = DAG.LIS->getInstructionIndex(*MI).getRegSlot(); RegOpers.adjustLaneLiveness(*DAG.LIS, DAG.MRI, SlotIdx, MI); } else { // Adjust for missing dead-def flags. RegOpers.detectDeadDefs(*MI, *DAG.LIS); } } DAG.RegionEnd = MI->getIterator(); ++DAG.RegionEnd; LLVM_DEBUG(dbgs() << "Scheduling " << *MI); } // After reverting schedule, debug instrs will now be at the end of the block // and RegionEnd will point to the first debug instr. Increment RegionEnd // pass debug instrs to the actual end of the scheduling region. while (SkippedDebugInstr-- > 0) ++DAG.RegionEnd; // If Unsched.front() instruction is a debug instruction, this will actually // shrink the region since we moved all debug instructions to the end of the // block. Find the first instruction that is not a debug instruction. DAG.RegionBegin = Unsched.front()->getIterator(); if (DAG.RegionBegin->isDebugInstr()) { for (MachineInstr *MI : Unsched) { if (MI->isDebugInstr()) continue; DAG.RegionBegin = MI->getIterator(); break; } } // Then move the debug instructions back into their correct place and set // RegionBegin and RegionEnd if needed. DAG.placeDebugValues(); DAG.Regions[RegionIdx] = std::make_pair(DAG.RegionBegin, DAG.RegionEnd); } void PreRARematStage::collectRematerializableInstructions() { const SIRegisterInfo *SRI = static_cast(DAG.TRI); for (unsigned I = 0, E = DAG.MRI.getNumVirtRegs(); I != E; ++I) { Register Reg = Register::index2VirtReg(I); if (!DAG.LIS->hasInterval(Reg)) continue; // TODO: Handle AGPR and SGPR rematerialization if (!SRI->isVGPRClass(DAG.MRI.getRegClass(Reg)) || !DAG.MRI.hasOneDef(Reg) || !DAG.MRI.hasOneNonDBGUse(Reg)) continue; MachineOperand *Op = DAG.MRI.getOneDef(Reg); MachineInstr *Def = Op->getParent(); if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def)) continue; MachineInstr *UseI = &*DAG.MRI.use_instr_nodbg_begin(Reg); if (Def->getParent() == UseI->getParent()) continue; // We are only collecting defs that are defined in another block and are // live-through or used inside regions at MinOccupancy. This means that the // register must be in the live-in set for the region. bool AddedToRematList = false; for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) { auto It = DAG.LiveIns[I].find(Reg); if (It != DAG.LiveIns[I].end() && !It->second.none()) { if (DAG.RegionsWithMinOcc[I]) { RematerializableInsts[I][Def] = UseI; AddedToRematList = true; } // Collect regions with rematerializable reg as live-in to avoid // searching later when updating RP. RematDefToLiveInRegions[Def].push_back(I); } } if (!AddedToRematList) RematDefToLiveInRegions.erase(Def); } } bool PreRARematStage::sinkTriviallyRematInsts(const GCNSubtarget &ST, const TargetInstrInfo *TII) { // Temporary copies of cached variables we will be modifying and replacing if // sinking succeeds. SmallVector< std::pair, 32> NewRegions; DenseMap NewLiveIns; DenseMap NewPressure; BitVector NewRescheduleRegions; LiveIntervals *LIS = DAG.LIS; NewRegions.resize(DAG.Regions.size()); NewRescheduleRegions.resize(DAG.Regions.size()); // Collect only regions that has a rematerializable def as a live-in. SmallSet ImpactedRegions; for (const auto &It : RematDefToLiveInRegions) ImpactedRegions.insert(It.second.begin(), It.second.end()); // Make copies of register pressure and live-ins cache that will be updated // as we rematerialize. for (auto Idx : ImpactedRegions) { NewPressure[Idx] = DAG.Pressure[Idx]; NewLiveIns[Idx] = DAG.LiveIns[Idx]; } NewRegions = DAG.Regions; NewRescheduleRegions.reset(); DenseMap InsertedMIToOldDef; bool Improved = false; for (auto I : ImpactedRegions) { if (!DAG.RegionsWithMinOcc[I]) continue; Improved = false; int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts()); int SGPRUsage = NewPressure[I].getSGPRNum(); // TODO: Handle occupancy drop due to AGPR and SGPR. // Check if cause of occupancy drop is due to VGPR usage and not SGPR. if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == DAG.MinOccupancy) break; // The occupancy of this region could have been improved by a previous // iteration's sinking of defs. if (NewPressure[I].getOccupancy(ST) > DAG.MinOccupancy) { NewRescheduleRegions[I] = true; Improved = true; continue; } // First check if we have enough trivially rematerializable instructions to // improve occupancy. Optimistically assume all instructions we are able to // sink decreased RP. int TotalSinkableRegs = 0; for (const auto &It : RematerializableInsts[I]) { MachineInstr *Def = It.first; Register DefReg = Def->getOperand(0).getReg(); TotalSinkableRegs += SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]); } int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs; unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink); // If in the most optimistic scenario, we cannot improve occupancy, then do // not attempt to sink any instructions. if (OptimisticOccupancy <= DAG.MinOccupancy) break; unsigned ImproveOccupancy = 0; SmallVector SinkedDefs; for (auto &It : RematerializableInsts[I]) { MachineInstr *Def = It.first; MachineBasicBlock::iterator InsertPos = MachineBasicBlock::iterator(It.second); Register Reg = Def->getOperand(0).getReg(); // Rematerialize MI to its use block. Since we are only rematerializing // instructions that do not have any virtual reg uses, we do not need to // call LiveRangeEdit::allUsesAvailableAt() and // LiveRangeEdit::canRematerializeAt(). TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg, Def->getOperand(0).getSubReg(), *Def, *DAG.TRI); MachineInstr *NewMI = &*(--InsertPos); LIS->InsertMachineInstrInMaps(*NewMI); LIS->removeInterval(Reg); LIS->createAndComputeVirtRegInterval(Reg); InsertedMIToOldDef[NewMI] = Def; // Update region boundaries in scheduling region we sinked from since we // may sink an instruction that was at the beginning or end of its region DAG.updateRegionBoundaries(NewRegions, Def, /*NewMI =*/nullptr, /*Removing =*/true); // Update region boundaries in region we sinked to. DAG.updateRegionBoundaries(NewRegions, InsertPos, NewMI); LaneBitmask PrevMask = NewLiveIns[I][Reg]; // FIXME: Also update cached pressure for where the def was sinked from. // Update RP for all regions that has this reg as a live-in and remove // the reg from all regions as a live-in. for (auto Idx : RematDefToLiveInRegions[Def]) { NewLiveIns[Idx].erase(Reg); if (InsertPos->getParent() != DAG.Regions[Idx].first->getParent()) { // Def is live-through and not used in this block. NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), DAG.MRI); } else { // Def is used and rematerialized into this block. GCNDownwardRPTracker RPT(*LIS); auto *NonDbgMI = &*skipDebugInstructionsForward( NewRegions[Idx].first, NewRegions[Idx].second); RPT.reset(*NonDbgMI, &NewLiveIns[Idx]); RPT.advance(NewRegions[Idx].second); NewPressure[Idx] = RPT.moveMaxPressure(); } } SinkedDefs.push_back(Def); ImproveOccupancy = NewPressure[I].getOccupancy(ST); if (ImproveOccupancy > DAG.MinOccupancy) break; } // Remove defs we just sinked from all regions' list of sinkable defs for (auto &Def : SinkedDefs) for (auto TrackedIdx : RematDefToLiveInRegions[Def]) RematerializableInsts[TrackedIdx].erase(Def); if (ImproveOccupancy <= DAG.MinOccupancy) break; NewRescheduleRegions[I] = true; Improved = true; } if (!Improved) { // Occupancy was not improved for all regions that were at MinOccupancy. // Undo sinking and remove newly rematerialized instructions. for (auto &Entry : InsertedMIToOldDef) { MachineInstr *MI = Entry.first; MachineInstr *OldMI = Entry.second; Register Reg = MI->getOperand(0).getReg(); LIS->RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); OldMI->clearRegisterDeads(Reg); LIS->removeInterval(Reg); LIS->createAndComputeVirtRegInterval(Reg); } return false; } // Occupancy was improved for all regions. for (auto &Entry : InsertedMIToOldDef) { MachineInstr *MI = Entry.first; MachineInstr *OldMI = Entry.second; // Remove OldMI from BBLiveInMap since we are sinking it from its MBB. DAG.BBLiveInMap.erase(OldMI); // Remove OldMI and update LIS Register Reg = MI->getOperand(0).getReg(); LIS->RemoveMachineInstrFromMaps(*OldMI); OldMI->eraseFromParent(); LIS->removeInterval(Reg); LIS->createAndComputeVirtRegInterval(Reg); } // Update live-ins, register pressure, and regions caches. for (auto Idx : ImpactedRegions) { DAG.LiveIns[Idx] = NewLiveIns[Idx]; DAG.Pressure[Idx] = NewPressure[Idx]; DAG.MBBLiveIns.erase(DAG.Regions[Idx].first->getParent()); } DAG.Regions = NewRegions; DAG.RescheduleRegions = NewRescheduleRegions; SIMachineFunctionInfo &MFI = *MF.getInfo(); MFI.increaseOccupancy(MF, ++DAG.MinOccupancy); return true; } // Copied from MachineLICM bool PreRARematStage::isTriviallyReMaterializable(const MachineInstr &MI) { if (!DAG.TII->isTriviallyReMaterializable(MI)) return false; for (const MachineOperand &MO : MI.operands()) if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual()) return false; return true; } // When removing, we will have to check both beginning and ending of the region. // When inserting, we will only have to check if we are inserting NewMI in front // of a scheduling region and do not need to check the ending since we will only // ever be inserting before an already existing MI. void GCNScheduleDAGMILive::updateRegionBoundaries( SmallVectorImpl> &RegionBoundaries, MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) { unsigned I = 0, E = RegionBoundaries.size(); // Search for first region of the block where MI is located while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent()) ++I; for (; I != E; ++I) { if (MI->getParent() != RegionBoundaries[I].first->getParent()) return; if (Removing && MI == RegionBoundaries[I].first && MI == RegionBoundaries[I].second) { // MI is in a region with size 1, after removing, the region will be // size 0, set RegionBegin and RegionEnd to pass end of block iterator. RegionBoundaries[I] = std::make_pair(MI->getParent()->end(), MI->getParent()->end()); return; } if (MI == RegionBoundaries[I].first) { if (Removing) RegionBoundaries[I] = std::make_pair(std::next(MI), RegionBoundaries[I].second); else // Inserted NewMI in front of region, set new RegionBegin to NewMI RegionBoundaries[I] = std::make_pair(MachineBasicBlock::iterator(NewMI), RegionBoundaries[I].second); return; } if (Removing && MI == RegionBoundaries[I].second) { RegionBoundaries[I] = std::make_pair(RegionBoundaries[I].first, std::prev(MI)); return; } } }