//===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Insert wait instructions for memory reads and writes. /// /// Memory reads and writes are issued asynchronously, so we need to insert /// S_WAITCNT instructions when we want to access any of their results or /// overwrite any register that's used asynchronously. /// /// TODO: This pass currently keeps one timeline per hardware counter. A more /// finely-grained approach that keeps one timeline per event type could /// sometimes get away with generating weaker s_waitcnt instructions. For /// example, when both SMEM and LDS are in flight and we need to wait for /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, /// but the pass will currently generate a conservative lgkmcnt(0) because /// multiple event types are in flight. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIMachineFunctionInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/Sequence.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/InitializePasses.h" #include "llvm/Support/DebugCounter.h" #include "llvm/TargetParser/TargetParser.h" using namespace llvm; #define DEBUG_TYPE "si-insert-waitcnts" DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", "Force emit s_waitcnt expcnt(0) instrs"); DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", "Force emit s_waitcnt lgkmcnt(0) instrs"); DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", "Force emit s_waitcnt vmcnt(0) instrs"); static cl::opt ForceEmitZeroFlag( "amdgpu-waitcnt-forcezero", cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), cl::init(false), cl::Hidden); namespace { // Class of object that encapsulates latest instruction counter score // associated with the operand. Used for determining whether // s_waitcnt instruction needs to be emitted. enum InstCounterType { LOAD_CNT = 0, // VMcnt prior to gfx12. DS_CNT, // LKGMcnt prior to gfx12. EXP_CNT, // STORE_CNT, // VScnt in gfx10/gfx11. NUM_NORMAL_INST_CNTS, SAMPLE_CNT = NUM_NORMAL_INST_CNTS, // gfx12+ only. BVH_CNT, // gfx12+ only. KM_CNT, // gfx12+ only. NUM_EXTENDED_INST_CNTS, NUM_INST_CNTS = NUM_EXTENDED_INST_CNTS }; } // namespace namespace llvm { template <> struct enum_iteration_traits { static constexpr bool is_iterable = true; }; } // namespace llvm namespace { // Return an iterator over all counters between LOAD_CNT (the first counter) // and \c MaxCounter (exclusive, default value yields an enumeration over // all counters). auto inst_counter_types(InstCounterType MaxCounter = NUM_INST_CNTS) { return enum_seq(LOAD_CNT, MaxCounter); } using RegInterval = std::pair; struct HardwareLimits { unsigned LoadcntMax; // Corresponds to VMcnt prior to gfx12. unsigned ExpcntMax; unsigned DscntMax; // Corresponds to LGKMcnt prior to gfx12. unsigned StorecntMax; // Corresponds to VScnt in gfx10/gfx11. unsigned SamplecntMax; // gfx12+ only. unsigned BvhcntMax; // gfx12+ only. unsigned KmcntMax; // gfx12+ only. }; struct RegisterEncoding { unsigned VGPR0; unsigned VGPRL; unsigned SGPR0; unsigned SGPRL; }; enum WaitEventType { VMEM_ACCESS, // vector-memory read & write VMEM_READ_ACCESS, // vector-memory read VMEM_SAMPLER_READ_ACCESS, // vector-memory SAMPLER read (gfx12+ only) VMEM_BVH_READ_ACCESS, // vector-memory BVH read (gfx12+ only) VMEM_WRITE_ACCESS, // vector-memory write that is not scratch SCRATCH_WRITE_ACCESS, // vector-memory write that may be scratch LDS_ACCESS, // lds read & write GDS_ACCESS, // gds read & write SQ_MESSAGE, // send message SMEM_ACCESS, // scalar-memory read & write EXP_GPR_LOCK, // export holding on its data src GDS_GPR_LOCK, // GDS holding on its data and addr src EXP_POS_ACCESS, // write to export position EXP_PARAM_ACCESS, // write to export parameter VMW_GPR_LOCK, // vector-memory write holding on its data src EXP_LDS_ACCESS, // read by ldsdir counting as export NUM_WAIT_EVENTS, }; // The mapping is: // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs // We reserve a fixed number of VGPR slots in the scoring tables for // special tokens like SCMEM_LDS (needed for buffer load to LDS). enum RegisterMapping { SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. AGPR_OFFSET = 256, // Maximum programmable ArchVGPRs across all targets. SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. NUM_EXTRA_VGPRS = 9, // Reserved slots for DS. // Artificial register slots to track LDS writes into specific LDS locations // if a location is known. When slots are exhausted or location is // unknown use the first slot. The first slot is also always updated in // addition to known location's slot to properly generate waits if dependent // instruction's location is unknown. EXTRA_VGPR_LDS = 0, NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. }; // Enumerate different types of result-returning VMEM operations. Although // s_waitcnt orders them all with a single vmcnt counter, in the absence of // s_waitcnt only instructions of the same VmemType are guaranteed to write // their results in order -- so there is no need to insert an s_waitcnt between // two instructions of the same type that write the same vgpr. enum VmemType { // BUF instructions and MIMG instructions without a sampler. VMEM_NOSAMPLER, // MIMG instructions with a sampler. VMEM_SAMPLER, // BVH instructions VMEM_BVH, NUM_VMEM_TYPES }; // Maps values of InstCounterType to the instruction that waits on that // counter. Only used if GCNSubtarget::hasExtendedWaitCounts() // returns true. static const unsigned instrsForExtendedCounterTypes[NUM_EXTENDED_INST_CNTS] = { AMDGPU::S_WAIT_LOADCNT, AMDGPU::S_WAIT_DSCNT, AMDGPU::S_WAIT_EXPCNT, AMDGPU::S_WAIT_STORECNT, AMDGPU::S_WAIT_SAMPLECNT, AMDGPU::S_WAIT_BVHCNT, AMDGPU::S_WAIT_KMCNT}; static bool updateVMCntOnly(const MachineInstr &Inst) { return SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLATGlobal(Inst) || SIInstrInfo::isFLATScratch(Inst); } #ifndef NDEBUG static bool isNormalMode(InstCounterType MaxCounter) { return MaxCounter == NUM_NORMAL_INST_CNTS; } #endif // NDEBUG VmemType getVmemType(const MachineInstr &Inst) { assert(updateVMCntOnly(Inst)); if (!SIInstrInfo::isMIMG(Inst) && !SIInstrInfo::isVIMAGE(Inst) && !SIInstrInfo::isVSAMPLE(Inst)) return VMEM_NOSAMPLER; const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); return BaseInfo->BVH ? VMEM_BVH : BaseInfo->Sampler ? VMEM_SAMPLER : VMEM_NOSAMPLER; } unsigned &getCounterRef(AMDGPU::Waitcnt &Wait, InstCounterType T) { switch (T) { case LOAD_CNT: return Wait.LoadCnt; case EXP_CNT: return Wait.ExpCnt; case DS_CNT: return Wait.DsCnt; case STORE_CNT: return Wait.StoreCnt; case SAMPLE_CNT: return Wait.SampleCnt; case BVH_CNT: return Wait.BvhCnt; case KM_CNT: return Wait.KmCnt; default: llvm_unreachable("bad InstCounterType"); } } void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { unsigned &WC = getCounterRef(Wait, T); WC = std::min(WC, Count); } void setNoWait(AMDGPU::Waitcnt &Wait, InstCounterType T) { getCounterRef(Wait, T) = ~0u; } unsigned getWait(AMDGPU::Waitcnt &Wait, InstCounterType T) { return getCounterRef(Wait, T); } // Mapping from event to counter according to the table masks. InstCounterType eventCounter(const unsigned *masks, WaitEventType E) { for (auto T : inst_counter_types()) { if (masks[T] & (1 << E)) return T; } llvm_unreachable("event type has no associated counter"); } // This objects maintains the current score brackets of each wait counter, and // a per-register scoreboard for each wait counter. // // We also maintain the latest score for every event type that can change the // waitcnt in order to know if there are multiple types of events within // the brackets. When multiple types of event happen in the bracket, // wait count may get decreased out of order, therefore we need to put in // "s_waitcnt 0" before use. class WaitcntBrackets { public: WaitcntBrackets(const GCNSubtarget *SubTarget, InstCounterType MaxCounter, HardwareLimits Limits, RegisterEncoding Encoding, const unsigned *WaitEventMaskForInst, InstCounterType SmemAccessCounter) : ST(SubTarget), MaxCounter(MaxCounter), Limits(Limits), Encoding(Encoding), WaitEventMaskForInst(WaitEventMaskForInst), SmemAccessCounter(SmemAccessCounter) {} unsigned getWaitCountMax(InstCounterType T) const { switch (T) { case LOAD_CNT: return Limits.LoadcntMax; case DS_CNT: return Limits.DscntMax; case EXP_CNT: return Limits.ExpcntMax; case STORE_CNT: return Limits.StorecntMax; case SAMPLE_CNT: return Limits.SamplecntMax; case BVH_CNT: return Limits.BvhcntMax; case KM_CNT: return Limits.KmcntMax; default: break; } return 0; } unsigned getScoreLB(InstCounterType T) const { assert(T < NUM_INST_CNTS); return ScoreLBs[T]; } unsigned getScoreUB(InstCounterType T) const { assert(T < NUM_INST_CNTS); return ScoreUBs[T]; } unsigned getScoreRange(InstCounterType T) const { return getScoreUB(T) - getScoreLB(T); } unsigned getRegScore(int GprNo, InstCounterType T) const { if (GprNo < NUM_ALL_VGPRS) { return VgprScores[T][GprNo]; } assert(T == SmemAccessCounter); return SgprScores[GprNo - NUM_ALL_VGPRS]; } bool merge(const WaitcntBrackets &Other); RegInterval getRegInterval(const MachineInstr *MI, const MachineRegisterInfo *MRI, const SIRegisterInfo *TRI, unsigned OpNo) const; bool counterOutOfOrder(InstCounterType T) const; void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; void determineWait(InstCounterType T, int RegNo, AMDGPU::Waitcnt &Wait) const; void applyWaitcnt(const AMDGPU::Waitcnt &Wait); void applyWaitcnt(InstCounterType T, unsigned Count); void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, WaitEventType E, MachineInstr &MI); unsigned hasPendingEvent() const { return PendingEvents; } unsigned hasPendingEvent(WaitEventType E) const { return PendingEvents & (1 << E); } unsigned hasPendingEvent(InstCounterType T) const { unsigned HasPending = PendingEvents & WaitEventMaskForInst[T]; assert((HasPending != 0) == (getScoreRange(T) != 0)); return HasPending; } bool hasMixedPendingEvents(InstCounterType T) const { unsigned Events = hasPendingEvent(T); // Return true if more than one bit is set in Events. return Events & (Events - 1); } bool hasPendingFlat() const { return ((LastFlat[DS_CNT] > ScoreLBs[DS_CNT] && LastFlat[DS_CNT] <= ScoreUBs[DS_CNT]) || (LastFlat[LOAD_CNT] > ScoreLBs[LOAD_CNT] && LastFlat[LOAD_CNT] <= ScoreUBs[LOAD_CNT])); } void setPendingFlat() { LastFlat[LOAD_CNT] = ScoreUBs[LOAD_CNT]; LastFlat[DS_CNT] = ScoreUBs[DS_CNT]; } // Return true if there might be pending writes to the specified vgpr by VMEM // instructions with types different from V. bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { assert(GprNo < NUM_ALL_VGPRS); return VgprVmemTypes[GprNo] & ~(1 << V); } void clearVgprVmemTypes(int GprNo) { assert(GprNo < NUM_ALL_VGPRS); VgprVmemTypes[GprNo] = 0; } void setStateOnFunctionEntryOrReturn() { setScoreUB(STORE_CNT, getScoreUB(STORE_CNT) + getWaitCountMax(STORE_CNT)); PendingEvents |= WaitEventMaskForInst[STORE_CNT]; } ArrayRef getLDSDMAStores() const { return LDSDMAStores; } void print(raw_ostream &); void dump() { print(dbgs()); } private: struct MergeInfo { unsigned OldLB; unsigned OtherLB; unsigned MyShift; unsigned OtherShift; }; static bool mergeScore(const MergeInfo &M, unsigned &Score, unsigned OtherScore); void setScoreLB(InstCounterType T, unsigned Val) { assert(T < NUM_INST_CNTS); ScoreLBs[T] = Val; } void setScoreUB(InstCounterType T, unsigned Val) { assert(T < NUM_INST_CNTS); ScoreUBs[T] = Val; if (T != EXP_CNT) return; if (getScoreRange(EXP_CNT) > getWaitCountMax(EXP_CNT)) ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(EXP_CNT); } void setRegScore(int GprNo, InstCounterType T, unsigned Val) { if (GprNo < NUM_ALL_VGPRS) { VgprUB = std::max(VgprUB, GprNo); VgprScores[T][GprNo] = Val; } else { assert(T == SmemAccessCounter); SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); SgprScores[GprNo - NUM_ALL_VGPRS] = Val; } } void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, unsigned OpNo, unsigned Val); const GCNSubtarget *ST = nullptr; InstCounterType MaxCounter = NUM_EXTENDED_INST_CNTS; HardwareLimits Limits = {}; RegisterEncoding Encoding = {}; const unsigned *WaitEventMaskForInst; InstCounterType SmemAccessCounter; unsigned ScoreLBs[NUM_INST_CNTS] = {0}; unsigned ScoreUBs[NUM_INST_CNTS] = {0}; unsigned PendingEvents = 0; // Remember the last flat memory operation. unsigned LastFlat[NUM_INST_CNTS] = {0}; // wait_cnt scores for every vgpr. // Keep track of the VgprUB and SgprUB to make merge at join efficient. int VgprUB = -1; int SgprUB = -1; unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; // Wait cnt scores for every sgpr, only DS_CNT (corresponding to LGKMcnt // pre-gfx12) or KM_CNT (gfx12+ only) are relevant. unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; // Bitmask of the VmemTypes of VMEM instructions that might have a pending // write to each vgpr. unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; // Store representative LDS DMA operations. The only useful info here is // alias info. One store is kept per unique AAInfo. SmallVector LDSDMAStores; }; // This abstracts the logic for generating and updating S_WAIT* instructions // away from the analysis that determines where they are needed. This was // done because the set of counters and instructions for waiting on them // underwent a major shift with gfx12, sufficiently so that having this // abstraction allows the main analysis logic to be simpler than it would // otherwise have had to become. class WaitcntGenerator { protected: const GCNSubtarget *ST = nullptr; const SIInstrInfo *TII = nullptr; AMDGPU::IsaVersion IV; InstCounterType MaxCounter; public: WaitcntGenerator() {} WaitcntGenerator(const GCNSubtarget *ST, InstCounterType MaxCounter) : ST(ST), TII(ST->getInstrInfo()), IV(AMDGPU::getIsaVersion(ST->getCPU())), MaxCounter(MaxCounter) {} // Edits an existing sequence of wait count instructions according // to an incoming Waitcnt value, which is itself updated to reflect // any new wait count instructions which may need to be generated by // WaitcntGenerator::createNewWaitcnt(). It will return true if any edits // were made. // // This editing will usually be merely updated operands, but it may also // delete instructions if the incoming Wait value indicates they are not // needed. It may also remove existing instructions for which a wait // is needed if it can be determined that it is better to generate new // instructions later, as can happen on gfx12. virtual bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const = 0; // Transform a soft waitcnt into a normal one. bool promoteSoftWaitCnt(MachineInstr *Waitcnt) const; // Generates new wait count instructions according to the value of // Wait, returning true if any new instructions were created. virtual bool createNewWaitcnt(MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, AMDGPU::Waitcnt Wait) = 0; // Returns an array of bit masks which can be used to map values in // WaitEventType to corresponding counter values in InstCounterType. virtual const unsigned *getWaitEventMask() const = 0; virtual ~WaitcntGenerator() = default; }; class WaitcntGeneratorPreGFX12 : public WaitcntGenerator { public: WaitcntGeneratorPreGFX12() {} WaitcntGeneratorPreGFX12(const GCNSubtarget *ST) : WaitcntGenerator(ST, NUM_NORMAL_INST_CNTS) {} bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const override; bool createNewWaitcnt(MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, AMDGPU::Waitcnt Wait) override; const unsigned *getWaitEventMask() const override { assert(ST); static const unsigned WaitEventMaskForInstPreGFX12[NUM_INST_CNTS] = { (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS) | (1 << VMEM_SAMPLER_READ_ACCESS) | (1 << VMEM_BVH_READ_ACCESS), (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | (1 << SQ_MESSAGE), (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS) | (1 << EXP_LDS_ACCESS), (1 << VMEM_WRITE_ACCESS) | (1 << SCRATCH_WRITE_ACCESS), 0, 0, 0}; return WaitEventMaskForInstPreGFX12; } }; class WaitcntGeneratorGFX12Plus : public WaitcntGenerator { public: WaitcntGeneratorGFX12Plus() {} WaitcntGeneratorGFX12Plus(const GCNSubtarget *ST, InstCounterType MaxCounter) : WaitcntGenerator(ST, MaxCounter) {} bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const override; bool createNewWaitcnt(MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, AMDGPU::Waitcnt Wait) override; const unsigned *getWaitEventMask() const override { assert(ST); static const unsigned WaitEventMaskForInstGFX12Plus[NUM_INST_CNTS] = { (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), (1 << LDS_ACCESS) | (1 << GDS_ACCESS), (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS) | (1 << EXP_LDS_ACCESS), (1 << VMEM_WRITE_ACCESS) | (1 << SCRATCH_WRITE_ACCESS), (1 << VMEM_SAMPLER_READ_ACCESS), (1 << VMEM_BVH_READ_ACCESS), (1 << SMEM_ACCESS) | (1 << SQ_MESSAGE)}; return WaitEventMaskForInstGFX12Plus; } }; class SIInsertWaitcnts : public MachineFunctionPass { private: const GCNSubtarget *ST = nullptr; const SIInstrInfo *TII = nullptr; const SIRegisterInfo *TRI = nullptr; const MachineRegisterInfo *MRI = nullptr; DenseMap SLoadAddresses; DenseMap PreheadersToFlush; MachineLoopInfo *MLI; MachinePostDominatorTree *PDT; AliasAnalysis *AA = nullptr; struct BlockInfo { std::unique_ptr Incoming; bool Dirty = true; }; InstCounterType SmemAccessCounter; MapVector BlockInfos; // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 // because of amdgpu-waitcnt-forcezero flag bool ForceEmitZeroWaitcnts; bool ForceEmitWaitcnt[NUM_INST_CNTS]; bool OptNone; // In any given run of this pass, WCG will point to one of these two // generator objects, which must have been re-initialised before use // from a value made using a subtarget constructor. WaitcntGeneratorPreGFX12 WCGPreGFX12; WaitcntGeneratorGFX12Plus WCGGFX12Plus; WaitcntGenerator *WCG = nullptr; // S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS // message. DenseSet ReleaseVGPRInsts; InstCounterType MaxCounter = NUM_NORMAL_INST_CNTS; public: static char ID; SIInsertWaitcnts() : MachineFunctionPass(ID) { (void)ForceExpCounter; (void)ForceLgkmCounter; (void)ForceVMCounter; } bool shouldFlushVmCnt(MachineLoop *ML, WaitcntBrackets &Brackets); bool isPreheaderToFlush(MachineBasicBlock &MBB, WaitcntBrackets &ScoreBrackets); bool isVMEMOrFlatVMEM(const MachineInstr &MI) const; bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI insert wait instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addUsedIfAvailable(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } bool isForceEmitWaitcnt() const { for (auto T : inst_counter_types()) if (ForceEmitWaitcnt[T]) return true; return false; } void setForceEmitWaitcnt() { // For non-debug builds, ForceEmitWaitcnt has been initialized to false; // For debug builds, get the debug counter info and adjust if need be #ifndef NDEBUG if (DebugCounter::isCounterSet(ForceExpCounter) && DebugCounter::shouldExecute(ForceExpCounter)) { ForceEmitWaitcnt[EXP_CNT] = true; } else { ForceEmitWaitcnt[EXP_CNT] = false; } if (DebugCounter::isCounterSet(ForceLgkmCounter) && DebugCounter::shouldExecute(ForceLgkmCounter)) { ForceEmitWaitcnt[DS_CNT] = true; ForceEmitWaitcnt[KM_CNT] = true; } else { ForceEmitWaitcnt[DS_CNT] = false; ForceEmitWaitcnt[KM_CNT] = false; } if (DebugCounter::isCounterSet(ForceVMCounter) && DebugCounter::shouldExecute(ForceVMCounter)) { ForceEmitWaitcnt[LOAD_CNT] = true; ForceEmitWaitcnt[SAMPLE_CNT] = true; ForceEmitWaitcnt[BVH_CNT] = true; } else { ForceEmitWaitcnt[LOAD_CNT] = false; ForceEmitWaitcnt[SAMPLE_CNT] = false; ForceEmitWaitcnt[BVH_CNT] = false; } #endif // NDEBUG } // Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM or // FLAT instruction. WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const { // Maps VMEM access types to their corresponding WaitEventType. static const WaitEventType VmemReadMapping[NUM_VMEM_TYPES] = { VMEM_READ_ACCESS, VMEM_SAMPLER_READ_ACCESS, VMEM_BVH_READ_ACCESS}; assert(SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLAT(Inst)); // LDS DMA loads are also stores, but on the LDS side. On the VMEM side // these should use VM_CNT. if (!ST->hasVscnt() || SIInstrInfo::mayWriteLDSThroughDMA(Inst)) return VMEM_ACCESS; if (Inst.mayStore() && !SIInstrInfo::isAtomicRet(Inst)) { // FLAT and SCRATCH instructions may access scratch. Other VMEM // instructions do not. if (SIInstrInfo::isFLAT(Inst) && mayAccessScratchThroughFlat(Inst)) return SCRATCH_WRITE_ACCESS; return VMEM_WRITE_ACCESS; } if (!ST->hasExtendedWaitCounts() || SIInstrInfo::isFLAT(Inst)) return VMEM_READ_ACCESS; return VmemReadMapping[getVmemType(Inst)]; } bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; bool mayAccessScratchThroughFlat(const MachineInstr &MI) const; bool generateWaitcntInstBefore(MachineInstr &MI, WaitcntBrackets &ScoreBrackets, MachineInstr *OldWaitcntInstr, bool FlushVmCnt); bool generateWaitcntBlockEnd(MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, MachineInstr *OldWaitcntInstr); bool generateWaitcnt(AMDGPU::Waitcnt Wait, MachineBasicBlock::instr_iterator It, MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, MachineInstr *OldWaitcntInstr); void updateEventWaitcntAfter(MachineInstr &Inst, WaitcntBrackets *ScoreBrackets); bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets); }; } // end anonymous namespace RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, const MachineRegisterInfo *MRI, const SIRegisterInfo *TRI, unsigned OpNo) const { const MachineOperand &Op = MI->getOperand(OpNo); if (!TRI->isInAllocatableClass(Op.getReg())) return {-1, -1}; // A use via a PW operand does not need a waitcnt. // A partial write is not a WAW. assert(!Op.getSubReg() || !Op.isUndef()); RegInterval Result; unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)) & AMDGPU::HWEncoding::REG_IDX_MASK; if (TRI->isVectorRegister(*MRI, Op.getReg())) { assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL); Result.first = Reg - Encoding.VGPR0; if (TRI->isAGPR(*MRI, Op.getReg())) Result.first += AGPR_OFFSET; assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS; assert(Result.first >= NUM_ALL_VGPRS && Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); } // TODO: Handle TTMP // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... else return {-1, -1}; const TargetRegisterClass *RC = TRI->getPhysRegBaseClass(Op.getReg()); unsigned Size = TRI->getRegSizeInBits(*RC); Result.second = Result.first + ((Size + 16) / 32); return Result; } void WaitcntBrackets::setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, unsigned OpNo, unsigned Val) { RegInterval Interval = getRegInterval(MI, MRI, TRI, OpNo); assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { setRegScore(RegNo, EXP_CNT, Val); } } void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, WaitEventType E, MachineInstr &Inst) { InstCounterType T = eventCounter(WaitEventMaskForInst, E); unsigned UB = getScoreUB(T); unsigned CurrScore = UB + 1; if (CurrScore == 0) report_fatal_error("InsertWaitcnt score wraparound"); // PendingEvents and ScoreUB need to be update regardless if this event // changes the score of a register or not. // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. PendingEvents |= 1 << E; setScoreUB(T, CurrScore); if (T == EXP_CNT) { // Put score on the source vgprs. If this is a store, just use those // specific register(s). if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { int AddrOpIdx = AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); // All GDS operations must protect their address register (same as // export.) if (AddrOpIdx != -1) { setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); } if (Inst.mayStore()) { if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data0)) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), CurrScore); } if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data1)) { setExpScore(&Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data1), CurrScore); } } else if (SIInstrInfo::isAtomicRet(Inst) && !SIInstrInfo::isGWS(Inst) && Inst.getOpcode() != AMDGPU::DS_APPEND && Inst.getOpcode() != AMDGPU::DS_CONSUME && Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { const MachineOperand &Op = Inst.getOperand(I); if (Op.isReg() && !Op.isDef() && TRI->isVectorRegister(*MRI, Op.getReg())) { setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); } } } } else if (TII->isFLAT(Inst)) { if (Inst.mayStore()) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), CurrScore); } else if (SIInstrInfo::isAtomicRet(Inst)) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), CurrScore); } } else if (TII->isMIMG(Inst)) { if (Inst.mayStore()) { setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); } else if (SIInstrInfo::isAtomicRet(Inst)) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), CurrScore); } } else if (TII->isMTBUF(Inst)) { if (Inst.mayStore()) { setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); } } else if (TII->isMUBUF(Inst)) { if (Inst.mayStore()) { setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); } else if (SIInstrInfo::isAtomicRet(Inst)) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), CurrScore); } } else if (TII->isLDSDIR(Inst)) { // LDSDIR instructions attach the score to the destination. setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdst), CurrScore); } else { if (TII->isEXP(Inst)) { // For export the destination registers are really temps that // can be used as the actual source after export patching, so // we need to treat them like sources and set the EXP_CNT // score. for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { MachineOperand &DefMO = Inst.getOperand(I); if (DefMO.isReg() && DefMO.isDef() && TRI->isVGPR(*MRI, DefMO.getReg())) { setRegScore( TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), EXP_CNT, CurrScore); } } } for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { MachineOperand &MO = Inst.getOperand(I); if (MO.isReg() && !MO.isDef() && TRI->isVectorRegister(*MRI, MO.getReg())) { setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); } } } #if 0 // TODO: check if this is handled by MUBUF code above. } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); unsigned OpNo;//TODO: find the OpNo for this operand; RegInterval Interval = getRegInterval(&Inst, MRI, TRI, OpNo); for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); } #endif } else /* LGKM_CNT || EXP_CNT || VS_CNT || NUM_INST_CNTS */ { // Match the score to the destination registers. for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { auto &Op = Inst.getOperand(I); if (!Op.isReg() || !Op.isDef()) continue; RegInterval Interval = getRegInterval(&Inst, MRI, TRI, I); if (T == LOAD_CNT || T == SAMPLE_CNT || T == BVH_CNT) { if (Interval.first >= NUM_ALL_VGPRS) continue; if (updateVMCntOnly(Inst)) { // updateVMCntOnly should only leave us with VGPRs // MUBUF, MTBUF, MIMG, FlatGlobal, and FlatScratch only have VGPR/AGPR // defs. That's required for a sane index into `VgprMemTypes` below assert(TRI->isVectorRegister(*MRI, Op.getReg())); VmemType V = getVmemType(Inst); for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) VgprVmemTypes[RegNo] |= 1 << V; } } for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { setRegScore(RegNo, T, CurrScore); } } if (Inst.mayStore() && (TII->isDS(Inst) || TII->mayWriteLDSThroughDMA(Inst))) { // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS // written can be accessed. A load from LDS to VMEM does not need a wait. unsigned Slot = 0; for (const auto *MemOp : Inst.memoperands()) { if (!MemOp->isStore() || MemOp->getAddrSpace() != AMDGPUAS::LOCAL_ADDRESS) continue; // Comparing just AA info does not guarantee memoperands are equal // in general, but this is so for LDS DMA in practice. auto AAI = MemOp->getAAInfo(); // Alias scope information gives a way to definitely identify an // original memory object and practically produced in the module LDS // lowering pass. If there is no scope available we will not be able // to disambiguate LDS aliasing as after the module lowering all LDS // is squashed into a single big object. Do not attempt to use one of // the limited LDSDMAStores for something we will not be able to use // anyway. if (!AAI || !AAI.Scope) break; for (unsigned I = 0, E = LDSDMAStores.size(); I != E && !Slot; ++I) { for (const auto *MemOp : LDSDMAStores[I]->memoperands()) { if (MemOp->isStore() && AAI == MemOp->getAAInfo()) { Slot = I + 1; break; } } } if (Slot || LDSDMAStores.size() == NUM_EXTRA_VGPRS - 1) break; LDSDMAStores.push_back(&Inst); Slot = LDSDMAStores.size(); break; } setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS + Slot, T, CurrScore); if (Slot) setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); } } } void WaitcntBrackets::print(raw_ostream &OS) { OS << '\n'; for (auto T : inst_counter_types(MaxCounter)) { unsigned SR = getScoreRange(T); switch (T) { case LOAD_CNT: OS << " " << (ST->hasExtendedWaitCounts() ? "LOAD" : "VM") << "_CNT(" << SR << "): "; break; case DS_CNT: OS << " " << (ST->hasExtendedWaitCounts() ? "DS" : "LGKM") << "_CNT(" << SR << "): "; break; case EXP_CNT: OS << " EXP_CNT(" << SR << "): "; break; case STORE_CNT: OS << " " << (ST->hasExtendedWaitCounts() ? "STORE" : "VS") << "_CNT(" << SR << "): "; break; case SAMPLE_CNT: OS << " SAMPLE_CNT(" << SR << "): "; break; case BVH_CNT: OS << " BVH_CNT(" << SR << "): "; break; case KM_CNT: OS << " KM_CNT(" << SR << "): "; break; default: OS << " UNKNOWN(" << SR << "): "; break; } if (SR != 0) { // Print vgpr scores. unsigned LB = getScoreLB(T); for (int J = 0; J <= VgprUB; J++) { unsigned RegScore = getRegScore(J, T); if (RegScore <= LB) continue; unsigned RelScore = RegScore - LB - 1; if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { OS << RelScore << ":v" << J << " "; } else { OS << RelScore << ":ds "; } } // Also need to print sgpr scores for lgkm_cnt. if (T == SmemAccessCounter) { for (int J = 0; J <= SgprUB; J++) { unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, T); if (RegScore <= LB) continue; unsigned RelScore = RegScore - LB - 1; OS << RelScore << ":s" << J << " "; } } } OS << '\n'; } OS << '\n'; } /// Simplify the waitcnt, in the sense of removing redundant counts, and return /// whether a waitcnt instruction is needed at all. void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { simplifyWaitcnt(LOAD_CNT, Wait.LoadCnt); simplifyWaitcnt(EXP_CNT, Wait.ExpCnt); simplifyWaitcnt(DS_CNT, Wait.DsCnt); simplifyWaitcnt(STORE_CNT, Wait.StoreCnt); simplifyWaitcnt(SAMPLE_CNT, Wait.SampleCnt); simplifyWaitcnt(BVH_CNT, Wait.BvhCnt); simplifyWaitcnt(KM_CNT, Wait.KmCnt); } void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, unsigned &Count) const { // The number of outstanding events for this type, T, can be calculated // as (UB - LB). If the current Count is greater than or equal to the number // of outstanding events, then the wait for this counter is redundant. if (Count >= getScoreRange(T)) Count = ~0u; } void WaitcntBrackets::determineWait(InstCounterType T, int RegNo, AMDGPU::Waitcnt &Wait) const { unsigned ScoreToWait = getRegScore(RegNo, T); // If the score of src_operand falls within the bracket, we need an // s_waitcnt instruction. const unsigned LB = getScoreLB(T); const unsigned UB = getScoreUB(T); if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { if ((T == LOAD_CNT || T == DS_CNT) && hasPendingFlat() && !ST->hasFlatLgkmVMemCountInOrder()) { // If there is a pending FLAT operation, and this is a VMem or LGKM // waitcnt and the target can report early completion, then we need // to force a waitcnt 0. addWait(Wait, T, 0); } else if (counterOutOfOrder(T)) { // Counter can get decremented out-of-order when there // are multiple types event in the bracket. Also emit an s_wait counter // with a conservative value of 0 for the counter. addWait(Wait, T, 0); } else { // If a counter has been maxed out avoid overflow by waiting for // MAX(CounterType) - 1 instead. unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); addWait(Wait, T, NeededWait); } } } void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { applyWaitcnt(LOAD_CNT, Wait.LoadCnt); applyWaitcnt(EXP_CNT, Wait.ExpCnt); applyWaitcnt(DS_CNT, Wait.DsCnt); applyWaitcnt(STORE_CNT, Wait.StoreCnt); applyWaitcnt(SAMPLE_CNT, Wait.SampleCnt); applyWaitcnt(BVH_CNT, Wait.BvhCnt); applyWaitcnt(KM_CNT, Wait.KmCnt); } void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { const unsigned UB = getScoreUB(T); if (Count >= UB) return; if (Count != 0) { if (counterOutOfOrder(T)) return; setScoreLB(T, std::max(getScoreLB(T), UB - Count)); } else { setScoreLB(T, UB); PendingEvents &= ~WaitEventMaskForInst[T]; } } // Where there are multiple types of event in the bracket of a counter, // the decrement may go out of order. bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { // Scalar memory read always can go out of order. if (T == SmemAccessCounter && hasPendingEvent(SMEM_ACCESS)) return true; return hasMixedPendingEvents(T); } INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, false) char SIInsertWaitcnts::ID = 0; char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; FunctionPass *llvm::createSIInsertWaitcntsPass() { return new SIInsertWaitcnts(); } static bool updateOperandIfDifferent(MachineInstr &MI, uint16_t OpName, unsigned NewEnc) { int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName); assert(OpIdx >= 0); MachineOperand &MO = MI.getOperand(OpIdx); if (NewEnc == MO.getImm()) return false; MO.setImm(NewEnc); return true; } /// Determine if \p MI is a gfx12+ single-counter S_WAIT_*CNT instruction, /// and if so, which counter it is waiting on. static std::optional counterTypeForInstr(unsigned Opcode) { switch (Opcode) { case AMDGPU::S_WAIT_LOADCNT: return LOAD_CNT; case AMDGPU::S_WAIT_EXPCNT: return EXP_CNT; case AMDGPU::S_WAIT_STORECNT: return STORE_CNT; case AMDGPU::S_WAIT_SAMPLECNT: return SAMPLE_CNT; case AMDGPU::S_WAIT_BVHCNT: return BVH_CNT; case AMDGPU::S_WAIT_DSCNT: return DS_CNT; case AMDGPU::S_WAIT_KMCNT: return KM_CNT; default: return {}; } } bool WaitcntGenerator::promoteSoftWaitCnt(MachineInstr *Waitcnt) const { unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Waitcnt->getOpcode()); if (Opcode == Waitcnt->getOpcode()) return false; Waitcnt->setDesc(TII->get(Opcode)); return true; } /// Combine consecutive S_WAITCNT and S_WAITCNT_VSCNT instructions that /// precede \p It and follow \p OldWaitcntInstr and apply any extra waits /// from \p Wait that were added by previous passes. Currently this pass /// conservatively assumes that these preexisting waits are required for /// correctness. bool WaitcntGeneratorPreGFX12::applyPreexistingWaitcnt( WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { assert(ST); assert(isNormalMode(MaxCounter)); bool Modified = false; MachineInstr *WaitcntInstr = nullptr; MachineInstr *WaitcntVsCntInstr = nullptr; for (auto &II : make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) { if (II.isMetaInstruction()) continue; unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(II.getOpcode()); bool IsSoft = Opcode != II.getOpcode(); // Update required wait count. If this is a soft waitcnt (= it was added // by an earlier pass), it may be entirely removed. if (Opcode == AMDGPU::S_WAITCNT) { unsigned IEnc = II.getOperand(0).getImm(); AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc); if (IsSoft) ScoreBrackets.simplifyWaitcnt(OldWait); Wait = Wait.combined(OldWait); // Merge consecutive waitcnt of the same type by erasing multiples. if (WaitcntInstr || (!Wait.hasWaitExceptStoreCnt() && IsSoft)) { II.eraseFromParent(); Modified = true; } else WaitcntInstr = &II; } else { assert(Opcode == AMDGPU::S_WAITCNT_VSCNT); assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL); unsigned OldVSCnt = TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); if (IsSoft) ScoreBrackets.simplifyWaitcnt(InstCounterType::STORE_CNT, OldVSCnt); Wait.StoreCnt = std::min(Wait.StoreCnt, OldVSCnt); if (WaitcntVsCntInstr || (!Wait.hasWaitStoreCnt() && IsSoft)) { II.eraseFromParent(); Modified = true; } else WaitcntVsCntInstr = &II; } } if (WaitcntInstr) { Modified |= updateOperandIfDifferent(*WaitcntInstr, AMDGPU::OpName::simm16, AMDGPU::encodeWaitcnt(IV, Wait)); Modified |= promoteSoftWaitCnt(WaitcntInstr); ScoreBrackets.applyWaitcnt(LOAD_CNT, Wait.LoadCnt); ScoreBrackets.applyWaitcnt(EXP_CNT, Wait.ExpCnt); ScoreBrackets.applyWaitcnt(DS_CNT, Wait.DsCnt); Wait.LoadCnt = ~0u; Wait.ExpCnt = ~0u; Wait.DsCnt = ~0u; LLVM_DEBUG(It == WaitcntInstr->getParent()->end() ? dbgs() << "applyPreexistingWaitcnt\n" << "New Instr at block end: " << *WaitcntInstr << '\n' : dbgs() << "applyPreexistingWaitcnt\n" << "Old Instr: " << *It << "New Instr: " << *WaitcntInstr << '\n'); } if (WaitcntVsCntInstr) { Modified |= updateOperandIfDifferent(*WaitcntVsCntInstr, AMDGPU::OpName::simm16, Wait.StoreCnt); Modified |= promoteSoftWaitCnt(WaitcntVsCntInstr); ScoreBrackets.applyWaitcnt(STORE_CNT, Wait.StoreCnt); Wait.StoreCnt = ~0u; LLVM_DEBUG(It == WaitcntVsCntInstr->getParent()->end() ? dbgs() << "applyPreexistingWaitcnt\n" << "New Instr at block end: " << *WaitcntVsCntInstr << '\n' : dbgs() << "applyPreexistingWaitcnt\n" << "Old Instr: " << *It << "New Instr: " << *WaitcntVsCntInstr << '\n'); } return Modified; } /// Generate S_WAITCNT and/or S_WAITCNT_VSCNT instructions for any /// required counters in \p Wait bool WaitcntGeneratorPreGFX12::createNewWaitcnt( MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, AMDGPU::Waitcnt Wait) { assert(ST); assert(isNormalMode(MaxCounter)); bool Modified = false; const DebugLoc &DL = Block.findDebugLoc(It); // Waits for VMcnt, LKGMcnt and/or EXPcnt are encoded together into a // single instruction while VScnt has its own instruction. if (Wait.hasWaitExceptStoreCnt()) { unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); [[maybe_unused]] auto SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(Enc); Modified = true; LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; dbgs() << "New Instr: " << *SWaitInst << '\n'); } if (Wait.hasWaitStoreCnt()) { assert(ST->hasVscnt()); [[maybe_unused]] auto SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT)) .addReg(AMDGPU::SGPR_NULL, RegState::Undef) .addImm(Wait.StoreCnt); Modified = true; LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; dbgs() << "New Instr: " << *SWaitInst << '\n'); } return Modified; } /// Combine consecutive S_WAIT_*CNT instructions that precede \p It and /// follow \p OldWaitcntInstr and apply any extra waits from \p Wait that /// were added by previous passes. Currently this pass conservatively /// assumes that these preexisting waits are required for correctness. bool WaitcntGeneratorGFX12Plus::applyPreexistingWaitcnt( WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { assert(ST); assert(!isNormalMode(MaxCounter)); bool Modified = false; MachineInstr *CombinedLoadDsCntInstr = nullptr; MachineInstr *CombinedStoreDsCntInstr = nullptr; MachineInstr *WaitInstrs[NUM_EXTENDED_INST_CNTS] = {}; for (auto &II : make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) { if (II.isMetaInstruction()) continue; MachineInstr **UpdatableInstr; // Update required wait count. If this is a soft waitcnt (= it was added // by an earlier pass), it may be entirely removed. unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(II.getOpcode()); bool IsSoft = Opcode != II.getOpcode(); if (Opcode == AMDGPU::S_WAIT_LOADCNT_DSCNT) { unsigned OldEnc = TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); AMDGPU::Waitcnt OldWait = AMDGPU::decodeLoadcntDscnt(IV, OldEnc); if (IsSoft) ScoreBrackets.simplifyWaitcnt(OldWait); Wait = Wait.combined(OldWait); UpdatableInstr = &CombinedLoadDsCntInstr; } else if (Opcode == AMDGPU::S_WAIT_STORECNT_DSCNT) { unsigned OldEnc = TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); AMDGPU::Waitcnt OldWait = AMDGPU::decodeStorecntDscnt(IV, OldEnc); if (IsSoft) ScoreBrackets.simplifyWaitcnt(OldWait); Wait = Wait.combined(OldWait); UpdatableInstr = &CombinedStoreDsCntInstr; } else { std::optional CT = counterTypeForInstr(Opcode); assert(CT.has_value()); unsigned OldCnt = TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm(); if (IsSoft) ScoreBrackets.simplifyWaitcnt(CT.value(), OldCnt); addWait(Wait, CT.value(), OldCnt); UpdatableInstr = &WaitInstrs[CT.value()]; } // Merge consecutive waitcnt of the same type by erasing multiples. if (!*UpdatableInstr) { *UpdatableInstr = &II; } else { II.eraseFromParent(); Modified = true; } } if (CombinedLoadDsCntInstr) { // Only keep an S_WAIT_LOADCNT_DSCNT if both counters actually need // to be waited for. Otherwise, let the instruction be deleted so // the appropriate single counter wait instruction can be inserted // instead, when new S_WAIT_*CNT instructions are inserted by // createNewWaitcnt(). As a side effect, resetting the wait counts will // cause any redundant S_WAIT_LOADCNT or S_WAIT_DSCNT to be removed by // the loop below that deals with single counter instructions. if (Wait.LoadCnt != ~0u && Wait.DsCnt != ~0u) { unsigned NewEnc = AMDGPU::encodeLoadcntDscnt(IV, Wait); Modified |= updateOperandIfDifferent(*CombinedLoadDsCntInstr, AMDGPU::OpName::simm16, NewEnc); Modified |= promoteSoftWaitCnt(CombinedLoadDsCntInstr); ScoreBrackets.applyWaitcnt(LOAD_CNT, Wait.LoadCnt); ScoreBrackets.applyWaitcnt(DS_CNT, Wait.DsCnt); Wait.LoadCnt = ~0u; Wait.DsCnt = ~0u; LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() ? dbgs() << "applyPreexistingWaitcnt\n" << "New Instr at block end: " << *CombinedLoadDsCntInstr << '\n' : dbgs() << "applyPreexistingWaitcnt\n" << "Old Instr: " << *It << "New Instr: " << *CombinedLoadDsCntInstr << '\n'); } else { CombinedLoadDsCntInstr->eraseFromParent(); Modified = true; } } if (CombinedStoreDsCntInstr) { // Similarly for S_WAIT_STORECNT_DSCNT. if (Wait.StoreCnt != ~0u && Wait.DsCnt != ~0u) { unsigned NewEnc = AMDGPU::encodeStorecntDscnt(IV, Wait); Modified |= updateOperandIfDifferent(*CombinedStoreDsCntInstr, AMDGPU::OpName::simm16, NewEnc); Modified |= promoteSoftWaitCnt(CombinedStoreDsCntInstr); ScoreBrackets.applyWaitcnt(STORE_CNT, Wait.StoreCnt); ScoreBrackets.applyWaitcnt(DS_CNT, Wait.DsCnt); Wait.StoreCnt = ~0u; Wait.DsCnt = ~0u; LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() ? dbgs() << "applyPreexistingWaitcnt\n" << "New Instr at block end: " << *CombinedStoreDsCntInstr << '\n' : dbgs() << "applyPreexistingWaitcnt\n" << "Old Instr: " << *It << "New Instr: " << *CombinedStoreDsCntInstr << '\n'); } else { CombinedStoreDsCntInstr->eraseFromParent(); Modified = true; } } // Look for an opportunity to convert existing S_WAIT_LOADCNT, // S_WAIT_STORECNT and S_WAIT_DSCNT into new S_WAIT_LOADCNT_DSCNT // or S_WAIT_STORECNT_DSCNT. This is achieved by selectively removing // instructions so that createNewWaitcnt() will create new combined // instructions to replace them. if (Wait.DsCnt != ~0u) { // This is a vector of addresses in WaitInstrs pointing to instructions // that should be removed if they are present. SmallVector WaitsToErase; // If it's known that both DScnt and either LOADcnt or STOREcnt (but not // both) need to be waited for, ensure that there are no existing // individual wait count instructions for these. if (Wait.LoadCnt != ~0u) { WaitsToErase.push_back(&WaitInstrs[LOAD_CNT]); WaitsToErase.push_back(&WaitInstrs[DS_CNT]); } else if (Wait.StoreCnt != ~0u) { WaitsToErase.push_back(&WaitInstrs[STORE_CNT]); WaitsToErase.push_back(&WaitInstrs[DS_CNT]); } for (MachineInstr **WI : WaitsToErase) { if (!*WI) continue; (*WI)->eraseFromParent(); *WI = nullptr; Modified = true; } } for (auto CT : inst_counter_types(NUM_EXTENDED_INST_CNTS)) { if (!WaitInstrs[CT]) continue; unsigned NewCnt = getWait(Wait, CT); if (NewCnt != ~0u) { Modified |= updateOperandIfDifferent(*WaitInstrs[CT], AMDGPU::OpName::simm16, NewCnt); Modified |= promoteSoftWaitCnt(WaitInstrs[CT]); ScoreBrackets.applyWaitcnt(CT, NewCnt); setNoWait(Wait, CT); LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() ? dbgs() << "applyPreexistingWaitcnt\n" << "New Instr at block end: " << *WaitInstrs[CT] << '\n' : dbgs() << "applyPreexistingWaitcnt\n" << "Old Instr: " << *It << "New Instr: " << *WaitInstrs[CT] << '\n'); } else { WaitInstrs[CT]->eraseFromParent(); Modified = true; } } return Modified; } /// Generate S_WAIT_*CNT instructions for any required counters in \p Wait bool WaitcntGeneratorGFX12Plus::createNewWaitcnt( MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, AMDGPU::Waitcnt Wait) { assert(ST); assert(!isNormalMode(MaxCounter)); bool Modified = false; const DebugLoc &DL = Block.findDebugLoc(It); // Check for opportunities to use combined wait instructions. if (Wait.DsCnt != ~0u) { MachineInstr *SWaitInst = nullptr; if (Wait.LoadCnt != ~0u) { unsigned Enc = AMDGPU::encodeLoadcntDscnt(IV, Wait); SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAIT_LOADCNT_DSCNT)) .addImm(Enc); Wait.LoadCnt = ~0u; Wait.DsCnt = ~0u; } else if (Wait.StoreCnt != ~0u) { unsigned Enc = AMDGPU::encodeStorecntDscnt(IV, Wait); SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAIT_STORECNT_DSCNT)) .addImm(Enc); Wait.StoreCnt = ~0u; Wait.DsCnt = ~0u; } if (SWaitInst) { Modified = true; LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; dbgs() << "New Instr: " << *SWaitInst << '\n'); } } // Generate an instruction for any remaining counter that needs // waiting for. for (auto CT : inst_counter_types(NUM_EXTENDED_INST_CNTS)) { unsigned Count = getWait(Wait, CT); if (Count == ~0u) continue; [[maybe_unused]] auto SWaitInst = BuildMI(Block, It, DL, TII->get(instrsForExtendedCounterTypes[CT])) .addImm(Count); Modified = true; LLVM_DEBUG(dbgs() << "generateWaitcnt\n"; if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; dbgs() << "New Instr: " << *SWaitInst << '\n'); } return Modified; } static bool readsVCCZ(const MachineInstr &MI) { unsigned Opc = MI.getOpcode(); return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && !MI.getOperand(1).isUndef(); } /// \returns true if the callee inserts an s_waitcnt 0 on function entry. static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { // Currently all conventions wait, but this may not always be the case. // // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make // senses to omit the wait and do it in the caller. return true; } /// \returns true if the callee is expected to wait for any outstanding waits /// before returning. static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { return true; } /// Generate s_waitcnt instruction to be placed before cur_Inst. /// Instructions of a given type are returned in order, /// but instructions of different types can complete out of order. /// We rely on this in-order completion /// and simply assign a score to the memory access instructions. /// We keep track of the active "score bracket" to determine /// if an access of a memory read requires an s_waitcnt /// and if so what the value of each counter is. /// The "score bracket" is bound by the lower bound and upper bound /// scores (*_score_LB and *_score_ub respectively). /// If FlushVmCnt is true, that means that we want to generate a s_waitcnt to /// flush the vmcnt counter here. bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI, WaitcntBrackets &ScoreBrackets, MachineInstr *OldWaitcntInstr, bool FlushVmCnt) { setForceEmitWaitcnt(); if (MI.isMetaInstruction()) return false; AMDGPU::Waitcnt Wait; // FIXME: This should have already been handled by the memory legalizer. // Removing this currently doesn't affect any lit tests, but we need to // verify that nothing was relying on this. The number of buffer invalidates // being handled here should not be expanded. if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { Wait.LoadCnt = 0; } // All waits must be resolved at call return. // NOTE: this could be improved with knowledge of all call sites or // with knowledge of the called routines. if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || MI.getOpcode() == AMDGPU::SI_RETURN || MI.getOpcode() == AMDGPU::S_SETPC_B64_return || (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { Wait = Wait.combined( AMDGPU::Waitcnt::allZeroExceptVsCnt(ST->hasExtendedWaitCounts())); } // Identify S_ENDPGM instructions which may have to wait for outstanding VMEM // stores. In this case it can be useful to send a message to explicitly // release all VGPRs before the stores have completed, but it is only safe to // do this if: // * there are no outstanding scratch stores // * we are not in Dynamic VGPR mode else if (MI.getOpcode() == AMDGPU::S_ENDPGM || MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) { if (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && !OptNone && ScoreBrackets.getScoreRange(STORE_CNT) != 0 && !ScoreBrackets.hasPendingEvent(SCRATCH_WRITE_ACCESS)) ReleaseVGPRInsts.insert(&MI); } // Resolve vm waits before gs-done. else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && ST->hasLegacyGeometry() && ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) == AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) { Wait.LoadCnt = 0; } #if 0 // TODO: the following blocks of logic when we have fence. else if (MI.getOpcode() == SC_FENCE) { const unsigned int group_size = context->shader_info->GetMaxThreadGroupSize(); // group_size == 0 means thread group size is unknown at compile time const bool group_is_multi_wave = (group_size == 0 || group_size > target_info->GetWaveFrontSize()); const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { SCRegType src_type = Inst->GetSrcType(i); switch (src_type) { case SCMEM_LDS: if (group_is_multi_wave || context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { EmitWaitcnt |= ScoreBrackets->updateByWait(DS_CNT, ScoreBrackets->getScoreUB(DS_CNT)); // LDS may have to wait for VMcnt after buffer load to LDS if (target_info->HasBufferLoadToLDS()) { EmitWaitcnt |= ScoreBrackets->updateByWait(LOAD_CNT, ScoreBrackets->getScoreUB(LOAD_CNT)); } } break; case SCMEM_GDS: if (group_is_multi_wave || fence_is_global) { EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); EmitWaitcnt |= ScoreBrackets->updateByWait(DS_CNT, ScoreBrackets->getScoreUB(DS_CNT)); } break; case SCMEM_UAV: case SCMEM_TFBUF: case SCMEM_RING: case SCMEM_SCATTER: if (group_is_multi_wave || fence_is_global) { EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); EmitWaitcnt |= ScoreBrackets->updateByWait(LOAD_CNT, ScoreBrackets->getScoreUB(LOAD_CNT)); } break; case SCMEM_SCRATCH: default: break; } } } #endif // Export & GDS instructions do not read the EXEC mask until after the export // is granted (which can occur well after the instruction is issued). // The shader program must flush all EXP operations on the export-count // before overwriting the EXEC mask. else { if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { // Export and GDS are tracked individually, either may trigger a waitcnt // for EXEC. if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { Wait.ExpCnt = 0; } } if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { // The function is going to insert a wait on everything in its prolog. // This still needs to be careful if the call target is a load (e.g. a GOT // load). We also need to check WAW dependency with saved PC. Wait = AMDGPU::Waitcnt(); int CallAddrOpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); if (MI.getOperand(CallAddrOpIdx).isReg()) { RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval(&MI, MRI, TRI, CallAddrOpIdx); for (int RegNo = CallAddrOpInterval.first; RegNo < CallAddrOpInterval.second; ++RegNo) ScoreBrackets.determineWait(SmemAccessCounter, RegNo, Wait); int RtnAddrOpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); if (RtnAddrOpIdx != -1) { RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval(&MI, MRI, TRI, RtnAddrOpIdx); for (int RegNo = RtnAddrOpInterval.first; RegNo < RtnAddrOpInterval.second; ++RegNo) ScoreBrackets.determineWait(SmemAccessCounter, RegNo, Wait); } } } else { // FIXME: Should not be relying on memoperands. // Look at the source operands of every instruction to see if // any of them results from a previous memory operation that affects // its current usage. If so, an s_waitcnt instruction needs to be // emitted. // If the source operand was defined by a load, add the s_waitcnt // instruction. // // Two cases are handled for destination operands: // 1) If the destination operand was defined by a load, add the s_waitcnt // instruction to guarantee the right WAW order. // 2) If a destination operand that was used by a recent export/store ins, // add s_waitcnt on exp_cnt to guarantee the WAR order. for (const MachineMemOperand *Memop : MI.memoperands()) { const Value *Ptr = Memop->getValue(); if (Memop->isStore() && SLoadAddresses.count(Ptr)) { addWait(Wait, SmemAccessCounter, 0); if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) SLoadAddresses.erase(Ptr); } unsigned AS = Memop->getAddrSpace(); if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS) continue; // No need to wait before load from VMEM to LDS. if (TII->mayWriteLDSThroughDMA(MI)) continue; // LOAD_CNT is only relevant to vgpr or LDS. unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; bool FoundAliasingStore = false; // Only objects with alias scope info were added to LDSDMAScopes array. // In the absense of the scope info we will not be able to disambiguate // aliasing here. There is no need to try searching for a corresponding // store slot. This is conservatively correct because in that case we // will produce a wait using the first (general) LDS DMA wait slot which // will wait on all of them anyway. if (Ptr && Memop->getAAInfo() && Memop->getAAInfo().Scope) { const auto &LDSDMAStores = ScoreBrackets.getLDSDMAStores(); for (unsigned I = 0, E = LDSDMAStores.size(); I != E; ++I) { if (MI.mayAlias(AA, *LDSDMAStores[I], true)) { FoundAliasingStore = true; ScoreBrackets.determineWait(LOAD_CNT, RegNo + I + 1, Wait); } } } if (!FoundAliasingStore) ScoreBrackets.determineWait(LOAD_CNT, RegNo, Wait); if (Memop->isStore()) { ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait); } } // Loop over use and def operands. for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { MachineOperand &Op = MI.getOperand(I); if (!Op.isReg()) continue; // If the instruction does not read tied source, skip the operand. if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI)) continue; RegInterval Interval = ScoreBrackets.getRegInterval(&MI, MRI, TRI, I); const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { if (IsVGPR) { // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the // previous write and this write are the same type of VMEM // instruction, in which case they're guaranteed to write their // results in order anyway. if (Op.isUse() || !updateVMCntOnly(MI) || ScoreBrackets.hasOtherPendingVmemTypes(RegNo, getVmemType(MI))) { ScoreBrackets.determineWait(LOAD_CNT, RegNo, Wait); ScoreBrackets.determineWait(SAMPLE_CNT, RegNo, Wait); ScoreBrackets.determineWait(BVH_CNT, RegNo, Wait); ScoreBrackets.clearVgprVmemTypes(RegNo); } if (Op.isDef() || ScoreBrackets.hasPendingEvent(EXP_LDS_ACCESS)) { ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait); } ScoreBrackets.determineWait(DS_CNT, RegNo, Wait); } else { ScoreBrackets.determineWait(SmemAccessCounter, RegNo, Wait); } } } } } // The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does // not, we need to ensure the subtarget is capable of backing off barrier // instructions in case there are any outstanding memory operations that may // cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here. if (TII->isBarrierStart(MI.getOpcode()) && !ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) { Wait = Wait.combined( AMDGPU::Waitcnt::allZero(ST->hasExtendedWaitCounts(), ST->hasVscnt())); } // TODO: Remove this work-around, enable the assert for Bug 457939 // after fixing the scheduler. Also, the Shader Compiler code is // independent of target. if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { if (ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { Wait.DsCnt = 0; } } // Verify that the wait is actually needed. ScoreBrackets.simplifyWaitcnt(Wait); if (ForceEmitZeroWaitcnts) Wait = AMDGPU::Waitcnt::allZeroExceptVsCnt(ST->hasExtendedWaitCounts()); if (ForceEmitWaitcnt[LOAD_CNT]) Wait.LoadCnt = 0; if (ForceEmitWaitcnt[EXP_CNT]) Wait.ExpCnt = 0; if (ForceEmitWaitcnt[DS_CNT]) Wait.DsCnt = 0; if (ForceEmitWaitcnt[SAMPLE_CNT]) Wait.SampleCnt = 0; if (ForceEmitWaitcnt[BVH_CNT]) Wait.BvhCnt = 0; if (ForceEmitWaitcnt[KM_CNT]) Wait.KmCnt = 0; if (FlushVmCnt) { if (ScoreBrackets.hasPendingEvent(LOAD_CNT)) Wait.LoadCnt = 0; if (ScoreBrackets.hasPendingEvent(SAMPLE_CNT)) Wait.SampleCnt = 0; if (ScoreBrackets.hasPendingEvent(BVH_CNT)) Wait.BvhCnt = 0; } return generateWaitcnt(Wait, MI.getIterator(), *MI.getParent(), ScoreBrackets, OldWaitcntInstr); } // Add a waitcnt to flush the LOADcnt, SAMPLEcnt and BVHcnt counters at the // end of the given block if needed. bool SIInsertWaitcnts::generateWaitcntBlockEnd(MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, MachineInstr *OldWaitcntInstr) { AMDGPU::Waitcnt Wait; unsigned LoadCntPending = ScoreBrackets.hasPendingEvent(LOAD_CNT); unsigned SampleCntPending = ScoreBrackets.hasPendingEvent(SAMPLE_CNT); unsigned BvhCntPending = ScoreBrackets.hasPendingEvent(BVH_CNT); if (LoadCntPending == 0 && SampleCntPending == 0 && BvhCntPending == 0) return false; if (LoadCntPending != 0) Wait.LoadCnt = 0; if (SampleCntPending != 0) Wait.SampleCnt = 0; if (BvhCntPending != 0) Wait.BvhCnt = 0; return generateWaitcnt(Wait, Block.instr_end(), Block, ScoreBrackets, OldWaitcntInstr); } bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait, MachineBasicBlock::instr_iterator It, MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, MachineInstr *OldWaitcntInstr) { bool Modified = false; if (OldWaitcntInstr) // Try to merge the required wait with preexisting waitcnt instructions. // Also erase redundant waitcnt. Modified = WCG->applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, It); // Any counts that could have been applied to any existing waitcnt // instructions will have been done so, now deal with any remaining. ScoreBrackets.applyWaitcnt(Wait); // ExpCnt can be merged into VINTERP. if (Wait.ExpCnt != ~0u && It != Block.instr_end() && SIInstrInfo::isVINTERP(*It)) { MachineOperand *WaitExp = TII->getNamedOperand(*It, AMDGPU::OpName::waitexp); if (Wait.ExpCnt < WaitExp->getImm()) { WaitExp->setImm(Wait.ExpCnt); Modified = true; } Wait.ExpCnt = ~0u; LLVM_DEBUG(dbgs() << "generateWaitcnt\n" << "Update Instr: " << *It); } if (WCG->createNewWaitcnt(Block, It, Wait)) Modified = true; return Modified; } // This is a flat memory operation. Check to see if it has memory tokens other // than LDS. Other address spaces supported by flat memory operations involve // global memory. bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { assert(TII->isFLAT(MI)); // All flat instructions use the VMEM counter. assert(TII->usesVM_CNT(MI)); // If there are no memory operands then conservatively assume the flat // operation may access VMEM. if (MI.memoperands_empty()) return true; // See if any memory operand specifies an address space that involves VMEM. // Flat operations only supported FLAT, LOCAL (LDS), or address spaces // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION // (GDS) address space is not supported by flat operations. Therefore, simply // return true unless only the LDS address space is found. for (const MachineMemOperand *Memop : MI.memoperands()) { unsigned AS = Memop->getAddrSpace(); assert(AS != AMDGPUAS::REGION_ADDRESS); if (AS != AMDGPUAS::LOCAL_ADDRESS) return true; } return false; } // This is a flat memory operation. Check to see if it has memory tokens for // either LDS or FLAT. bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { assert(TII->isFLAT(MI)); // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. if (!TII->usesLGKM_CNT(MI)) return false; // If in tgsplit mode then there can be no use of LDS. if (ST->isTgSplitEnabled()) return false; // If there are no memory operands then conservatively assume the flat // operation may access LDS. if (MI.memoperands_empty()) return true; // See if any memory operand specifies an address space that involves LDS. for (const MachineMemOperand *Memop : MI.memoperands()) { unsigned AS = Memop->getAddrSpace(); if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) return true; } return false; } // This is a flat memory operation. Check to see if it has memory tokens for // either scratch or FLAT. bool SIInsertWaitcnts::mayAccessScratchThroughFlat( const MachineInstr &MI) const { assert(TII->isFLAT(MI)); // SCRATCH instructions always access scratch. if (TII->isFLATScratch(MI)) return true; // GLOBAL instructions never access scratch. if (TII->isFLATGlobal(MI)) return false; // If there are no memory operands then conservatively assume the flat // operation may access scratch. if (MI.memoperands_empty()) return true; // See if any memory operand specifies an address space that involves scratch. return any_of(MI.memoperands(), [](const MachineMemOperand *Memop) { unsigned AS = Memop->getAddrSpace(); return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; }); } static bool isCacheInvOrWBInst(MachineInstr &Inst) { auto Opc = Inst.getOpcode(); return Opc == AMDGPU::GLOBAL_INV || Opc == AMDGPU::GLOBAL_WB || Opc == AMDGPU::GLOBAL_WBINV; } void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, WaitcntBrackets *ScoreBrackets) { // Now look at the instruction opcode. If it is a memory access // instruction, update the upper-bound of the appropriate counter's // bracket and the destination operand scores. // TODO: Use the (TSFlags & SIInstrFlags::DS_CNT) property everywhere. if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { if (TII->isAlwaysGDS(Inst.getOpcode()) || TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); } else { ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); } } else if (TII->isFLAT(Inst)) { // TODO: Track this properly. if (isCacheInvOrWBInst(Inst)) return; assert(Inst.mayLoadOrStore()); int FlatASCount = 0; if (mayAccessVMEMThroughFlat(Inst)) { ++FlatASCount; ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst), Inst); } if (mayAccessLDSThroughFlat(Inst)) { ++FlatASCount; ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); } // A Flat memory operation must access at least one address space. assert(FlatASCount); // This is a flat memory operation that access both VMEM and LDS, so note it // - it will require that both the VM and LGKM be flushed to zero if it is // pending when a VM or LGKM dependency occurs. if (FlatASCount > 1) ScoreBrackets->setPendingFlat(); } else if (SIInstrInfo::isVMEM(Inst) && !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) { ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst), Inst); if (ST->vmemWriteNeedsExpWaitcnt() && (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); } } else if (TII->isSMRD(Inst)) { ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); } else if (Inst.isCall()) { if (callWaitsOnFunctionReturn(Inst)) { // Act as a wait on everything ScoreBrackets->applyWaitcnt( AMDGPU::Waitcnt::allZeroExceptVsCnt(ST->hasExtendedWaitCounts())); ScoreBrackets->setStateOnFunctionEntryOrReturn(); } else { // May need to way wait for anything. ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); } } else if (SIInstrInfo::isLDSDIR(Inst)) { ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_LDS_ACCESS, Inst); } else if (TII->isVINTERP(Inst)) { int64_t Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::waitexp)->getImm(); ScoreBrackets->applyWaitcnt(EXP_CNT, Imm); } else if (SIInstrInfo::isEXP(Inst)) { unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); else ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); } else { switch (Inst.getOpcode()) { case AMDGPU::S_SENDMSG: case AMDGPU::S_SENDMSG_RTN_B32: case AMDGPU::S_SENDMSG_RTN_B64: case AMDGPU::S_SENDMSGHALT: ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); break; case AMDGPU::S_MEMTIME: case AMDGPU::S_MEMREALTIME: case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_M0: case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM: case AMDGPU::S_BARRIER_LEAVE: case AMDGPU::S_GET_BARRIER_STATE_M0: case AMDGPU::S_GET_BARRIER_STATE_IMM: ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); break; } } } bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, unsigned OtherScore) { unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; unsigned OtherShifted = OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; Score = std::max(MyShifted, OtherShifted); return OtherShifted > MyShifted; } /// Merge the pending events and associater score brackets of \p Other into /// this brackets status. /// /// Returns whether the merge resulted in a change that requires tighter waits /// (i.e. the merged brackets strictly dominate the original brackets). bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { bool StrictDom = false; VgprUB = std::max(VgprUB, Other.VgprUB); SgprUB = std::max(SgprUB, Other.SgprUB); for (auto T : inst_counter_types(MaxCounter)) { // Merge event flags for this counter const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; if (OtherEvents & ~OldEvents) StrictDom = true; PendingEvents |= OtherEvents; // Merge scores for this counter const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); if (NewUB < ScoreLBs[T]) report_fatal_error("waitcnt score overflow"); MergeInfo M; M.OldLB = ScoreLBs[T]; M.OtherLB = Other.ScoreLBs[T]; M.MyShift = NewUB - ScoreUBs[T]; M.OtherShift = NewUB - Other.ScoreUBs[T]; ScoreUBs[T] = NewUB; StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); for (int J = 0; J <= VgprUB; J++) StrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); if (T == SmemAccessCounter) { for (int J = 0; J <= SgprUB; J++) StrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); } } for (int J = 0; J <= VgprUB; J++) { unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; StrictDom |= NewVmemTypes != VgprVmemTypes[J]; VgprVmemTypes[J] = NewVmemTypes; } return StrictDom; } static bool isWaitInstr(MachineInstr &Inst) { unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Inst.getOpcode()); return Opcode == AMDGPU::S_WAITCNT || (Opcode == AMDGPU::S_WAITCNT_VSCNT && Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL) || Opcode == AMDGPU::S_WAIT_LOADCNT_DSCNT || Opcode == AMDGPU::S_WAIT_STORECNT_DSCNT || counterTypeForInstr(Opcode).has_value(); } // Generate s_waitcnt instructions where needed. bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets) { bool Modified = false; LLVM_DEBUG({ dbgs() << "*** Block" << Block.getNumber() << " ***"; ScoreBrackets.dump(); }); // Track the correctness of vccz through this basic block. There are two // reasons why it might be incorrect; see ST->hasReadVCCZBug() and // ST->partialVCCWritesUpdateVCCZ(). bool VCCZCorrect = true; if (ST->hasReadVCCZBug()) { // vccz could be incorrect at a basic block boundary if a predecessor wrote // to vcc and then issued an smem load. VCCZCorrect = false; } else if (!ST->partialVCCWritesUpdateVCCZ()) { // vccz could be incorrect at a basic block boundary if a predecessor wrote // to vcc_lo or vcc_hi. VCCZCorrect = false; } // Walk over the instructions. MachineInstr *OldWaitcntInstr = nullptr; for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), E = Block.instr_end(); Iter != E;) { MachineInstr &Inst = *Iter; // Track pre-existing waitcnts that were added in earlier iterations or by // the memory legalizer. if (isWaitInstr(Inst)) { if (!OldWaitcntInstr) OldWaitcntInstr = &Inst; ++Iter; continue; } bool FlushVmCnt = Block.getFirstTerminator() == Inst && isPreheaderToFlush(Block, ScoreBrackets); // Generate an s_waitcnt instruction to be placed before Inst, if needed. Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr, FlushVmCnt); OldWaitcntInstr = nullptr; // Restore vccz if it's not known to be correct already. bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); // Don't examine operands unless we need to track vccz correctness. if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { if (Inst.definesRegister(AMDGPU::VCC_LO) || Inst.definesRegister(AMDGPU::VCC_HI)) { // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. if (!ST->partialVCCWritesUpdateVCCZ()) VCCZCorrect = false; } else if (Inst.definesRegister(AMDGPU::VCC)) { // There is a hardware bug on CI/SI where SMRD instruction may corrupt // vccz bit, so when we detect that an instruction may read from a // corrupt vccz bit, we need to: // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD // operations to complete. // 2. Restore the correct value of vccz by writing the current value // of vcc back to vcc. if (ST->hasReadVCCZBug() && ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { // Writes to vcc while there's an outstanding smem read may get // clobbered as soon as any read completes. VCCZCorrect = false; } else { // Writes to vcc will fix any incorrect value in vccz. VCCZCorrect = true; } } } if (TII->isSMRD(Inst)) { for (const MachineMemOperand *Memop : Inst.memoperands()) { // No need to handle invariant loads when avoiding WAR conflicts, as // there cannot be a vector store to the same memory location. if (!Memop->isInvariant()) { const Value *Ptr = Memop->getValue(); SLoadAddresses.insert(std::pair(Ptr, Inst.getParent())); } } if (ST->hasReadVCCZBug()) { // This smem read could complete and clobber vccz at any time. VCCZCorrect = false; } } updateEventWaitcntAfter(Inst, &ScoreBrackets); #if 0 // TODO: implement resource type check controlled by options with ub = LB. // If this instruction generates a S_SETVSKIP because it is an // indexed resource, and we are on Tahiti, then it will also force // an S_WAITCNT vmcnt(0) if (RequireCheckResourceType(Inst, context)) { // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. ScoreBrackets->setScoreLB(LOAD_CNT, ScoreBrackets->getScoreUB(LOAD_CNT)); } #endif LLVM_DEBUG({ Inst.print(dbgs()); ScoreBrackets.dump(); }); // TODO: Remove this work-around after fixing the scheduler and enable the // assert above. if (RestoreVCCZ) { // Restore the vccz bit. Any time a value is written to vcc, the vcc // bit is updated, so we can restore the bit by reading the value of // vcc and then writing it back to the register. BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), TRI->getVCC()) .addReg(TRI->getVCC()); VCCZCorrect = true; Modified = true; } ++Iter; } if (Block.getFirstTerminator() == Block.end() && isPreheaderToFlush(Block, ScoreBrackets)) Modified |= generateWaitcntBlockEnd(Block, ScoreBrackets, OldWaitcntInstr); return Modified; } // Return true if the given machine basic block is a preheader of a loop in // which we want to flush the vmcnt counter, and false otherwise. bool SIInsertWaitcnts::isPreheaderToFlush(MachineBasicBlock &MBB, WaitcntBrackets &ScoreBrackets) { auto [Iterator, IsInserted] = PreheadersToFlush.try_emplace(&MBB, false); if (!IsInserted) return Iterator->second; MachineBasicBlock *Succ = MBB.getSingleSuccessor(); if (!Succ) return false; MachineLoop *Loop = MLI->getLoopFor(Succ); if (!Loop) return false; if (Loop->getLoopPreheader() == &MBB && shouldFlushVmCnt(Loop, ScoreBrackets)) { Iterator->second = true; return true; } return false; } bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const { return SIInstrInfo::isVMEM(MI) || (SIInstrInfo::isFLAT(MI) && mayAccessVMEMThroughFlat(MI)); } // Return true if it is better to flush the vmcnt counter in the preheader of // the given loop. We currently decide to flush in two situations: // 1. The loop contains vmem store(s), no vmem load and at least one use of a // vgpr containing a value that is loaded outside of the loop. (Only on // targets with no vscnt counter). // 2. The loop contains vmem load(s), but the loaded values are not used in the // loop, and at least one use of a vgpr containing a value that is loaded // outside of the loop. bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML, WaitcntBrackets &Brackets) { bool HasVMemLoad = false; bool HasVMemStore = false; bool UsesVgprLoadedOutside = false; DenseSet VgprUse; DenseSet VgprDef; for (MachineBasicBlock *MBB : ML->blocks()) { for (MachineInstr &MI : *MBB) { if (isVMEMOrFlatVMEM(MI)) { if (MI.mayLoad()) HasVMemLoad = true; if (MI.mayStore()) HasVMemStore = true; } for (unsigned I = 0; I < MI.getNumOperands(); I++) { MachineOperand &Op = MI.getOperand(I); if (!Op.isReg() || !TRI->isVectorRegister(*MRI, Op.getReg())) continue; RegInterval Interval = Brackets.getRegInterval(&MI, MRI, TRI, I); // Vgpr use if (Op.isUse()) { for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { // If we find a register that is loaded inside the loop, 1. and 2. // are invalidated and we can exit. if (VgprDef.contains(RegNo)) return false; VgprUse.insert(RegNo); // If at least one of Op's registers is in the score brackets, the // value is likely loaded outside of the loop. if (Brackets.getRegScore(RegNo, LOAD_CNT) > Brackets.getScoreLB(LOAD_CNT) || Brackets.getRegScore(RegNo, SAMPLE_CNT) > Brackets.getScoreLB(SAMPLE_CNT) || Brackets.getRegScore(RegNo, BVH_CNT) > Brackets.getScoreLB(BVH_CNT)) { UsesVgprLoadedOutside = true; break; } } } // VMem load vgpr def else if (isVMEMOrFlatVMEM(MI) && MI.mayLoad() && Op.isDef()) for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { // If we find a register that is loaded inside the loop, 1. and 2. // are invalidated and we can exit. if (VgprUse.contains(RegNo)) return false; VgprDef.insert(RegNo); } } } } if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside) return true; return HasVMemLoad && UsesVgprLoadedOutside; } bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { ST = &MF.getSubtarget(); TII = ST->getInstrInfo(); TRI = &TII->getRegisterInfo(); MRI = &MF.getRegInfo(); const SIMachineFunctionInfo *MFI = MF.getInfo(); MLI = &getAnalysis(); PDT = &getAnalysis(); if (auto AAR = getAnalysisIfAvailable()) AA = &AAR->getAAResults(); AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST->getCPU()); if (ST->hasExtendedWaitCounts()) { MaxCounter = NUM_EXTENDED_INST_CNTS; WCGGFX12Plus = WaitcntGeneratorGFX12Plus(ST, MaxCounter); WCG = &WCGGFX12Plus; } else { MaxCounter = NUM_NORMAL_INST_CNTS; WCGPreGFX12 = WaitcntGeneratorPreGFX12(ST); WCG = &WCGPreGFX12; } ForceEmitZeroWaitcnts = ForceEmitZeroFlag; for (auto T : inst_counter_types()) ForceEmitWaitcnt[T] = false; const unsigned *WaitEventMaskForInst = WCG->getWaitEventMask(); SmemAccessCounter = eventCounter(WaitEventMaskForInst, SMEM_ACCESS); OptNone = MF.getFunction().hasOptNone() || MF.getTarget().getOptLevel() == CodeGenOptLevel::None; HardwareLimits Limits = {}; if (ST->hasExtendedWaitCounts()) { Limits.LoadcntMax = AMDGPU::getLoadcntBitMask(IV); Limits.DscntMax = AMDGPU::getDscntBitMask(IV); } else { Limits.LoadcntMax = AMDGPU::getVmcntBitMask(IV); Limits.DscntMax = AMDGPU::getLgkmcntBitMask(IV); } Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); Limits.StorecntMax = AMDGPU::getStorecntBitMask(IV); Limits.SamplecntMax = AMDGPU::getSamplecntBitMask(IV); Limits.BvhcntMax = AMDGPU::getBvhcntBitMask(IV); Limits.KmcntMax = AMDGPU::getKmcntBitMask(IV); unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); RegisterEncoding Encoding = {}; Encoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0) & AMDGPU::HWEncoding::REG_IDX_MASK; Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1; Encoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0) & AMDGPU::HWEncoding::REG_IDX_MASK; Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1; BlockInfos.clear(); bool Modified = false; MachineBasicBlock &EntryBB = MF.front(); MachineBasicBlock::iterator I = EntryBB.begin(); if (!MFI->isEntryFunction()) { // Wait for any outstanding memory operations that the input registers may // depend on. We can't track them and it's better to do the wait after the // costly call sequence. // TODO: Could insert earlier and schedule more liberally with operations // that only use caller preserved registers. for (MachineBasicBlock::iterator E = EntryBB.end(); I != E && (I->isPHI() || I->isMetaInstruction()); ++I) ; if (ST->hasExtendedWaitCounts()) { BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAIT_LOADCNT_DSCNT)) .addImm(0); for (auto CT : inst_counter_types(NUM_EXTENDED_INST_CNTS)) { if (CT == LOAD_CNT || CT == DS_CNT || CT == STORE_CNT) continue; BuildMI(EntryBB, I, DebugLoc(), TII->get(instrsForExtendedCounterTypes[CT])) .addImm(0); } } else { BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); } auto NonKernelInitialState = std::make_unique( ST, MaxCounter, Limits, Encoding, WaitEventMaskForInst, SmemAccessCounter); NonKernelInitialState->setStateOnFunctionEntryOrReturn(); BlockInfos[&EntryBB].Incoming = std::move(NonKernelInitialState); Modified = true; } // Keep iterating over the blocks in reverse post order, inserting and // updating s_waitcnt where needed, until a fix point is reached. for (auto *MBB : ReversePostOrderTraversal(&MF)) BlockInfos.insert({MBB, BlockInfo()}); std::unique_ptr Brackets; bool Repeat; do { Repeat = false; for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; ++BII) { MachineBasicBlock *MBB = BII->first; BlockInfo &BI = BII->second; if (!BI.Dirty) continue; if (BI.Incoming) { if (!Brackets) Brackets = std::make_unique(*BI.Incoming); else *Brackets = *BI.Incoming; } else { if (!Brackets) Brackets = std::make_unique( ST, MaxCounter, Limits, Encoding, WaitEventMaskForInst, SmemAccessCounter); else *Brackets = WaitcntBrackets(ST, MaxCounter, Limits, Encoding, WaitEventMaskForInst, SmemAccessCounter); } Modified |= insertWaitcntInBlock(MF, *MBB, *Brackets); BI.Dirty = false; if (Brackets->hasPendingEvent()) { BlockInfo *MoveBracketsToSucc = nullptr; for (MachineBasicBlock *Succ : MBB->successors()) { auto SuccBII = BlockInfos.find(Succ); BlockInfo &SuccBI = SuccBII->second; if (!SuccBI.Incoming) { SuccBI.Dirty = true; if (SuccBII <= BII) Repeat = true; if (!MoveBracketsToSucc) { MoveBracketsToSucc = &SuccBI; } else { SuccBI.Incoming = std::make_unique(*Brackets); } } else if (SuccBI.Incoming->merge(*Brackets)) { SuccBI.Dirty = true; if (SuccBII <= BII) Repeat = true; } } if (MoveBracketsToSucc) MoveBracketsToSucc->Incoming = std::move(Brackets); } } } while (Repeat); if (ST->hasScalarStores()) { SmallVector EndPgmBlocks; bool HaveScalarStores = false; for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { if (!HaveScalarStores && TII->isScalarStore(MI)) HaveScalarStores = true; if (MI.getOpcode() == AMDGPU::S_ENDPGM || MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) EndPgmBlocks.push_back(&MBB); } } if (HaveScalarStores) { // If scalar writes are used, the cache must be flushed or else the next // wave to reuse the same scratch memory can be clobbered. // // Insert s_dcache_wb at wave termination points if there were any scalar // stores, and only if the cache hasn't already been flushed. This could // be improved by looking across blocks for flushes in postdominating // blocks from the stores but an explicitly requested flush is probably // very rare. for (MachineBasicBlock *MBB : EndPgmBlocks) { bool SeenDCacheWB = false; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { if (I->getOpcode() == AMDGPU::S_DCACHE_WB) SeenDCacheWB = true; else if (TII->isScalarStore(*I)) SeenDCacheWB = false; // FIXME: It would be better to insert this before a waitcnt if any. if ((I->getOpcode() == AMDGPU::S_ENDPGM || I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && !SeenDCacheWB) { Modified = true; BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); } } } } } // Insert DEALLOC_VGPR messages before previously identified S_ENDPGM // instructions. for (MachineInstr *MI : ReleaseVGPRInsts) { if (ST->requiresNopBeforeDeallocVGPRs()) { BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_NOP)) .addImm(0); } BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_SENDMSG)) .addImm(AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus); Modified = true; } ReleaseVGPRInsts.clear(); return Modified; }