//===-- AVRRegisterInfo.cpp - AVR Register Information --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the AVR implementation of the TargetRegisterInfo class. // //===----------------------------------------------------------------------===// #include "AVRRegisterInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/IR/Function.h" #include "AVR.h" #include "AVRInstrInfo.h" #include "AVRMachineFunctionInfo.h" #include "AVRTargetMachine.h" #include "MCTargetDesc/AVRMCTargetDesc.h" #define GET_REGINFO_TARGET_DESC #include "AVRGenRegisterInfo.inc" namespace llvm { AVRRegisterInfo::AVRRegisterInfo() : AVRGenRegisterInfo(0) {} const uint16_t * AVRRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { const AVRMachineFunctionInfo *AFI = MF->getInfo(); const AVRSubtarget &STI = MF->getSubtarget(); if (STI.hasTinyEncoding()) return AFI->isInterruptOrSignalHandler() ? CSR_InterruptsTiny_SaveList : CSR_NormalTiny_SaveList; else return AFI->isInterruptOrSignalHandler() ? CSR_Interrupts_SaveList : CSR_Normal_SaveList; } const uint32_t * AVRRegisterInfo::getCallPreservedMask(const MachineFunction &MF, CallingConv::ID CC) const { const AVRSubtarget &STI = MF.getSubtarget(); return STI.hasTinyEncoding() ? CSR_NormalTiny_RegMask : CSR_Normal_RegMask; } BitVector AVRRegisterInfo::getReservedRegs(const MachineFunction &MF) const { BitVector Reserved(getNumRegs()); // Reserve the intermediate result registers r1 and r2 // The result of instructions like 'mul' is always stored here. // R0/R1/R1R0 are always reserved on both avr and avrtiny. Reserved.set(AVR::R0); Reserved.set(AVR::R1); Reserved.set(AVR::R1R0); // Reserve the stack pointer. Reserved.set(AVR::SPL); Reserved.set(AVR::SPH); Reserved.set(AVR::SP); // Reserve R2~R17 only on avrtiny. if (MF.getSubtarget().hasTinyEncoding()) { // Reserve 8-bit registers R2~R15, Rtmp(R16) and Zero(R17). for (unsigned Reg = AVR::R2; Reg <= AVR::R17; Reg++) Reserved.set(Reg); // Reserve 16-bit registers R3R2~R18R17. for (unsigned Reg = AVR::R3R2; Reg <= AVR::R18R17; Reg++) Reserved.set(Reg); } // We tenatively reserve the frame pointer register r29:r28 because the // function may require one, but we cannot tell until register allocation // is complete, which can be too late. // // Instead we just unconditionally reserve the Y register. // // TODO: Write a pass to enumerate functions which reserved the Y register // but didn't end up needing a frame pointer. In these, we can // convert one or two of the spills inside to use the Y register. Reserved.set(AVR::R28); Reserved.set(AVR::R29); Reserved.set(AVR::R29R28); return Reserved; } const TargetRegisterClass * AVRRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &MF) const { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (TRI->isTypeLegalForClass(*RC, MVT::i16)) { return &AVR::DREGSRegClass; } if (TRI->isTypeLegalForClass(*RC, MVT::i8)) { return &AVR::GPR8RegClass; } llvm_unreachable("Invalid register size"); } /// Fold a frame offset shared between two add instructions into a single one. static void foldFrameOffset(MachineBasicBlock::iterator &II, int &Offset, Register DstReg) { MachineInstr &MI = *II; int Opcode = MI.getOpcode(); // Don't bother trying if the next instruction is not an add or a sub. if ((Opcode != AVR::SUBIWRdK) && (Opcode != AVR::ADIWRdK)) { return; } // Check that DstReg matches with next instruction, otherwise the instruction // is not related to stack address manipulation. if (DstReg != MI.getOperand(0).getReg()) { return; } // Add the offset in the next instruction to our offset. switch (Opcode) { case AVR::SUBIWRdK: Offset += -MI.getOperand(2).getImm(); break; case AVR::ADIWRdK: Offset += MI.getOperand(2).getImm(); break; } // Finally remove the instruction. II++; MI.eraseFromParent(); } void AVRRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, RegScavenger *RS) const { assert(SPAdj == 0 && "Unexpected SPAdj value"); MachineInstr &MI = *II; DebugLoc dl = MI.getDebugLoc(); MachineBasicBlock &MBB = *MI.getParent(); const MachineFunction &MF = *MBB.getParent(); const AVRTargetMachine &TM = (const AVRTargetMachine &)MF.getTarget(); const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetFrameLowering *TFI = TM.getSubtargetImpl()->getFrameLowering(); const AVRSubtarget &STI = MF.getSubtarget(); int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); int Offset = MFI.getObjectOffset(FrameIndex); // Add one to the offset because SP points to an empty slot. Offset += MFI.getStackSize() - TFI->getOffsetOfLocalArea() + 1; // Fold incoming offset. Offset += MI.getOperand(FIOperandNum + 1).getImm(); // This is actually "load effective address" of the stack slot // instruction. We have only two-address instructions, thus we need to // expand it into move + add. if (MI.getOpcode() == AVR::FRMIDX) { MI.setDesc(TII.get(AVR::MOVWRdRr)); MI.getOperand(FIOperandNum).ChangeToRegister(AVR::R29R28, false); MI.removeOperand(2); assert(Offset > 0 && "Invalid offset"); // We need to materialize the offset via an add instruction. unsigned Opcode; Register DstReg = MI.getOperand(0).getReg(); assert(DstReg != AVR::R29R28 && "Dest reg cannot be the frame pointer"); II++; // Skip over the FRMIDX (and now MOVW) instruction. // Generally, to load a frame address two add instructions are emitted that // could get folded into a single one: // movw r31:r30, r29:r28 // adiw r31:r30, 29 // adiw r31:r30, 16 // to: // movw r31:r30, r29:r28 // adiw r31:r30, 45 if (II != MBB.end()) foldFrameOffset(II, Offset, DstReg); // Select the best opcode based on DstReg and the offset size. switch (DstReg) { case AVR::R25R24: case AVR::R27R26: case AVR::R31R30: { if (isUInt<6>(Offset)) { Opcode = AVR::ADIWRdK; break; } LLVM_FALLTHROUGH; } default: { // This opcode will get expanded into a pair of subi/sbci. Opcode = AVR::SUBIWRdK; Offset = -Offset; break; } } MachineInstr *New = BuildMI(MBB, II, dl, TII.get(Opcode), DstReg) .addReg(DstReg, RegState::Kill) .addImm(Offset); New->getOperand(3).setIsDead(); return; } // If the offset is too big we have to adjust and restore the frame pointer // to materialize a valid load/store with displacement. //: TODO: consider using only one adiw/sbiw chain for more than one frame //: index if (Offset > 62) { unsigned AddOpc = AVR::ADIWRdK, SubOpc = AVR::SBIWRdK; int AddOffset = Offset - 63 + 1; // For huge offsets where adiw/sbiw cannot be used use a pair of subi/sbci. if ((Offset - 63 + 1) > 63) { AddOpc = AVR::SUBIWRdK; SubOpc = AVR::SUBIWRdK; AddOffset = -AddOffset; } // It is possible that the spiller places this frame instruction in between // a compare and branch, invalidating the contents of SREG set by the // compare instruction because of the add/sub pairs. Conservatively save and // restore SREG before and after each add/sub pair. BuildMI(MBB, II, dl, TII.get(AVR::INRdA), AVR::R0) .addImm(STI.getIORegSREG()); MachineInstr *New = BuildMI(MBB, II, dl, TII.get(AddOpc), AVR::R29R28) .addReg(AVR::R29R28, RegState::Kill) .addImm(AddOffset); New->getOperand(3).setIsDead(); // Restore SREG. BuildMI(MBB, std::next(II), dl, TII.get(AVR::OUTARr)) .addImm(STI.getIORegSREG()) .addReg(AVR::R0, RegState::Kill); // No need to set SREG as dead here otherwise if the next instruction is a // cond branch it will be using a dead register. BuildMI(MBB, std::next(II), dl, TII.get(SubOpc), AVR::R29R28) .addReg(AVR::R29R28, RegState::Kill) .addImm(Offset - 63 + 1); Offset = 62; } MI.getOperand(FIOperandNum).ChangeToRegister(AVR::R29R28, false); assert(isUInt<6>(Offset) && "Offset is out of range"); MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset); } Register AVRRegisterInfo::getFrameRegister(const MachineFunction &MF) const { const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); if (TFI->hasFP(MF)) { // The Y pointer register return AVR::R28; } return AVR::SP; } const TargetRegisterClass * AVRRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) const { // FIXME: Currently we're using avr-gcc as reference, so we restrict // ptrs to Y and Z regs. Though avr-gcc has buggy implementation // of memory constraint, so we can fix it and bit avr-gcc here ;-) return &AVR::PTRDISPREGSRegClass; } void AVRRegisterInfo::splitReg(Register Reg, Register &LoReg, Register &HiReg) const { assert(AVR::DREGSRegClass.contains(Reg) && "can only split 16-bit registers"); LoReg = getSubReg(Reg, AVR::sub_lo); HiReg = getSubReg(Reg, AVR::sub_hi); } bool AVRRegisterInfo::shouldCoalesce( MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, const TargetRegisterClass *DstRC, unsigned DstSubReg, const TargetRegisterClass *NewRC, LiveIntervals &LIS) const { if (this->getRegClass(AVR::PTRDISPREGSRegClassID)->hasSubClassEq(NewRC)) { return false; } return TargetRegisterInfo::shouldCoalesce(MI, SrcRC, SubReg, DstRC, DstSubReg, NewRC, LIS); } } // end of namespace llvm