//===- HexagonGenInsert.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "BitTracker.h" #include "HexagonBitTracker.h" #include "HexagonInstrInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #define DEBUG_TYPE "hexinsert" using namespace llvm; static cl::opt VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U), cl::Hidden, cl::desc("Vreg# cutoff for insert generation.")); // The distance cutoff is selected based on the precheckin-perf results: // cutoffs 20, 25, 35, and 40 are worse than 30. static cl::opt VRegDistCutoff("insert-dist-cutoff", cl::init(30U), cl::Hidden, cl::desc("Vreg distance cutoff for insert " "generation.")); // Limit the container sizes for extreme cases where we run out of memory. static cl::opt MaxORLSize("insert-max-orl", cl::init(4096), cl::Hidden, cl::desc("Maximum size of OrderedRegisterList")); static cl::opt MaxIFMSize("insert-max-ifmap", cl::init(1024), cl::Hidden, cl::desc("Maximum size of IFMap")); static cl::opt OptTiming("insert-timing", cl::Hidden, cl::desc("Enable timing of insert generation")); static cl::opt OptTimingDetail("insert-timing-detail", cl::Hidden, cl::desc("Enable detailed timing of insert " "generation")); static cl::opt OptSelectAll0("insert-all0", cl::init(false), cl::Hidden); static cl::opt OptSelectHas0("insert-has0", cl::init(false), cl::Hidden); // Whether to construct constant values via "insert". Could eliminate constant // extenders, but often not practical. static cl::opt OptConst("insert-const", cl::init(false), cl::Hidden); // The preprocessor gets confused when the DEBUG macro is passed larger // chunks of code. Use this function to detect debugging. inline static bool isDebug() { #ifndef NDEBUG return DebugFlag && isCurrentDebugType(DEBUG_TYPE); #else return false; #endif } namespace { // Set of virtual registers, based on BitVector. struct RegisterSet : private BitVector { RegisterSet() = default; explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} RegisterSet(const RegisterSet &RS) = default; RegisterSet &operator=(const RegisterSet &RS) = default; using BitVector::clear; unsigned find_first() const { int First = BitVector::find_first(); if (First < 0) return 0; return x2v(First); } unsigned find_next(unsigned Prev) const { int Next = BitVector::find_next(v2x(Prev)); if (Next < 0) return 0; return x2v(Next); } RegisterSet &insert(unsigned R) { unsigned Idx = v2x(R); ensure(Idx); return static_cast(BitVector::set(Idx)); } RegisterSet &remove(unsigned R) { unsigned Idx = v2x(R); if (Idx >= size()) return *this; return static_cast(BitVector::reset(Idx)); } RegisterSet &insert(const RegisterSet &Rs) { return static_cast(BitVector::operator|=(Rs)); } RegisterSet &remove(const RegisterSet &Rs) { return static_cast(BitVector::reset(Rs)); } reference operator[](unsigned R) { unsigned Idx = v2x(R); ensure(Idx); return BitVector::operator[](Idx); } bool operator[](unsigned R) const { unsigned Idx = v2x(R); assert(Idx < size()); return BitVector::operator[](Idx); } bool has(unsigned R) const { unsigned Idx = v2x(R); if (Idx >= size()) return false; return BitVector::test(Idx); } bool empty() const { return !BitVector::any(); } bool includes(const RegisterSet &Rs) const { // A.BitVector::test(B) <=> A-B != {} return !Rs.BitVector::test(*this); } bool intersects(const RegisterSet &Rs) const { return BitVector::anyCommon(Rs); } private: void ensure(unsigned Idx) { if (size() <= Idx) resize(std::max(Idx+1, 32U)); } static inline unsigned v2x(unsigned v) { return Register::virtReg2Index(v); } static inline unsigned x2v(unsigned x) { return Register::index2VirtReg(x); } }; struct PrintRegSet { PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) : RS(S), TRI(RI) {} friend raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P); private: const RegisterSet &RS; const TargetRegisterInfo *TRI; }; raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { OS << '{'; for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) OS << ' ' << printReg(R, P.TRI); OS << " }"; return OS; } // A convenience class to associate unsigned numbers (such as virtual // registers) with unsigned numbers. struct UnsignedMap : public DenseMap { UnsignedMap() = default; private: using BaseType = DenseMap; }; // A utility to establish an ordering between virtual registers: // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB] // This is meant as a cache for the ordering of virtual registers defined // by a potentially expensive comparison function, or obtained by a proce- // dure that should not be repeated each time two registers are compared. struct RegisterOrdering : public UnsignedMap { RegisterOrdering() = default; unsigned operator[](unsigned VR) const { const_iterator F = find(VR); assert(F != end()); return F->second; } // Add operator(), so that objects of this class can be used as // comparators in std::sort et al. bool operator() (unsigned VR1, unsigned VR2) const { return operator[](VR1) < operator[](VR2); } }; // Ordering of bit values. This class does not have operator[], but // is supplies a comparison operator() for use in std:: algorithms. // The order is as follows: // - 0 < 1 < ref // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg), // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos. struct BitValueOrdering { BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {} bool operator() (const BitTracker::BitValue &V1, const BitTracker::BitValue &V2) const; const RegisterOrdering &BaseOrd; }; } // end anonymous namespace bool BitValueOrdering::operator() (const BitTracker::BitValue &V1, const BitTracker::BitValue &V2) const { if (V1 == V2) return false; // V1==0 => true, V2==0 => false if (V1.is(0) || V2.is(0)) return V1.is(0); // Neither of V1,V2 is 0, and V1!=V2. // V2==1 => false, V1==1 => true if (V2.is(1) || V1.is(1)) return !V2.is(1); // Both V1,V2 are refs. unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg]; if (Ind1 != Ind2) return Ind1 < Ind2; // If V1.Pos==V2.Pos assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different"); return V1.RefI.Pos < V2.RefI.Pos; } namespace { // Cache for the BitTracker's cell map. Map lookup has a logarithmic // complexity, this class will memoize the lookup results to reduce // the access time for repeated lookups of the same cell. struct CellMapShadow { CellMapShadow(const BitTracker &T) : BT(T) {} const BitTracker::RegisterCell &lookup(unsigned VR) { unsigned RInd = Register::virtReg2Index(VR); // Grow the vector to at least 32 elements. if (RInd >= CVect.size()) CVect.resize(std::max(RInd+16, 32U), nullptr); const BitTracker::RegisterCell *CP = CVect[RInd]; if (CP == nullptr) CP = CVect[RInd] = &BT.lookup(VR); return *CP; } const BitTracker &BT; private: using CellVectType = std::vector; CellVectType CVect; }; // Comparator class for lexicographic ordering of virtual registers // according to the corresponding BitTracker::RegisterCell objects. struct RegisterCellLexCompare { RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M) : BitOrd(BO), CM(M) {} bool operator() (unsigned VR1, unsigned VR2) const; private: const BitValueOrdering &BitOrd; CellMapShadow &CM; }; // Comparator class for lexicographic ordering of virtual registers // according to the specified bits of the corresponding BitTracker:: // RegisterCell objects. // Specifically, this class will be used to compare bit B of a register // cell for a selected virtual register R with bit N of any register // other than R. struct RegisterCellBitCompareSel { RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N, const BitValueOrdering &BO, CellMapShadow &M) : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {} bool operator() (unsigned VR1, unsigned VR2) const; private: const unsigned SelR, SelB; const unsigned BitN; const BitValueOrdering &BitOrd; CellMapShadow &CM; }; } // end anonymous namespace bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const { // Ordering of registers, made up from two given orderings: // - the ordering of the register numbers, and // - the ordering of register cells. // Def. R1 < R2 if: // - cell(R1) < cell(R2), or // - cell(R1) == cell(R2), and index(R1) < index(R2). // // For register cells, the ordering is lexicographic, with index 0 being // the most significant. if (VR1 == VR2) return false; const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2); uint16_t W1 = RC1.width(), W2 = RC2.width(); for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) { const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i]; if (V1 != V2) return BitOrd(V1, V2); } // Cells are equal up until the common length. if (W1 != W2) return W1 < W2; return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2]; } bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const { if (VR1 == VR2) return false; const BitTracker::RegisterCell &RC1 = CM.lookup(VR1); const BitTracker::RegisterCell &RC2 = CM.lookup(VR2); uint16_t W1 = RC1.width(), W2 = RC2.width(); uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN; uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN; // If Bit1 exceeds the width of VR1, then: // - return false, if at the same time Bit2 exceeds VR2, or // - return true, otherwise. // (I.e. "a bit value that does not exist is less than any bit value // that does exist".) if (W1 <= Bit1) return Bit2 < W2; // If Bit1 is within VR1, but Bit2 is not within VR2, return false. if (W2 <= Bit2) return false; const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2]; if (V1 != V2) return BitOrd(V1, V2); return false; } namespace { class OrderedRegisterList { using ListType = std::vector; const unsigned MaxSize; public: OrderedRegisterList(const RegisterOrdering &RO) : MaxSize(MaxORLSize), Ord(RO) {} void insert(unsigned VR); void remove(unsigned VR); unsigned operator[](unsigned Idx) const { assert(Idx < Seq.size()); return Seq[Idx]; } unsigned size() const { return Seq.size(); } using iterator = ListType::iterator; using const_iterator = ListType::const_iterator; iterator begin() { return Seq.begin(); } iterator end() { return Seq.end(); } const_iterator begin() const { return Seq.begin(); } const_iterator end() const { return Seq.end(); } // Convenience function to convert an iterator to the corresponding index. unsigned idx(iterator It) const { return It-begin(); } private: ListType Seq; const RegisterOrdering &Ord; }; struct PrintORL { PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI) : RL(L), TRI(RI) {} friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P); private: const OrderedRegisterList &RL; const TargetRegisterInfo *TRI; }; raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) { OS << '('; OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end(); for (OrderedRegisterList::const_iterator I = B; I != E; ++I) { if (I != B) OS << ", "; OS << printReg(*I, P.TRI); } OS << ')'; return OS; } } // end anonymous namespace void OrderedRegisterList::insert(unsigned VR) { iterator L = llvm::lower_bound(Seq, VR, Ord); if (L == Seq.end()) Seq.push_back(VR); else Seq.insert(L, VR); unsigned S = Seq.size(); if (S > MaxSize) Seq.resize(MaxSize); assert(Seq.size() <= MaxSize); } void OrderedRegisterList::remove(unsigned VR) { iterator L = llvm::lower_bound(Seq, VR, Ord); if (L != Seq.end()) Seq.erase(L); } namespace { // A record of the insert form. The fields correspond to the operands // of the "insert" instruction: // ... = insert(SrcR, InsR, #Wdh, #Off) struct IFRecord { IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0) : SrcR(SR), InsR(IR), Wdh(W), Off(O) {} unsigned SrcR, InsR; uint16_t Wdh, Off; }; struct PrintIFR { PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI) : IFR(R), TRI(RI) {} private: friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P); const IFRecord &IFR; const TargetRegisterInfo *TRI; }; raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) { unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR; OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI) << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')'; return OS; } using IFRecordWithRegSet = std::pair; } // end anonymous namespace namespace llvm { void initializeHexagonGenInsertPass(PassRegistry&); FunctionPass *createHexagonGenInsert(); } // end namespace llvm namespace { class HexagonGenInsert : public MachineFunctionPass { public: static char ID; HexagonGenInsert() : MachineFunctionPass(ID) { initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Hexagon generate \"insert\" instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; private: using PairMapType = DenseMap, unsigned>; void buildOrderingMF(RegisterOrdering &RO) const; void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const; bool isIntClass(const TargetRegisterClass *RC) const; bool isConstant(unsigned VR) const; bool isSmallConstant(unsigned VR) const; bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR, uint16_t L, uint16_t S) const; bool findSelfReference(unsigned VR) const; bool findNonSelfReference(unsigned VR) const; void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const; void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const; unsigned distance(const MachineBasicBlock *FromB, const MachineBasicBlock *ToB, const UnsignedMap &RPO, PairMapType &M) const; unsigned distance(MachineBasicBlock::const_iterator FromI, MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, PairMapType &M) const; bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs); void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs); void findRemovableRegisters(unsigned VR, IFRecord IF, RegisterSet &RMs) const; void computeRemovableRegisters(); void pruneEmptyLists(); void pruneCoveredSets(unsigned VR); void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M); void pruneRegCopies(unsigned VR); void pruneCandidates(); void selectCandidates(); bool generateInserts(); bool removeDeadCode(MachineDomTreeNode *N); // IFRecord coupled with a set of potentially removable registers: using IFListType = std::vector; using IFMapType = DenseMap; // vreg -> IFListType void dump_map() const; const HexagonInstrInfo *HII = nullptr; const HexagonRegisterInfo *HRI = nullptr; MachineFunction *MFN; MachineRegisterInfo *MRI; MachineDominatorTree *MDT; CellMapShadow *CMS; RegisterOrdering BaseOrd; RegisterOrdering CellOrd; IFMapType IFMap; }; } // end anonymous namespace char HexagonGenInsert::ID = 0; void HexagonGenInsert::dump_map() const { for (const auto &I : IFMap) { dbgs() << " " << printReg(I.first, HRI) << ":\n"; const IFListType &LL = I.second; for (const auto &J : LL) dbgs() << " " << PrintIFR(J.first, HRI) << ", " << PrintRegSet(J.second, HRI) << '\n'; } } void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const { unsigned Index = 0; for (const MachineBasicBlock &B : *MFN) { if (!CMS->BT.reached(&B)) continue; for (const MachineInstr &MI : B) { for (const MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.isDef()) { Register R = MO.getReg(); assert(MO.getSubReg() == 0 && "Unexpected subregister in definition"); if (R.isVirtual()) RO.insert(std::make_pair(R, Index++)); } } } } // Since some virtual registers may have had their def and uses eliminated, // they are no longer referenced in the code, and so they will not appear // in the map. } void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const { // Create a vector of all virtual registers (collect them from the base // ordering RB), and then sort it using the RegisterCell comparator. BitValueOrdering BVO(RB); RegisterCellLexCompare LexCmp(BVO, *CMS); using SortableVectorType = std::vector; SortableVectorType VRs; for (auto &I : RB) VRs.push_back(I.first); llvm::sort(VRs, LexCmp); // Transfer the results to the outgoing register ordering. for (unsigned i = 0, n = VRs.size(); i < n; ++i) RO.insert(std::make_pair(VRs[i], i)); } inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const { return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass; } bool HexagonGenInsert::isConstant(unsigned VR) const { const BitTracker::RegisterCell &RC = CMS->lookup(VR); uint16_t W = RC.width(); for (uint16_t i = 0; i < W; ++i) { const BitTracker::BitValue &BV = RC[i]; if (BV.is(0) || BV.is(1)) continue; return false; } return true; } bool HexagonGenInsert::isSmallConstant(unsigned VR) const { const BitTracker::RegisterCell &RC = CMS->lookup(VR); uint16_t W = RC.width(); if (W > 64) return false; uint64_t V = 0, B = 1; for (uint16_t i = 0; i < W; ++i) { const BitTracker::BitValue &BV = RC[i]; if (BV.is(1)) V |= B; else if (!BV.is(0)) return false; B <<= 1; } // For 32-bit registers, consider: Rd = #s16. if (W == 32) return isInt<16>(V); // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8) return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V)); } bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR, uint16_t L, uint16_t S) const { const TargetRegisterClass *DstRC = MRI->getRegClass(DstR); const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR); const TargetRegisterClass *InsRC = MRI->getRegClass(InsR); // Only integet (32-/64-bit) register classes. if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC)) return false; // The "source" register must be of the same class as DstR. if (DstRC != SrcRC) return false; if (DstRC == InsRC) return true; // A 64-bit register can only be generated from other 64-bit registers. if (DstRC == &Hexagon::DoubleRegsRegClass) return false; // Otherwise, the L and S cannot span 32-bit word boundary. if (S < 32 && S+L > 32) return false; return true; } bool HexagonGenInsert::findSelfReference(unsigned VR) const { const BitTracker::RegisterCell &RC = CMS->lookup(VR); for (uint16_t i = 0, w = RC.width(); i < w; ++i) { const BitTracker::BitValue &V = RC[i]; if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR) return true; } return false; } bool HexagonGenInsert::findNonSelfReference(unsigned VR) const { BitTracker::RegisterCell RC = CMS->lookup(VR); for (uint16_t i = 0, w = RC.width(); i < w; ++i) { const BitTracker::BitValue &V = RC[i]; if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR) return true; } return false; } void HexagonGenInsert::getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const { for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg() || !MO.isDef()) continue; Register R = MO.getReg(); if (!R.isVirtual()) continue; Defs.insert(R); } } void HexagonGenInsert::getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const { for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg() || !MO.isUse()) continue; Register R = MO.getReg(); if (!R.isVirtual()) continue; Uses.insert(R); } } unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB, const MachineBasicBlock *ToB, const UnsignedMap &RPO, PairMapType &M) const { // Forward distance from the end of a block to the beginning of it does // not make sense. This function should not be called with FromB == ToB. assert(FromB != ToB); unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber(); // If we have already computed it, return the cached result. PairMapType::iterator F = M.find(std::make_pair(FromN, ToN)); if (F != M.end()) return F->second; unsigned ToRPO = RPO.lookup(ToN); unsigned MaxD = 0; for (const MachineBasicBlock *PB : ToB->predecessors()) { // Skip back edges. Also, if FromB is a predecessor of ToB, the distance // along that path will be 0, and we don't need to do any calculations // on it. if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO) continue; unsigned D = PB->size() + distance(FromB, PB, RPO, M); if (D > MaxD) MaxD = D; } // Memoize the result for later lookup. M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD)); return MaxD; } unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI, MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, PairMapType &M) const { const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent(); if (FB == TB) return std::distance(FromI, ToI); unsigned D1 = std::distance(TB->begin(), ToI); unsigned D2 = distance(FB, TB, RPO, M); unsigned D3 = std::distance(FromI, FB->end()); return D1+D2+D3; } bool HexagonGenInsert::findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs) { if (isDebug()) { dbgs() << __func__ << ": " << printReg(VR, HRI) << " AVs: " << PrintORL(AVs, HRI) << "\n"; } if (AVs.size() == 0) return false; using iterator = OrderedRegisterList::iterator; BitValueOrdering BVO(BaseOrd); const BitTracker::RegisterCell &RC = CMS->lookup(VR); uint16_t W = RC.width(); using RSRecord = std::pair; // (reg,shift) using RSListType = std::vector; // Have a map, with key being the matching prefix length, and the value // being the list of pairs (R,S), where R's prefix matches VR at S. // (DenseMap fails to instantiate.) using LRSMapType = DenseMap; LRSMapType LM; // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S, // and find matching prefixes from AVs with the rotated RC. Such a prefix // would match a string of bits (of length L) in RC starting at S. for (uint16_t S = 0; S < W; ++S) { iterator B = AVs.begin(), E = AVs.end(); // The registers in AVs are ordered according to the lexical order of // the corresponding register cells. This means that the range of regis- // ters in AVs that match a prefix of length L+1 will be contained in // the range that matches a prefix of length L. This means that we can // keep narrowing the search space as the prefix length goes up. This // helps reduce the overall complexity of the search. uint16_t L; for (L = 0; L < W-S; ++L) { // Compare against VR's bits starting at S, which emulates rotation // of VR by S. RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS); iterator NewB = std::lower_bound(B, E, VR, RCB); iterator NewE = std::upper_bound(NewB, E, VR, RCB); // For the registers that are eliminated from the next range, L is // the longest prefix matching VR at position S (their prefixes // differ from VR at S+L). If L>0, record this information for later // use. if (L > 0) { for (iterator I = B; I != NewB; ++I) LM[L].push_back(std::make_pair(*I, S)); for (iterator I = NewE; I != E; ++I) LM[L].push_back(std::make_pair(*I, S)); } B = NewB, E = NewE; if (B == E) break; } // Record the final register range. If this range is non-empty, then // L=W-S. assert(B == E || L == W-S); if (B != E) { for (iterator I = B; I != E; ++I) LM[L].push_back(std::make_pair(*I, S)); // If B!=E, then we found a range of registers whose prefixes cover the // rest of VR from position S. There is no need to further advance S. break; } } if (isDebug()) { dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n"; for (const auto &I : LM) { dbgs() << " L=" << I.first << ':'; const RSListType &LL = I.second; for (const auto &J : LL) dbgs() << " (" << printReg(J.first, HRI) << ",@" << J.second << ')'; dbgs() << '\n'; } } bool Recorded = false; for (unsigned SrcR : AVs) { int FDi = -1, LDi = -1; // First/last different bit. const BitTracker::RegisterCell &AC = CMS->lookup(SrcR); uint16_t AW = AC.width(); for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) { if (RC[i] == AC[i]) continue; if (FDi == -1) FDi = i; LDi = i; } if (FDi == -1) continue; // TODO (future): Record identical registers. // Look for a register whose prefix could patch the range [FD..LD] // where VR and SrcR differ. uint16_t FD = FDi, LD = LDi; // Switch to unsigned type. uint16_t MinL = LD-FD+1; for (uint16_t L = MinL; L < W; ++L) { LRSMapType::iterator F = LM.find(L); if (F == LM.end()) continue; RSListType &LL = F->second; for (const auto &I : LL) { uint16_t S = I.second; // MinL is the minimum length of the prefix. Any length above MinL // allows some flexibility as to where the prefix can start: // given the extra length EL=L-MinL, the prefix must start between // max(0,FD-EL) and FD. if (S > FD) // Starts too late. continue; uint16_t EL = L-MinL; uint16_t LowS = (EL < FD) ? FD-EL : 0; if (S < LowS) // Starts too early. continue; unsigned InsR = I.first; if (!isValidInsertForm(VR, SrcR, InsR, L, S)) continue; if (isDebug()) { dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI) << ',' << printReg(InsR, HRI) << ",#" << L << ",#" << S << ")\n"; } IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet()); IFMap[VR].push_back(RR); Recorded = true; } } } return Recorded; } void HexagonGenInsert::collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs) { if (isDebug()) dbgs() << "visiting block " << printMBBReference(*B) << "\n"; // First, check if this block is reachable at all. If not, the bit tracker // will not have any information about registers in it. if (!CMS->BT.reached(B)) return; bool DoConst = OptConst; // Keep a separate set of registers defined in this block, so that we // can remove them from the list of available registers once all DT // successors have been processed. RegisterSet BlockDefs, InsDefs; for (MachineInstr &MI : *B) { InsDefs.clear(); getInstrDefs(&MI, InsDefs); // Leave those alone. They are more transparent than "insert". bool Skip = MI.isCopy() || MI.isRegSequence(); if (!Skip) { // Visit all defined registers, and attempt to find the corresponding // "insert" representations. for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) { // Do not collect registers that are known to be compile-time cons- // tants, unless requested. if (!DoConst && isConstant(VR)) continue; // If VR's cell contains a reference to VR, then VR cannot be defined // via "insert". If VR is a constant that can be generated in a single // instruction (without constant extenders), generating it via insert // makes no sense. if (findSelfReference(VR) || isSmallConstant(VR)) continue; findRecordInsertForms(VR, AVs); // Stop if the map size is too large. if (IFMap.size() > MaxIFMSize) return; } } // Insert the defined registers into the list of available registers // after they have been processed. for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) AVs.insert(VR); BlockDefs.insert(InsDefs); } for (auto *DTN : children(MDT->getNode(B))) { MachineBasicBlock *SB = DTN->getBlock(); collectInBlock(SB, AVs); } for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR)) AVs.remove(VR); } void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF, RegisterSet &RMs) const { // For a given register VR and a insert form, find the registers that are // used by the current definition of VR, and which would no longer be // needed for it after the definition of VR is replaced with the insert // form. These are the registers that could potentially become dead. RegisterSet Regs[2]; unsigned S = 0; // Register set selector. Regs[S].insert(VR); while (!Regs[S].empty()) { // Breadth-first search. unsigned OtherS = 1-S; Regs[OtherS].clear(); for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) { Regs[S].remove(R); if (R == IF.SrcR || R == IF.InsR) continue; // Check if a given register has bits that are references to any other // registers. This is to detect situations where the instruction that // defines register R takes register Q as an operand, but R itself does // not contain any bits from Q. Loads are examples of how this could // happen: // R = load Q // In this case (assuming we do not have any knowledge about the loaded // value), we must not treat R as a "conveyance" of the bits from Q. // (The information in BT about R's bits would have them as constants, // in case of zero-extending loads, or refs to R.) if (!findNonSelfReference(R)) continue; RMs.insert(R); const MachineInstr *DefI = MRI->getVRegDef(R); assert(DefI); // Do not iterate past PHI nodes to avoid infinite loops. This can // make the final set a bit less accurate, but the removable register // sets are an approximation anyway. if (DefI->isPHI()) continue; getInstrUses(DefI, Regs[OtherS]); } S = OtherS; } // The register VR is added to the list as a side-effect of the algorithm, // but it is not "potentially removable". A potentially removable register // is one that may become unused (dead) after conversion to the insert form // IF, and obviously VR (or its replacement) will not become dead by apply- // ing IF. RMs.remove(VR); } void HexagonGenInsert::computeRemovableRegisters() { for (auto &I : IFMap) { IFListType &LL = I.second; for (auto &J : LL) findRemovableRegisters(I.first, J.first, J.second); } } void HexagonGenInsert::pruneEmptyLists() { // Remove all entries from the map, where the register has no insert forms // associated with it. using IterListType = SmallVector; IterListType Prune; for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { if (I->second.empty()) Prune.push_back(I); } for (unsigned i = 0, n = Prune.size(); i < n; ++i) IFMap.erase(Prune[i]); } void HexagonGenInsert::pruneCoveredSets(unsigned VR) { IFMapType::iterator F = IFMap.find(VR); assert(F != IFMap.end()); IFListType &LL = F->second; // First, examine the IF candidates for register VR whose removable-regis- // ter sets are empty. This means that a given candidate will not help eli- // minate any registers, but since "insert" is not a constant-extendable // instruction, using such a candidate may reduce code size if the defini- // tion of VR is constant-extended. // If there exists a candidate with a non-empty set, the ones with empty // sets will not be used and can be removed. MachineInstr *DefVR = MRI->getVRegDef(VR); bool DefEx = HII->isConstExtended(*DefVR); bool HasNE = false; for (const auto &I : LL) { if (I.second.empty()) continue; HasNE = true; break; } if (!DefEx || HasNE) { // The definition of VR is not constant-extended, or there is a candidate // with a non-empty set. Remove all candidates with empty sets. auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool { return IR.second.empty(); }; llvm::erase_if(LL, IsEmpty); } else { // The definition of VR is constant-extended, and all candidates have // empty removable-register sets. Pick the maximum candidate, and remove // all others. The "maximum" does not have any special meaning here, it // is only so that the candidate that will remain on the list is selec- // ted deterministically. IFRecord MaxIF = LL[0].first; for (unsigned i = 1, n = LL.size(); i < n; ++i) { // If LL[MaxI] < LL[i], then MaxI = i. const IFRecord &IF = LL[i].first; unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR]; unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR]; if (M0 > R0) continue; if (M0 == R0) { if (M1 > R1) continue; if (M1 == R1) { if (MaxIF.Wdh > IF.Wdh) continue; if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off) continue; } } // MaxIF < IF. MaxIF = IF; } // Remove everything except the maximum candidate. All register sets // are empty, so no need to preserve anything. LL.clear(); LL.push_back(std::make_pair(MaxIF, RegisterSet())); } // Now, remove those whose sets of potentially removable registers are // contained in another IF candidate for VR. For example, given these // candidates for %45, // %45: // (%44,%41,#9,#8), { %42 } // (%43,%41,#9,#8), { %42 %44 } // remove the first one, since it is contained in the second one. for (unsigned i = 0, n = LL.size(); i < n; ) { const RegisterSet &RMi = LL[i].second; unsigned j = 0; while (j < n) { if (j != i && LL[j].second.includes(RMi)) break; j++; } if (j == n) { // RMi not contained in anything else. i++; continue; } LL.erase(LL.begin()+i); n = LL.size(); } } void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M) { IFMapType::iterator F = IFMap.find(VR); assert(F != IFMap.end()); IFListType &LL = F->second; unsigned Cutoff = VRegDistCutoff; const MachineInstr *DefV = MRI->getVRegDef(VR); for (unsigned i = LL.size(); i > 0; --i) { unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR; const MachineInstr *DefS = MRI->getVRegDef(SR); const MachineInstr *DefI = MRI->getVRegDef(IR); unsigned DSV = distance(DefS, DefV, RPO, M); if (DSV < Cutoff) { unsigned DIV = distance(DefI, DefV, RPO, M); if (DIV < Cutoff) continue; } LL.erase(LL.begin()+(i-1)); } } void HexagonGenInsert::pruneRegCopies(unsigned VR) { IFMapType::iterator F = IFMap.find(VR); assert(F != IFMap.end()); IFListType &LL = F->second; auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool { return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32); }; llvm::erase_if(LL, IsCopy); } void HexagonGenInsert::pruneCandidates() { // Remove candidates that are not beneficial, regardless of the final // selection method. // First, remove candidates whose potentially removable set is a subset // of another candidate's set. for (const auto &I : IFMap) pruneCoveredSets(I.first); UnsignedMap RPO; using RPOTType = ReversePostOrderTraversal; RPOTType RPOT(MFN); unsigned RPON = 0; for (const auto &I : RPOT) RPO[I->getNumber()] = RPON++; PairMapType Memo; // Memoization map for distance calculation. // Remove candidates that would use registers defined too far away. for (const auto &I : IFMap) pruneUsesTooFar(I.first, RPO, Memo); pruneEmptyLists(); for (const auto &I : IFMap) pruneRegCopies(I.first); } namespace { // Class for comparing IF candidates for registers that have multiple of // them. The smaller the candidate, according to this ordering, the better. // First, compare the number of zeros in the associated potentially remova- // ble register sets. "Zero" indicates that the register is very likely to // become dead after this transformation. // Second, compare "averages", i.e. use-count per size. The lower wins. // After that, it does not really matter which one is smaller. Resolve // the tie in some deterministic way. struct IFOrdering { IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO) : UseC(UC), BaseOrd(BO) {} bool operator() (const IFRecordWithRegSet &A, const IFRecordWithRegSet &B) const; private: void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, unsigned &Sum) const; const UnsignedMap &UseC; const RegisterOrdering &BaseOrd; }; } // end anonymous namespace bool IFOrdering::operator() (const IFRecordWithRegSet &A, const IFRecordWithRegSet &B) const { unsigned SizeA = 0, ZeroA = 0, SumA = 0; unsigned SizeB = 0, ZeroB = 0, SumB = 0; stats(A.second, SizeA, ZeroA, SumA); stats(B.second, SizeB, ZeroB, SumB); // We will pick the minimum element. The more zeros, the better. if (ZeroA != ZeroB) return ZeroA > ZeroB; // Compare SumA/SizeA with SumB/SizeB, lower is better. uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA; if (AvgA != AvgB) return AvgA < AvgB; // The sets compare identical so far. Resort to comparing the IF records. // The actual values don't matter, this is only for determinism. unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR]; if (OSA != OSB) return OSA < OSB; unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR]; if (OIA != OIB) return OIA < OIB; if (A.first.Wdh != B.first.Wdh) return A.first.Wdh < B.first.Wdh; return A.first.Off < B.first.Off; } void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, unsigned &Sum) const { for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) { UnsignedMap::const_iterator F = UseC.find(R); assert(F != UseC.end()); unsigned UC = F->second; if (UC == 0) Zero++; Sum += UC; Size++; } } void HexagonGenInsert::selectCandidates() { // Some registers may have multiple valid candidates. Pick the best one // (or decide not to use any). // Compute the "removability" measure of R: // For each potentially removable register R, record the number of regis- // ters with IF candidates, where R appears in at least one set. RegisterSet AllRMs; UnsignedMap UseC, RemC; IFMapType::iterator End = IFMap.end(); for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { const IFListType &LL = I->second; RegisterSet TT; for (const auto &J : LL) TT.insert(J.second); for (unsigned R = TT.find_first(); R; R = TT.find_next(R)) RemC[R]++; AllRMs.insert(TT); } for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) { using use_iterator = MachineRegisterInfo::use_nodbg_iterator; using InstrSet = SmallSet; InstrSet UIs; // Count as the number of instructions in which R is used, not the // number of operands. use_iterator E = MRI->use_nodbg_end(); for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I) UIs.insert(I->getParent()); unsigned C = UIs.size(); // Calculate a measure, which is the number of instructions using R, // minus the "removability" count computed earlier. unsigned D = RemC[R]; UseC[R] = (C > D) ? C-D : 0; // doz } bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0; if (!SelectAll0 && !SelectHas0) SelectAll0 = true; // The smaller the number UseC for a given register R, the "less used" // R is aside from the opportunities for removal offered by generating // "insert" instructions. // Iterate over the IF map, and for those registers that have multiple // candidates, pick the minimum one according to IFOrdering. IFOrdering IFO(UseC, BaseOrd); for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { IFListType &LL = I->second; if (LL.empty()) continue; // Get the minimum element, remember it and clear the list. If the // element found is adequate, we will put it back on the list, other- // wise the list will remain empty, and the entry for this register // will be removed (i.e. this register will not be replaced by insert). IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO); assert(MinI != LL.end()); IFRecordWithRegSet M = *MinI; LL.clear(); // We want to make sure that this replacement will have a chance to be // beneficial, and that means that we want to have indication that some // register will be removed. The most likely registers to be eliminated // are the use operands in the definition of I->first. Accept/reject a // candidate based on how many of its uses it can potentially eliminate. RegisterSet Us; const MachineInstr *DefI = MRI->getVRegDef(I->first); getInstrUses(DefI, Us); bool Accept = false; if (SelectAll0) { bool All0 = true; for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { if (UseC[R] == 0) continue; All0 = false; break; } Accept = All0; } else if (SelectHas0) { bool Has0 = false; for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { if (UseC[R] != 0) continue; Has0 = true; break; } Accept = Has0; } if (Accept) LL.push_back(M); } // Remove candidates that add uses of removable registers, unless the // removable registers are among replacement candidates. // Recompute the removable registers, since some candidates may have // been eliminated. AllRMs.clear(); for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { const IFListType &LL = I->second; if (!LL.empty()) AllRMs.insert(LL[0].second); } for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { IFListType &LL = I->second; if (LL.empty()) continue; unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR; if (AllRMs[SR] || AllRMs[IR]) LL.clear(); } pruneEmptyLists(); } bool HexagonGenInsert::generateInserts() { // Create a new register for each one from IFMap, and store them in the // map. UnsignedMap RegMap; for (auto &I : IFMap) { unsigned VR = I.first; const TargetRegisterClass *RC = MRI->getRegClass(VR); Register NewVR = MRI->createVirtualRegister(RC); RegMap[VR] = NewVR; } // We can generate the "insert" instructions using potentially stale re- // gisters: SrcR and InsR for a given VR may be among other registers that // are also replaced. This is fine, we will do the mass "rauw" a bit later. for (auto &I : IFMap) { MachineInstr *MI = MRI->getVRegDef(I.first); MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); unsigned NewR = RegMap[I.first]; bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass; const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert) : HII->get(Hexagon::S2_insertp); IFRecord IF = I.second[0].first; unsigned Wdh = IF.Wdh, Off = IF.Off; unsigned InsS = 0; if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) { InsS = Hexagon::isub_lo; if (Off >= 32) { InsS = Hexagon::isub_hi; Off -= 32; } } // Advance to the proper location for inserting instructions. This could // be B.end(). MachineBasicBlock::iterator At = MI; if (MI->isPHI()) At = B.getFirstNonPHI(); BuildMI(B, At, DL, D, NewR) .addReg(IF.SrcR) .addReg(IF.InsR, 0, InsS) .addImm(Wdh) .addImm(Off); MRI->clearKillFlags(IF.SrcR); MRI->clearKillFlags(IF.InsR); } for (const auto &I : IFMap) { MachineInstr *DefI = MRI->getVRegDef(I.first); MRI->replaceRegWith(I.first, RegMap[I.first]); DefI->eraseFromParent(); } return true; } bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) { bool Changed = false; for (auto *DTN : children(N)) Changed |= removeDeadCode(DTN); MachineBasicBlock *B = N->getBlock(); std::vector Instrs; for (MachineInstr &MI : llvm::reverse(*B)) Instrs.push_back(&MI); for (MachineInstr *MI : Instrs) { unsigned Opc = MI->getOpcode(); // Do not touch lifetime markers. This is why the target-independent DCE // cannot be used. if (Opc == TargetOpcode::LIFETIME_START || Opc == TargetOpcode::LIFETIME_END) continue; bool Store = false; if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store)) continue; bool AllDead = true; SmallVector Regs; for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg() || !MO.isDef()) continue; Register R = MO.getReg(); if (!R.isVirtual() || !MRI->use_nodbg_empty(R)) { AllDead = false; break; } Regs.push_back(R); } if (!AllDead) continue; B->erase(MI); for (unsigned I = 0, N = Regs.size(); I != N; ++I) MRI->markUsesInDebugValueAsUndef(Regs[I]); Changed = true; } return Changed; } bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail; bool Changed = false; // Verify: one, but not both. assert(!OptSelectAll0 || !OptSelectHas0); IFMap.clear(); BaseOrd.clear(); CellOrd.clear(); const auto &ST = MF.getSubtarget(); HII = ST.getInstrInfo(); HRI = ST.getRegisterInfo(); MFN = &MF; MRI = &MF.getRegInfo(); MDT = &getAnalysis(); // Clean up before any further processing, so that dead code does not // get used in a newly generated "insert" instruction. Have a custom // version of DCE that preserves lifetime markers. Without it, merging // of stack objects can fail to recognize and merge disjoint objects // leading to unnecessary stack growth. Changed = removeDeadCode(MDT->getRootNode()); const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); BitTracker BTLoc(HE, MF); BTLoc.trace(isDebug()); BTLoc.run(); CellMapShadow MS(BTLoc); CMS = &MS; buildOrderingMF(BaseOrd); buildOrderingBT(BaseOrd, CellOrd); if (isDebug()) { dbgs() << "Cell ordering:\n"; for (const auto &I : CellOrd) { unsigned VR = I.first, Pos = I.second; dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n"; } } // Collect candidates for conversion into the insert forms. MachineBasicBlock *RootB = MDT->getRoot(); OrderedRegisterList AvailR(CellOrd); const char *const TGName = "hexinsert"; const char *const TGDesc = "Generate Insert Instructions"; { NamedRegionTimer _T("collection", "collection", TGName, TGDesc, TimingDetail); collectInBlock(RootB, AvailR); // Complete the information gathered in IFMap. computeRemovableRegisters(); } if (isDebug()) { dbgs() << "Candidates after collection:\n"; dump_map(); } if (IFMap.empty()) return Changed; { NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail); pruneCandidates(); } if (isDebug()) { dbgs() << "Candidates after pruning:\n"; dump_map(); } if (IFMap.empty()) return Changed; { NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail); selectCandidates(); } if (isDebug()) { dbgs() << "Candidates after selection:\n"; dump_map(); } // Filter out vregs beyond the cutoff. if (VRegIndexCutoff.getPosition()) { unsigned Cutoff = VRegIndexCutoff; using IterListType = SmallVector; IterListType Out; for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { unsigned Idx = Register::virtReg2Index(I->first); if (Idx >= Cutoff) Out.push_back(I); } for (unsigned i = 0, n = Out.size(); i < n; ++i) IFMap.erase(Out[i]); } if (IFMap.empty()) return Changed; { NamedRegionTimer _T("generation", "generation", TGName, TGDesc, TimingDetail); generateInserts(); } return true; } FunctionPass *llvm::createHexagonGenInsert() { return new HexagonGenInsert(); } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert", "Hexagon generate \"insert\" instructions", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert", "Hexagon generate \"insert\" instructions", false, false)