//===-- RISCVAsmBackend.cpp - RISCV Assembler Backend ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "RISCVAsmBackend.h" #include "RISCVMCExpr.h" #include "llvm/ADT/APInt.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Endian.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; std::optional RISCVAsmBackend::getFixupKind(StringRef Name) const { if (STI.getTargetTriple().isOSBinFormatELF()) { unsigned Type; Type = llvm::StringSwitch(Name) #define ELF_RELOC(X, Y) .Case(#X, Y) #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" #undef ELF_RELOC .Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE) .Case("BFD_RELOC_32", ELF::R_RISCV_32) .Case("BFD_RELOC_64", ELF::R_RISCV_64) .Default(-1u); if (Type != -1u) return static_cast(FirstLiteralRelocationKind + Type); } return std::nullopt; } const MCFixupKindInfo & RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { const static MCFixupKindInfo Infos[] = { // This table *must* be in the order that the fixup_* kinds are defined in // RISCVFixupKinds.h. // // name offset bits flags {"fixup_riscv_hi20", 12, 20, 0}, {"fixup_riscv_lo12_i", 20, 12, 0}, {"fixup_riscv_12_i", 20, 12, 0}, {"fixup_riscv_lo12_s", 0, 32, 0}, {"fixup_riscv_pcrel_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget}, {"fixup_riscv_pcrel_lo12_i", 20, 12, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget}, {"fixup_riscv_pcrel_lo12_s", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget}, {"fixup_riscv_got_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_tprel_hi20", 12, 20, 0}, {"fixup_riscv_tprel_lo12_i", 20, 12, 0}, {"fixup_riscv_tprel_lo12_s", 0, 32, 0}, {"fixup_riscv_tprel_add", 0, 0, 0}, {"fixup_riscv_tls_got_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_tls_gd_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_jal", 12, 20, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_rvc_jump", 2, 11, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_rvc_branch", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_call", 0, 64, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_call_plt", 0, 64, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_riscv_relax", 0, 0, 0}, {"fixup_riscv_align", 0, 0, 0}, {"fixup_riscv_set_8", 0, 8, 0}, {"fixup_riscv_add_8", 0, 8, 0}, {"fixup_riscv_sub_8", 0, 8, 0}, {"fixup_riscv_set_16", 0, 16, 0}, {"fixup_riscv_add_16", 0, 16, 0}, {"fixup_riscv_sub_16", 0, 16, 0}, {"fixup_riscv_set_32", 0, 32, 0}, {"fixup_riscv_add_32", 0, 32, 0}, {"fixup_riscv_sub_32", 0, 32, 0}, {"fixup_riscv_add_64", 0, 64, 0}, {"fixup_riscv_sub_64", 0, 64, 0}, {"fixup_riscv_set_6b", 2, 6, 0}, {"fixup_riscv_sub_6b", 2, 6, 0}, }; static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds, "Not all fixup kinds added to Infos array"); // Fixup kinds from .reloc directive are like R_RISCV_NONE. They // do not require any extra processing. if (Kind >= FirstLiteralRelocationKind) return MCAsmBackend::getFixupKindInfo(FK_NONE); if (Kind < FirstTargetFixupKind) return MCAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } // If linker relaxation is enabled, or the relax option had previously been // enabled, always emit relocations even if the fixup can be resolved. This is // necessary for correctness as offsets may change during relaxation. bool RISCVAsmBackend::shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target) { if (Fixup.getKind() >= FirstLiteralRelocationKind) return true; switch (Fixup.getTargetKind()) { default: break; case FK_Data_1: case FK_Data_2: case FK_Data_4: case FK_Data_8: if (Target.isAbsolute()) return false; break; case RISCV::fixup_riscv_got_hi20: case RISCV::fixup_riscv_tls_got_hi20: case RISCV::fixup_riscv_tls_gd_hi20: return true; } return STI.hasFeature(RISCV::FeatureRelax) || ForceRelocs; } bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFixup &Fixup, bool Resolved, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout, const bool WasForced) const { int64_t Offset = int64_t(Value); unsigned Kind = Fixup.getTargetKind(); // We only do conditional branch relaxation when the symbol is resolved. // For conditional branch, the immediate must be in the range // [-4096, 4094]. if (Kind == RISCV::fixup_riscv_branch) return Resolved && !isInt<13>(Offset); // Return true if the symbol is actually unresolved. // Resolved could be always false when shouldForceRelocation return true. // We use !WasForced to indicate that the symbol is unresolved and not forced // by shouldForceRelocation. if (!Resolved && !WasForced) return true; switch (Kind) { default: return false; case RISCV::fixup_riscv_rvc_branch: // For compressed branch instructions the immediate must be // in the range [-256, 254]. return Offset > 254 || Offset < -256; case RISCV::fixup_riscv_rvc_jump: // For compressed jump instructions the immediate must be // in the range [-2048, 2046]. return Offset > 2046 || Offset < -2048; } } void RISCVAsmBackend::relaxInstruction(MCInst &Inst, const MCSubtargetInfo &STI) const { MCInst Res; switch (Inst.getOpcode()) { default: llvm_unreachable("Opcode not expected!"); case RISCV::C_BEQZ: case RISCV::C_BNEZ: case RISCV::C_J: case RISCV::C_JAL: { bool Success = RISCVRVC::uncompress(Res, Inst, STI); assert(Success && "Can't uncompress instruction"); (void)Success; break; } case RISCV::BEQ: case RISCV::BNE: case RISCV::BLT: case RISCV::BGE: case RISCV::BLTU: case RISCV::BGEU: Res.setOpcode(getRelaxedOpcode(Inst.getOpcode())); Res.addOperand(Inst.getOperand(0)); Res.addOperand(Inst.getOperand(1)); Res.addOperand(Inst.getOperand(2)); break; } Inst = std::move(Res); } bool RISCVAsmBackend::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF, MCAsmLayout &Layout, bool &WasRelaxed) const { MCContext &C = Layout.getAssembler().getContext(); int64_t LineDelta = DF.getLineDelta(); const MCExpr &AddrDelta = DF.getAddrDelta(); SmallVectorImpl &Data = DF.getContents(); SmallVectorImpl &Fixups = DF.getFixups(); size_t OldSize = Data.size(); int64_t Value; bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Layout); assert(IsAbsolute && "CFA with invalid expression"); (void)IsAbsolute; Data.clear(); Fixups.clear(); raw_svector_ostream OS(Data); // INT64_MAX is a signal that this is actually a DW_LNE_end_sequence. if (LineDelta != INT64_MAX) { OS << uint8_t(dwarf::DW_LNS_advance_line); encodeSLEB128(LineDelta, OS); } unsigned Offset; std::pair Fixup; // According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode // takes a single unsigned half (unencoded) operand. The maximum encodable // value is therefore 65535. Set a conservative upper bound for relaxation. if (Value > 60000) { unsigned PtrSize = C.getAsmInfo()->getCodePointerSize(); OS << uint8_t(dwarf::DW_LNS_extended_op); encodeULEB128(PtrSize + 1, OS); OS << uint8_t(dwarf::DW_LNE_set_address); Offset = OS.tell(); assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size"); Fixup = RISCV::getRelocPairForSize(PtrSize); OS.write_zeros(PtrSize); } else { OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc); Offset = OS.tell(); Fixup = RISCV::getRelocPairForSize(2); support::endian::write(OS, 0, support::little); } const MCBinaryExpr &MBE = cast(AddrDelta); Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup))); Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup))); if (LineDelta == INT64_MAX) { OS << uint8_t(dwarf::DW_LNS_extended_op); OS << uint8_t(1); OS << uint8_t(dwarf::DW_LNE_end_sequence); } else { OS << uint8_t(dwarf::DW_LNS_copy); } WasRelaxed = OldSize != Data.size(); return true; } bool RISCVAsmBackend::relaxDwarfCFA(MCDwarfCallFrameFragment &DF, MCAsmLayout &Layout, bool &WasRelaxed) const { const MCExpr &AddrDelta = DF.getAddrDelta(); SmallVectorImpl &Data = DF.getContents(); SmallVectorImpl &Fixups = DF.getFixups(); size_t OldSize = Data.size(); int64_t Value; if (AddrDelta.evaluateAsAbsolute(Value, Layout.getAssembler())) return false; bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Layout); assert(IsAbsolute && "CFA with invalid expression"); (void)IsAbsolute; Data.clear(); Fixups.clear(); raw_svector_ostream OS(Data); assert( Layout.getAssembler().getContext().getAsmInfo()->getMinInstAlignment() == 1 && "expected 1-byte alignment"); if (Value == 0) { WasRelaxed = OldSize != Data.size(); return true; } auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset, std::pair Fixup) { const MCBinaryExpr &MBE = cast(AddrDelta); Fixups.push_back(MCFixup::create( Offset, MBE.getLHS(), static_cast(std::get<0>(Fixup)))); Fixups.push_back(MCFixup::create( Offset, MBE.getRHS(), static_cast(std::get<1>(Fixup)))); }; if (isUIntN(6, Value)) { OS << uint8_t(dwarf::DW_CFA_advance_loc); AddFixups(0, {RISCV::fixup_riscv_set_6b, RISCV::fixup_riscv_sub_6b}); } else if (isUInt<8>(Value)) { OS << uint8_t(dwarf::DW_CFA_advance_loc1); support::endian::write(OS, 0, support::little); AddFixups(1, {RISCV::fixup_riscv_set_8, RISCV::fixup_riscv_sub_8}); } else if (isUInt<16>(Value)) { OS << uint8_t(dwarf::DW_CFA_advance_loc2); support::endian::write(OS, 0, support::little); AddFixups(1, {RISCV::fixup_riscv_set_16, RISCV::fixup_riscv_sub_16}); } else if (isUInt<32>(Value)) { OS << uint8_t(dwarf::DW_CFA_advance_loc4); support::endian::write(OS, 0, support::little); AddFixups(1, {RISCV::fixup_riscv_set_32, RISCV::fixup_riscv_sub_32}); } else { llvm_unreachable("unsupported CFA encoding"); } WasRelaxed = OldSize != Data.size(); return true; } // Given a compressed control flow instruction this function returns // the expanded instruction. unsigned RISCVAsmBackend::getRelaxedOpcode(unsigned Op) const { switch (Op) { default: return Op; case RISCV::C_BEQZ: return RISCV::BEQ; case RISCV::C_BNEZ: return RISCV::BNE; case RISCV::C_J: case RISCV::C_JAL: // fall through. return RISCV::JAL; case RISCV::BEQ: return RISCV::PseudoLongBEQ; case RISCV::BNE: return RISCV::PseudoLongBNE; case RISCV::BLT: return RISCV::PseudoLongBLT; case RISCV::BGE: return RISCV::PseudoLongBGE; case RISCV::BLTU: return RISCV::PseudoLongBLTU; case RISCV::BGEU: return RISCV::PseudoLongBGEU; } } bool RISCVAsmBackend::mayNeedRelaxation(const MCInst &Inst, const MCSubtargetInfo &STI) const { return getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode(); } bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count, const MCSubtargetInfo *STI) const { // We mostly follow binutils' convention here: align to even boundary with a // 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is // enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops. // Instructions always are at even addresses. We must be in a data area or // be unaligned due to some other reason. if (Count % 2) { OS.write("\0", 1); Count -= 1; } bool UseCompressedNop = STI->hasFeature(RISCV::FeatureStdExtC) || STI->hasFeature(RISCV::FeatureStdExtZca); // The canonical nop on RVC is c.nop. if (Count % 4 == 2) { OS.write(UseCompressedNop ? "\x01\0" : "\0\0", 2); Count -= 2; } // The canonical nop on RISC-V is addi x0, x0, 0. for (; Count >= 4; Count -= 4) OS.write("\x13\0\0\0", 4); return true; } static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value, MCContext &Ctx) { switch (Fixup.getTargetKind()) { default: llvm_unreachable("Unknown fixup kind!"); case RISCV::fixup_riscv_got_hi20: case RISCV::fixup_riscv_tls_got_hi20: case RISCV::fixup_riscv_tls_gd_hi20: llvm_unreachable("Relocation should be unconditionally forced\n"); case RISCV::fixup_riscv_set_8: case RISCV::fixup_riscv_add_8: case RISCV::fixup_riscv_sub_8: case RISCV::fixup_riscv_set_16: case RISCV::fixup_riscv_add_16: case RISCV::fixup_riscv_sub_16: case RISCV::fixup_riscv_set_32: case RISCV::fixup_riscv_add_32: case RISCV::fixup_riscv_sub_32: case RISCV::fixup_riscv_add_64: case RISCV::fixup_riscv_sub_64: case FK_Data_1: case FK_Data_2: case FK_Data_4: case FK_Data_8: case FK_Data_6b: return Value; case RISCV::fixup_riscv_set_6b: return Value & 0x03; case RISCV::fixup_riscv_lo12_i: case RISCV::fixup_riscv_pcrel_lo12_i: case RISCV::fixup_riscv_tprel_lo12_i: return Value & 0xfff; case RISCV::fixup_riscv_12_i: if (!isInt<12>(Value)) { Ctx.reportError(Fixup.getLoc(), "operand must be a constant 12-bit integer"); } return Value & 0xfff; case RISCV::fixup_riscv_lo12_s: case RISCV::fixup_riscv_pcrel_lo12_s: case RISCV::fixup_riscv_tprel_lo12_s: return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7); case RISCV::fixup_riscv_hi20: case RISCV::fixup_riscv_pcrel_hi20: case RISCV::fixup_riscv_tprel_hi20: // Add 1 if bit 11 is 1, to compensate for low 12 bits being negative. return ((Value + 0x800) >> 12) & 0xfffff; case RISCV::fixup_riscv_jal: { if (!isInt<21>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x1) Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); // Need to produce imm[19|10:1|11|19:12] from the 21-bit Value. unsigned Sbit = (Value >> 20) & 0x1; unsigned Hi8 = (Value >> 12) & 0xff; unsigned Mid1 = (Value >> 11) & 0x1; unsigned Lo10 = (Value >> 1) & 0x3ff; // Inst{31} = Sbit; // Inst{30-21} = Lo10; // Inst{20} = Mid1; // Inst{19-12} = Hi8; Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8; return Value; } case RISCV::fixup_riscv_branch: { if (!isInt<13>(Value)) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x1) Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); // Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit // Value. unsigned Sbit = (Value >> 12) & 0x1; unsigned Hi1 = (Value >> 11) & 0x1; unsigned Mid6 = (Value >> 5) & 0x3f; unsigned Lo4 = (Value >> 1) & 0xf; // Inst{31} = Sbit; // Inst{30-25} = Mid6; // Inst{11-8} = Lo4; // Inst{7} = Hi1; Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7); return Value; } case RISCV::fixup_riscv_call: case RISCV::fixup_riscv_call_plt: { // Jalr will add UpperImm with the sign-extended 12-bit LowerImm, // we need to add 0x800ULL before extract upper bits to reflect the // effect of the sign extension. uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL; uint64_t LowerImm = Value & 0xfffULL; return UpperImm | ((LowerImm << 20) << 32); } case RISCV::fixup_riscv_rvc_jump: { // Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value. unsigned Bit11 = (Value >> 11) & 0x1; unsigned Bit4 = (Value >> 4) & 0x1; unsigned Bit9_8 = (Value >> 8) & 0x3; unsigned Bit10 = (Value >> 10) & 0x1; unsigned Bit6 = (Value >> 6) & 0x1; unsigned Bit7 = (Value >> 7) & 0x1; unsigned Bit3_1 = (Value >> 1) & 0x7; unsigned Bit5 = (Value >> 5) & 0x1; Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) | (Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5; return Value; } case RISCV::fixup_riscv_rvc_branch: { // Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5] unsigned Bit8 = (Value >> 8) & 0x1; unsigned Bit7_6 = (Value >> 6) & 0x3; unsigned Bit5 = (Value >> 5) & 0x1; unsigned Bit4_3 = (Value >> 3) & 0x3; unsigned Bit2_1 = (Value >> 1) & 0x3; Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) | (Bit5 << 2); return Value; } } } bool RISCVAsmBackend::evaluateTargetFixup( const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup, const MCFragment *DF, const MCValue &Target, uint64_t &Value, bool &WasForced) { const MCFixup *AUIPCFixup; const MCFragment *AUIPCDF; MCValue AUIPCTarget; switch (Fixup.getTargetKind()) { default: llvm_unreachable("Unexpected fixup kind!"); case RISCV::fixup_riscv_pcrel_hi20: AUIPCFixup = &Fixup; AUIPCDF = DF; AUIPCTarget = Target; break; case RISCV::fixup_riscv_pcrel_lo12_i: case RISCV::fixup_riscv_pcrel_lo12_s: { AUIPCFixup = cast(Fixup.getValue())->getPCRelHiFixup(&AUIPCDF); if (!AUIPCFixup) { Asm.getContext().reportError(Fixup.getLoc(), "could not find corresponding %pcrel_hi"); return true; } // MCAssembler::evaluateFixup will emit an error for this case when it sees // the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo. const MCExpr *AUIPCExpr = AUIPCFixup->getValue(); if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, &Layout, AUIPCFixup)) return true; break; } } if (!AUIPCTarget.getSymA() || AUIPCTarget.getSymB()) return false; const MCSymbolRefExpr *A = AUIPCTarget.getSymA(); const MCSymbol &SA = A->getSymbol(); if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) return false; auto *Writer = Asm.getWriterPtr(); if (!Writer) return false; bool IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl( Asm, SA, *AUIPCDF, false, true); if (!IsResolved) return false; Value = Layout.getSymbolOffset(SA) + AUIPCTarget.getConstant(); Value -= Layout.getFragmentOffset(AUIPCDF) + AUIPCFixup->getOffset(); if (shouldForceRelocation(Asm, *AUIPCFixup, AUIPCTarget)) { WasForced = true; return false; } return true; } bool RISCVAsmBackend::handleAddSubRelocations(const MCAsmLayout &Layout, const MCFragment &F, const MCFixup &Fixup, const MCValue &Target, uint64_t &FixedValue) const { uint64_t FixedValueA, FixedValueB; unsigned TA = 0, TB = 0; switch (Fixup.getKind()) { case llvm::FK_Data_1: TA = ELF::R_RISCV_ADD8; TB = ELF::R_RISCV_SUB8; break; case llvm::FK_Data_2: TA = ELF::R_RISCV_ADD16; TB = ELF::R_RISCV_SUB16; break; case llvm::FK_Data_4: TA = ELF::R_RISCV_ADD32; TB = ELF::R_RISCV_SUB32; break; case llvm::FK_Data_8: TA = ELF::R_RISCV_ADD64; TB = ELF::R_RISCV_SUB64; break; default: llvm_unreachable("unsupported fixup size"); } MCValue A = MCValue::get(Target.getSymA(), nullptr, Target.getConstant()); MCValue B = MCValue::get(Target.getSymB()); auto FA = MCFixup::create( Fixup.getOffset(), nullptr, static_cast(FirstLiteralRelocationKind + TA)); auto FB = MCFixup::create( Fixup.getOffset(), nullptr, static_cast(FirstLiteralRelocationKind + TB)); auto &Asm = Layout.getAssembler(); Asm.getWriter().recordRelocation(Asm, Layout, &F, FA, A, FixedValueA); Asm.getWriter().recordRelocation(Asm, Layout, &F, FB, B, FixedValueB); FixedValue = FixedValueA - FixedValueB; return true; } void RISCVAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const { MCFixupKind Kind = Fixup.getKind(); if (Kind >= FirstLiteralRelocationKind) return; MCContext &Ctx = Asm.getContext(); MCFixupKindInfo Info = getFixupKindInfo(Kind); if (!Value) return; // Doesn't change encoding. // Apply any target-specific value adjustments. Value = adjustFixupValue(Fixup, Value, Ctx); // Shift the value into position. Value <<= Info.TargetOffset; unsigned Offset = Fixup.getOffset(); unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8; assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); // For each byte of the fragment that the fixup touches, mask in the // bits from the fixup value. for (unsigned i = 0; i != NumBytes; ++i) { Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff); } } // Linker relaxation may change code size. We have to insert Nops // for .align directive when linker relaxation enabled. So then Linker // could satisfy alignment by removing Nops. // The function return the total Nops Size we need to insert. bool RISCVAsmBackend::shouldInsertExtraNopBytesForCodeAlign( const MCAlignFragment &AF, unsigned &Size) { // Calculate Nops Size only when linker relaxation enabled. const MCSubtargetInfo *STI = AF.getSubtargetInfo(); if (!STI->hasFeature(RISCV::FeatureRelax)) return false; bool UseCompressedNop = STI->hasFeature(RISCV::FeatureStdExtC) || STI->hasFeature(RISCV::FeatureStdExtZca); unsigned MinNopLen = UseCompressedNop ? 2 : 4; if (AF.getAlignment() <= MinNopLen) { return false; } else { Size = AF.getAlignment().value() - MinNopLen; return true; } } // We need to insert R_RISCV_ALIGN relocation type to indicate the // position of Nops and the total bytes of the Nops have been inserted // when linker relaxation enabled. // The function insert fixup_riscv_align fixup which eventually will // transfer to R_RISCV_ALIGN relocation type. bool RISCVAsmBackend::shouldInsertFixupForCodeAlign(MCAssembler &Asm, const MCAsmLayout &Layout, MCAlignFragment &AF) { // Insert the fixup only when linker relaxation enabled. const MCSubtargetInfo *STI = AF.getSubtargetInfo(); if (!STI->hasFeature(RISCV::FeatureRelax)) return false; // Calculate total Nops we need to insert. If there are none to insert // then simply return. unsigned Count; if (!shouldInsertExtraNopBytesForCodeAlign(AF, Count) || (Count == 0)) return false; MCContext &Ctx = Asm.getContext(); const MCExpr *Dummy = MCConstantExpr::create(0, Ctx); // Create fixup_riscv_align fixup. MCFixup Fixup = MCFixup::create(0, Dummy, MCFixupKind(RISCV::fixup_riscv_align), SMLoc()); uint64_t FixedValue = 0; MCValue NopBytes = MCValue::get(Count); Asm.getWriter().recordRelocation(Asm, Layout, &AF, Fixup, NopBytes, FixedValue); return true; } std::unique_ptr RISCVAsmBackend::createObjectTargetWriter() const { return createRISCVELFObjectWriter(OSABI, Is64Bit); } MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options) { const Triple &TT = STI.getTargetTriple(); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS()); return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options); }