//===- InjectTLIMAppings.cpp - TLI to VFABI attribute injection ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Populates the VFABI attribute with the scalar-to-vector mappings // from the TargetLibraryInfo. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/InjectTLIMappings.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/VFABIDemangler.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; #define DEBUG_TYPE "inject-tli-mappings" STATISTIC(NumCallInjected, "Number of calls in which the mappings have been injected."); STATISTIC(NumVFDeclAdded, "Number of function declarations that have been added."); STATISTIC(NumCompUsedAdded, "Number of `@llvm.compiler.used` operands that have been added."); /// A helper function that adds the vector variant declaration for vectorizing /// the CallInst \p CI with a vectorization factor of \p VF lanes. For each /// mapping, TLI provides a VABI prefix, which contains all information required /// to create vector function declaration. static void addVariantDeclaration(CallInst &CI, const ElementCount &VF, const VecDesc *VD) { Module *M = CI.getModule(); FunctionType *ScalarFTy = CI.getFunctionType(); assert(!ScalarFTy->isVarArg() && "VarArg functions are not supported."); const std::optional Info = VFABI::tryDemangleForVFABI( VD->getVectorFunctionABIVariantString(), ScalarFTy); assert(Info && "Failed to demangle vector variant"); assert(Info->Shape.VF == VF && "Mangled name does not match VF"); const StringRef VFName = VD->getVectorFnName(); FunctionType *VectorFTy = VFABI::createFunctionType(*Info, ScalarFTy); Function *VecFunc = Function::Create(VectorFTy, Function::ExternalLinkage, VFName, M); VecFunc->copyAttributesFrom(CI.getCalledFunction()); ++NumVFDeclAdded; LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Added to the module: `" << VFName << "` of type " << *VectorFTy << "\n"); // Make function declaration (without a body) "sticky" in the IR by // listing it in the @llvm.compiler.used intrinsic. assert(!VecFunc->size() && "VFABI attribute requires `@llvm.compiler.used` " "only on declarations."); appendToCompilerUsed(*M, {VecFunc}); LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Adding `" << VFName << "` to `@llvm.compiler.used`.\n"); ++NumCompUsedAdded; } static void addMappingsFromTLI(const TargetLibraryInfo &TLI, CallInst &CI) { // This is needed to make sure we don't query the TLI for calls to // bitcast of function pointers, like `%call = call i32 (i32*, ...) // bitcast (i32 (...)* @goo to i32 (i32*, ...)*)(i32* nonnull %i)`, // as such calls make the `isFunctionVectorizable` raise an // exception. if (CI.isNoBuiltin() || !CI.getCalledFunction()) return; StringRef ScalarName = CI.getCalledFunction()->getName(); // Nothing to be done if the TLI thinks the function is not // vectorizable. if (!TLI.isFunctionVectorizable(ScalarName)) return; SmallVector Mappings; VFABI::getVectorVariantNames(CI, Mappings); Module *M = CI.getModule(); const SetVector OriginalSetOfMappings(Mappings.begin(), Mappings.end()); auto AddVariantDecl = [&](const ElementCount &VF, bool Predicate) { const VecDesc *VD = TLI.getVectorMappingInfo(ScalarName, VF, Predicate); if (VD && !VD->getVectorFnName().empty()) { std::string MangledName = VD->getVectorFunctionABIVariantString(); if (!OriginalSetOfMappings.count(MangledName)) { Mappings.push_back(MangledName); ++NumCallInjected; } Function *VariantF = M->getFunction(VD->getVectorFnName()); if (!VariantF) addVariantDeclaration(CI, VF, VD); } }; // All VFs in the TLI are powers of 2. ElementCount WidestFixedVF, WidestScalableVF; TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); for (bool Predicated : {false, true}) { for (ElementCount VF = ElementCount::getFixed(2); ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) AddVariantDecl(VF, Predicated); for (ElementCount VF = ElementCount::getScalable(2); ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) AddVariantDecl(VF, Predicated); } VFABI::setVectorVariantNames(&CI, Mappings); } static bool runImpl(const TargetLibraryInfo &TLI, Function &F) { for (auto &I : instructions(F)) if (auto CI = dyn_cast(&I)) addMappingsFromTLI(TLI, *CI); // Even if the pass adds IR attributes, the analyses are preserved. return false; } //////////////////////////////////////////////////////////////////////////////// // New pass manager implementation. //////////////////////////////////////////////////////////////////////////////// PreservedAnalyses InjectTLIMappings::run(Function &F, FunctionAnalysisManager &AM) { const TargetLibraryInfo &TLI = AM.getResult(F); runImpl(TLI, F); // Even if the pass adds IR attributes, the analyses are preserved. return PreservedAnalyses::all(); }