//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the construction of a VPlan-based Hierarchical CFG /// (H-CFG) for an incoming IR. This construction comprises the following /// components and steps: // /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top /// Region) is created to enclose and serve as parent of all the VPBasicBlocks /// in the plain CFG. /// NOTE: At this point, there is a direct correspondence between all the /// VPBasicBlocks created for the initial plain CFG and the incoming /// BasicBlocks. However, this might change in the future. /// //===----------------------------------------------------------------------===// #include "VPlanHCFGBuilder.h" #include "LoopVectorizationPlanner.h" #include "llvm/Analysis/LoopIterator.h" #define DEBUG_TYPE "loop-vectorize" using namespace llvm; namespace { // Class that is used to build the plain CFG for the incoming IR. class PlainCFGBuilder { private: // The outermost loop of the input loop nest considered for vectorization. Loop *TheLoop; // Loop Info analysis. LoopInfo *LI; // Vectorization plan that we are working on. VPlan &Plan; // Builder of the VPlan instruction-level representation. VPBuilder VPIRBuilder; // NOTE: The following maps are intentionally destroyed after the plain CFG // construction because subsequent VPlan-to-VPlan transformation may // invalidate them. // Map incoming BasicBlocks to their newly-created VPBasicBlocks. DenseMap BB2VPBB; // Map incoming Value definitions to their newly-created VPValues. DenseMap IRDef2VPValue; // Hold phi node's that need to be fixed once the plain CFG has been built. SmallVector PhisToFix; /// Maps loops in the original IR to their corresponding region. DenseMap Loop2Region; // Utility functions. void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); void fixPhiNodes(); VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); #ifndef NDEBUG bool isExternalDef(Value *Val); #endif VPValue *getOrCreateVPOperand(Value *IRVal); void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); public: PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) : TheLoop(Lp), LI(LI), Plan(P) {} /// Build plain CFG for TheLoop. Return the pre-header VPBasicBlock connected /// to a new VPRegionBlock (TopRegion) enclosing the plain CFG. VPBasicBlock *buildPlainCFG(); }; } // anonymous namespace // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB // must have no predecessors. void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { SmallVector VPBBPreds; // Collect VPBB predecessors. for (BasicBlock *Pred : predecessors(BB)) VPBBPreds.push_back(getOrCreateVPBB(Pred)); VPBB->setPredecessors(VPBBPreds); } // Add operands to VPInstructions representing phi nodes from the input IR. void PlainCFGBuilder::fixPhiNodes() { for (auto *Phi : PhisToFix) { assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); VPValue *VPVal = IRDef2VPValue[Phi]; assert(isa(VPVal) && "Expected WidenPHIRecipe for phi node."); auto *VPPhi = cast(VPVal); assert(VPPhi->getNumOperands() == 0 && "Expected VPInstruction with no operands."); for (unsigned I = 0; I != Phi->getNumOperands(); ++I) VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)), BB2VPBB[Phi->getIncomingBlock(I)]); } } // Create a new empty VPBasicBlock for an incoming BasicBlock in the region // corresponding to the containing loop or retrieve an existing one if it was // already created. If no region exists yet for the loop containing \p BB, a new // one is created. VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { auto BlockIt = BB2VPBB.find(BB); if (BlockIt != BB2VPBB.end()) // Retrieve existing VPBB. return BlockIt->second; // Get or create a region for the loop containing BB. Loop *CurrentLoop = LI->getLoopFor(BB); VPRegionBlock *ParentR = nullptr; if (CurrentLoop) { auto Iter = Loop2Region.insert({CurrentLoop, nullptr}); if (Iter.second) Iter.first->second = new VPRegionBlock( CurrentLoop->getHeader()->getName().str(), false /*isReplicator*/); ParentR = Iter.first->second; } // Create new VPBB. LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n"); VPBasicBlock *VPBB = new VPBasicBlock(BB->getName()); BB2VPBB[BB] = VPBB; VPBB->setParent(ParentR); return VPBB; } #ifndef NDEBUG // Return true if \p Val is considered an external definition. An external // definition is either: // 1. A Value that is not an Instruction. This will be refined in the future. // 2. An Instruction that is outside of the CFG snippet represented in VPlan, // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) // outermost loop exits. bool PlainCFGBuilder::isExternalDef(Value *Val) { // All the Values that are not Instructions are considered external // definitions for now. Instruction *Inst = dyn_cast(Val); if (!Inst) return true; BasicBlock *InstParent = Inst->getParent(); assert(InstParent && "Expected instruction parent."); // Check whether Instruction definition is in loop PH. BasicBlock *PH = TheLoop->getLoopPreheader(); assert(PH && "Expected loop pre-header."); if (InstParent == PH) // Instruction definition is in outermost loop PH. return false; // Check whether Instruction definition is in the loop exit. BasicBlock *Exit = TheLoop->getUniqueExitBlock(); assert(Exit && "Expected loop with single exit."); if (InstParent == Exit) { // Instruction definition is in outermost loop exit. return false; } // Check whether Instruction definition is in loop body. return !TheLoop->contains(Inst); } #endif // Create a new VPValue or retrieve an existing one for the Instruction's // operand \p IRVal. This function must only be used to create/retrieve VPValues // for *Instruction's operands* and not to create regular VPInstruction's. For // the latter, please, look at 'createVPInstructionsForVPBB'. VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { auto VPValIt = IRDef2VPValue.find(IRVal); if (VPValIt != IRDef2VPValue.end()) // Operand has an associated VPInstruction or VPValue that was previously // created. return VPValIt->second; // Operand doesn't have a previously created VPInstruction/VPValue. This // means that operand is: // A) a definition external to VPlan, // B) any other Value without specific representation in VPlan. // For now, we use VPValue to represent A and B and classify both as external // definitions. We may introduce specific VPValue subclasses for them in the // future. assert(isExternalDef(IRVal) && "Expected external definition as operand."); // A and B: Create VPValue and add it to the pool of external definitions and // to the Value->VPValue map. VPValue *NewVPVal = Plan.getOrAddExternalDef(IRVal); IRDef2VPValue[IRVal] = NewVPVal; return NewVPVal; } // Create new VPInstructions in a VPBasicBlock, given its BasicBlock // counterpart. This function must be invoked in RPO so that the operands of a // VPInstruction in \p BB have been visited before (except for Phi nodes). void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB) { VPIRBuilder.setInsertPoint(VPBB); for (Instruction &InstRef : *BB) { Instruction *Inst = &InstRef; // There shouldn't be any VPValue for Inst at this point. Otherwise, we // visited Inst when we shouldn't, breaking the RPO traversal order. assert(!IRDef2VPValue.count(Inst) && "Instruction shouldn't have been visited."); if (auto *Br = dyn_cast(Inst)) { // Conditional branch instruction are represented using BranchOnCond // recipes. if (Br->isConditional()) { VPValue *Cond = getOrCreateVPOperand(Br->getCondition()); VPBB->appendRecipe( new VPInstruction(VPInstruction::BranchOnCond, {Cond})); } // Skip the rest of the Instruction processing for Branch instructions. continue; } VPValue *NewVPV; if (auto *Phi = dyn_cast(Inst)) { // Phi node's operands may have not been visited at this point. We create // an empty VPInstruction that we will fix once the whole plain CFG has // been built. NewVPV = new VPWidenPHIRecipe(Phi); VPBB->appendRecipe(cast(NewVPV)); PhisToFix.push_back(Phi); } else { // Translate LLVM-IR operands into VPValue operands and set them in the // new VPInstruction. SmallVector VPOperands; for (Value *Op : Inst->operands()) VPOperands.push_back(getOrCreateVPOperand(Op)); // Build VPInstruction for any arbitraty Instruction without specific // representation in VPlan. NewVPV = cast( VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); } IRDef2VPValue[Inst] = NewVPV; } } // Main interface to build the plain CFG. VPBasicBlock *PlainCFGBuilder::buildPlainCFG() { // 1. Scan the body of the loop in a topological order to visit each basic // block after having visited its predecessor basic blocks. Create a VPBB for // each BB and link it to its successor and predecessor VPBBs. Note that // predecessors must be set in the same order as they are in the incomming IR. // Otherwise, there might be problems with existing phi nodes and algorithm // based on predecessors traversal. // Loop PH needs to be explicitly visited since it's not taken into account by // LoopBlocksDFS. BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader(); assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && "Unexpected loop preheader"); VPBasicBlock *ThePreheaderVPBB = getOrCreateVPBB(ThePreheaderBB); ThePreheaderVPBB->setName("vector.ph"); for (auto &I : *ThePreheaderBB) { if (I.getType()->isVoidTy()) continue; IRDef2VPValue[&I] = Plan.getOrAddExternalDef(&I); } // Create empty VPBB for Loop H so that we can link PH->H. VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader()); HeaderVPBB->setName("vector.body"); ThePreheaderVPBB->setOneSuccessor(HeaderVPBB); LoopBlocksRPO RPO(TheLoop); RPO.perform(LI); for (BasicBlock *BB : RPO) { // Create or retrieve the VPBasicBlock for this BB and create its // VPInstructions. VPBasicBlock *VPBB = getOrCreateVPBB(BB); createVPInstructionsForVPBB(VPBB, BB); // Set VPBB successors. We create empty VPBBs for successors if they don't // exist already. Recipes will be created when the successor is visited // during the RPO traversal. Instruction *TI = BB->getTerminator(); assert(TI && "Terminator expected."); unsigned NumSuccs = TI->getNumSuccessors(); if (NumSuccs == 1) { VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0)); assert(SuccVPBB && "VPBB Successor not found."); VPBB->setOneSuccessor(SuccVPBB); } else if (NumSuccs == 2) { VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0)); assert(SuccVPBB0 && "Successor 0 not found."); VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1)); assert(SuccVPBB1 && "Successor 1 not found."); // Get VPBB's condition bit. assert(isa(TI) && "Unsupported terminator!"); // Look up the branch condition to get the corresponding VPValue // representing the condition bit in VPlan (which may be in another VPBB). assert(IRDef2VPValue.count(cast(TI)->getCondition()) && "Missing condition bit in IRDef2VPValue!"); // Link successors. VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1); } else llvm_unreachable("Number of successors not supported."); // Set VPBB predecessors in the same order as they are in the incoming BB. setVPBBPredsFromBB(VPBB, BB); } // 2. Process outermost loop exit. We created an empty VPBB for the loop // single exit BB during the RPO traversal of the loop body but Instructions // weren't visited because it's not part of the the loop. BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); assert(LoopExitBB && "Loops with multiple exits are not supported."); VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB]; // Loop exit was already set as successor of the loop exiting BB. // We only set its predecessor VPBB now. setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB); // 3. Fix up region blocks for loops. For each loop, // * use the header block as entry to the corresponding region, // * use the latch block as exit of the corresponding region, // * set the region as successor of the loop pre-header, and // * set the exit block as successor to the region. SmallVector LoopWorkList; LoopWorkList.push_back(TheLoop); while (!LoopWorkList.empty()) { Loop *L = LoopWorkList.pop_back_val(); BasicBlock *Header = L->getHeader(); BasicBlock *Exiting = L->getLoopLatch(); assert(Exiting == L->getExitingBlock() && "Latch must be the only exiting block"); VPRegionBlock *Region = Loop2Region[L]; VPBasicBlock *HeaderVPBB = getOrCreateVPBB(Header); VPBasicBlock *ExitingVPBB = getOrCreateVPBB(Exiting); // Disconnect backedge and pre-header from header. VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(L->getLoopPreheader()); VPBlockUtils::disconnectBlocks(PreheaderVPBB, HeaderVPBB); VPBlockUtils::disconnectBlocks(ExitingVPBB, HeaderVPBB); Region->setParent(PreheaderVPBB->getParent()); Region->setEntry(HeaderVPBB); VPBlockUtils::connectBlocks(PreheaderVPBB, Region); // Disconnect exit block from exiting (=latch) block, set exiting block and // connect region to exit block. VPBasicBlock *ExitVPBB = getOrCreateVPBB(L->getExitBlock()); VPBlockUtils::disconnectBlocks(ExitingVPBB, ExitVPBB); Region->setExiting(ExitingVPBB); VPBlockUtils::connectBlocks(Region, ExitVPBB); // Queue sub-loops for processing. LoopWorkList.append(L->begin(), L->end()); } // 4. The whole CFG has been built at this point so all the input Values must // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding // VPlan operands. fixPhiNodes(); return ThePreheaderVPBB; } VPBasicBlock *VPlanHCFGBuilder::buildPlainCFG() { PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); return PCFGBuilder.buildPlainCFG(); } // Public interface to build a H-CFG. void VPlanHCFGBuilder::buildHierarchicalCFG() { // Build Top Region enclosing the plain CFG and set it as VPlan entry. VPBasicBlock *EntryVPBB = buildPlainCFG(); Plan.setEntry(EntryVPBB); LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); Verifier.verifyHierarchicalCFG(TopRegion); // Compute plain CFG dom tree for VPLInfo. VPDomTree.recalculate(*TopRegion); LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n"; VPDomTree.print(dbgs())); }