//===-- DifferenceEngine.cpp - Structural function/module comparison ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This header defines the implementation of the LLVM difference // engine, which structurally compares global values within a module. // //===----------------------------------------------------------------------===// #include "DifferenceEngine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSet.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/type_traits.h" #include using namespace llvm; namespace { /// A priority queue, implemented as a heap. template class PriorityQueue { Sorter Precedes; llvm::SmallVector Storage; public: PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {} /// Checks whether the heap is empty. bool empty() const { return Storage.empty(); } /// Insert a new value on the heap. void insert(const T &V) { unsigned Index = Storage.size(); Storage.push_back(V); if (Index == 0) return; T *data = Storage.data(); while (true) { unsigned Target = (Index + 1) / 2 - 1; if (!Precedes(data[Index], data[Target])) return; std::swap(data[Index], data[Target]); if (Target == 0) return; Index = Target; } } /// Remove the minimum value in the heap. Only valid on a non-empty heap. T remove_min() { assert(!empty()); T tmp = Storage[0]; unsigned NewSize = Storage.size() - 1; if (NewSize) { // Move the slot at the end to the beginning. if (std::is_trivially_copyable::value) Storage[0] = Storage[NewSize]; else std::swap(Storage[0], Storage[NewSize]); // Bubble the root up as necessary. unsigned Index = 0; while (true) { // With a 1-based index, the children would be Index*2 and Index*2+1. unsigned R = (Index + 1) * 2; unsigned L = R - 1; // If R is out of bounds, we're done after this in any case. if (R >= NewSize) { // If L is also out of bounds, we're done immediately. if (L >= NewSize) break; // Otherwise, test whether we should swap L and Index. if (Precedes(Storage[L], Storage[Index])) std::swap(Storage[L], Storage[Index]); break; } // Otherwise, we need to compare with the smaller of L and R. // Prefer R because it's closer to the end of the array. unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R); // If Index is >= the min of L and R, then heap ordering is restored. if (!Precedes(Storage[IndexToTest], Storage[Index])) break; // Otherwise, keep bubbling up. std::swap(Storage[IndexToTest], Storage[Index]); Index = IndexToTest; } } Storage.pop_back(); return tmp; } }; /// A function-scope difference engine. class FunctionDifferenceEngine { DifferenceEngine &Engine; // Some initializers may reference the variable we're currently checking. This // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent // recursing. const Value *SavedLHS; const Value *SavedRHS; // The current mapping from old local values to new local values. DenseMap Values; // The current mapping from old blocks to new blocks. DenseMap Blocks; // The tentative mapping from old local values while comparing a pair of // basic blocks. Once the pair has been processed, the tentative mapping is // committed to the Values map. DenseSet> TentativeValues; // Equivalence Assumptions // // For basic blocks in loops, some values in phi nodes may depend on // values from not yet processed basic blocks in the loop. When encountering // such values, we optimistically asssume their equivalence and store this // assumption in a BlockDiffCandidate for the pair of compared BBs. // // Once we have diffed all BBs, for every BlockDiffCandidate, we check all // stored assumptions using the Values map that stores proven equivalences // between the old and new values, and report a diff if an assumption cannot // be proven to be true. // // Note that after having made an assumption, all further determined // equivalences implicitly depend on that assumption. These will not be // reverted or reported if the assumption proves to be false, because these // are considered indirect diffs caused by earlier direct diffs. // // We aim to avoid false negatives in llvm-diff, that is, ensure that // whenever no diff is reported, the functions are indeed equal. If // assumptions were made, this is not entirely clear, because in principle we // could end up with a circular proof where the proof of equivalence of two // nodes is depending on the assumption of their equivalence. // // To see that assumptions do not add false negatives, note that if we do not // report a diff, this means that there is an equivalence mapping between old // and new values that is consistent with all assumptions made. The circular // dependency that exists on an IR value level does not exist at run time, // because the values selected by the phi nodes must always already have been // computed. Hence, we can prove equivalence of the old and new functions by // considering step-wise parallel execution, and incrementally proving // equivalence of every new computed value. Another way to think about it is // to imagine cloning the loop BBs for every iteration, turning the loops // into (possibly infinite) DAGs, and proving equivalence by induction on the // iteration, using the computed value mapping. // The class BlockDiffCandidate stores pairs which either have already been // proven to differ, or pairs whose equivalence depends on assumptions to be // verified later. struct BlockDiffCandidate { const BasicBlock *LBB; const BasicBlock *RBB; // Maps old values to assumed-to-be-equivalent new values SmallDenseMap EquivalenceAssumptions; // If set, we already know the blocks differ. bool KnownToDiffer; }; // List of block diff candidates in the order found by processing. // We generate reports in this order. // For every LBB, there may only be one corresponding RBB. SmallVector BlockDiffCandidates; // Maps LBB to the index of its BlockDiffCandidate, if existing. DenseMap BlockDiffCandidateIndices; // Note: Every LBB must always be queried together with the same RBB. // The returned reference is not permanently valid and should not be stored. BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB, const BasicBlock *RBB) { auto It = BlockDiffCandidateIndices.find(LBB); // Check if LBB already has a diff candidate if (It == BlockDiffCandidateIndices.end()) { // Add new one BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size(); BlockDiffCandidates.push_back( {LBB, RBB, SmallDenseMap(), false}); return BlockDiffCandidates.back(); } // Use existing one BlockDiffCandidate &Result = BlockDiffCandidates[It->second]; assert(Result.RBB == RBB && "Inconsistent basic block pairing!"); return Result; } // Optionally passed to equivalence checker functions, so these can add // assumptions in BlockDiffCandidates. Its presence controls whether // assumptions are generated. struct AssumptionContext { // The two basic blocks that need the two compared values to be equivalent. const BasicBlock *LBB; const BasicBlock *RBB; }; unsigned getUnprocPredCount(const BasicBlock *Block) const { return llvm::count_if(predecessors(Block), [&](const BasicBlock *Pred) { return !Blocks.contains(Pred); }); } typedef std::pair BlockPair; /// A type which sorts a priority queue by the number of unprocessed /// predecessor blocks it has remaining. /// /// This is actually really expensive to calculate. struct QueueSorter { const FunctionDifferenceEngine &fde; explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {} bool operator()(BlockPair &Old, BlockPair &New) { return fde.getUnprocPredCount(Old.first) < fde.getUnprocPredCount(New.first); } }; /// A queue of unified blocks to process. PriorityQueue Queue; /// Try to unify the given two blocks. Enqueues them for processing /// if they haven't already been processed. /// /// Returns true if there was a problem unifying them. bool tryUnify(const BasicBlock *L, const BasicBlock *R) { const BasicBlock *&Ref = Blocks[L]; if (Ref) { if (Ref == R) return false; Engine.logf("successor %l cannot be equivalent to %r; " "it's already equivalent to %r") << L << R << Ref; return true; } Ref = R; Queue.insert(BlockPair(L, R)); return false; } /// Unifies two instructions, given that they're known not to have /// structural differences. void unify(const Instruction *L, const Instruction *R) { DifferenceEngine::Context C(Engine, L, R); bool Result = diff(L, R, true, true, true); assert(!Result && "structural differences second time around?"); (void) Result; if (!L->use_empty()) Values[L] = R; } void processQueue() { while (!Queue.empty()) { BlockPair Pair = Queue.remove_min(); diff(Pair.first, Pair.second); } } void checkAndReportDiffCandidates() { for (BlockDiffCandidate &BDC : BlockDiffCandidates) { // Check assumptions for (const auto &[L, R] : BDC.EquivalenceAssumptions) { auto It = Values.find(L); if (It == Values.end() || It->second != R) { BDC.KnownToDiffer = true; break; } } // Run block diff if the BBs differ if (BDC.KnownToDiffer) { DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB); runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin()); } } } void diff(const BasicBlock *L, const BasicBlock *R) { DifferenceEngine::Context C(Engine, L, R); BasicBlock::const_iterator LI = L->begin(), LE = L->end(); BasicBlock::const_iterator RI = R->begin(); do { assert(LI != LE && RI != R->end()); const Instruction *LeftI = &*LI, *RightI = &*RI; // If the instructions differ, start the more sophisticated diff // algorithm at the start of the block. if (diff(LeftI, RightI, false, false, true)) { TentativeValues.clear(); // Register (L, R) as diffing pair. Note that we could directly emit a // block diff here, but this way we ensure all diffs are emitted in one // consistent order, independent of whether the diffs were detected // immediately or via invalid assumptions. getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true; return; } // Otherwise, tentatively unify them. if (!LeftI->use_empty()) TentativeValues.insert(std::make_pair(LeftI, RightI)); ++LI; ++RI; } while (LI != LE); // This is sufficient: we can't get equality of // terminators if there are residual instructions. // Unify everything in the block, non-tentatively this time. TentativeValues.clear(); for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI) unify(&*LI, &*RI); } bool matchForBlockDiff(const Instruction *L, const Instruction *R); void runBlockDiff(BasicBlock::const_iterator LI, BasicBlock::const_iterator RI); bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) { // FIXME: call attributes AssumptionContext AC = {L.getParent(), R.getParent()}; if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(), &AC)) { if (Complain) Engine.log("called functions differ"); return true; } if (L.arg_size() != R.arg_size()) { if (Complain) Engine.log("argument counts differ"); return true; } for (unsigned I = 0, E = L.arg_size(); I != E; ++I) if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) { if (Complain) Engine.logf("arguments %l and %r differ") << L.getArgOperand(I) << R.getArgOperand(I); return true; } return false; } // If AllowAssumptions is enabled, whenever we encounter a pair of values // that we cannot prove to be equivalent, we assume equivalence and store that // assumption to be checked later in BlockDiffCandidates. bool diff(const Instruction *L, const Instruction *R, bool Complain, bool TryUnify, bool AllowAssumptions) { // FIXME: metadata (if Complain is set) AssumptionContext ACValue = {L->getParent(), R->getParent()}; // nullptr AssumptionContext disables assumption generation. const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr; // Different opcodes always imply different operations. if (L->getOpcode() != R->getOpcode()) { if (Complain) Engine.log("different instruction types"); return true; } if (isa(L)) { if (cast(L)->getPredicate() != cast(R)->getPredicate()) { if (Complain) Engine.log("different predicates"); return true; } } else if (isa(L)) { return diffCallSites(cast(*L), cast(*R), Complain); } else if (isa(L)) { const PHINode &LI = cast(*L); const PHINode &RI = cast(*R); // This is really weird; type uniquing is broken? if (LI.getType() != RI.getType()) { if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) { if (Complain) Engine.log("different phi types"); return true; } } if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) { if (Complain) Engine.log("PHI node # of incoming values differ"); return true; } for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) { if (TryUnify) tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I)); if (!equivalentAsOperands(LI.getIncomingValue(I), RI.getIncomingValue(I), AC)) { if (Complain) Engine.log("PHI node incoming values differ"); return true; } } return false; // Terminators. } else if (isa(L)) { const InvokeInst &LI = cast(*L); const InvokeInst &RI = cast(*R); if (diffCallSites(LI, RI, Complain)) return true; if (TryUnify) { tryUnify(LI.getNormalDest(), RI.getNormalDest()); tryUnify(LI.getUnwindDest(), RI.getUnwindDest()); } return false; } else if (isa(L)) { const CallBrInst &LI = cast(*L); const CallBrInst &RI = cast(*R); if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) { if (Complain) Engine.log("callbr # of indirect destinations differ"); return true; } // Perform the "try unify" step so that we can equate the indirect // destinations before checking the call site. for (unsigned I = 0; I < LI.getNumIndirectDests(); I++) tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I)); if (diffCallSites(LI, RI, Complain)) return true; if (TryUnify) tryUnify(LI.getDefaultDest(), RI.getDefaultDest()); return false; } else if (isa(L)) { const BranchInst *LI = cast(L); const BranchInst *RI = cast(R); if (LI->isConditional() != RI->isConditional()) { if (Complain) Engine.log("branch conditionality differs"); return true; } if (LI->isConditional()) { if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) { if (Complain) Engine.log("branch conditions differ"); return true; } if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1)); } if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0)); return false; } else if (isa(L)) { const IndirectBrInst *LI = cast(L); const IndirectBrInst *RI = cast(R); if (LI->getNumDestinations() != RI->getNumDestinations()) { if (Complain) Engine.log("indirectbr # of destinations differ"); return true; } if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) { if (Complain) Engine.log("indirectbr addresses differ"); return true; } if (TryUnify) { for (unsigned i = 0; i < LI->getNumDestinations(); i++) { tryUnify(LI->getDestination(i), RI->getDestination(i)); } } return false; } else if (isa(L)) { const SwitchInst *LI = cast(L); const SwitchInst *RI = cast(R); if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) { if (Complain) Engine.log("switch conditions differ"); return true; } if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest()); bool Difference = false; DenseMap LCases; for (auto Case : LI->cases()) LCases[Case.getCaseValue()] = Case.getCaseSuccessor(); for (auto Case : RI->cases()) { const ConstantInt *CaseValue = Case.getCaseValue(); const BasicBlock *LCase = LCases[CaseValue]; if (LCase) { if (TryUnify) tryUnify(LCase, Case.getCaseSuccessor()); LCases.erase(CaseValue); } else if (Complain || !Difference) { if (Complain) Engine.logf("right switch has extra case %r") << CaseValue; Difference = true; } } if (!Difference) for (DenseMap::iterator I = LCases.begin(), E = LCases.end(); I != E; ++I) { if (Complain) Engine.logf("left switch has extra case %l") << I->first; Difference = true; } return Difference; } else if (isa(L)) { return false; } if (L->getNumOperands() != R->getNumOperands()) { if (Complain) Engine.log("instructions have different operand counts"); return true; } for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) { Value *LO = L->getOperand(I), *RO = R->getOperand(I); if (!equivalentAsOperands(LO, RO, AC)) { if (Complain) Engine.logf("operands %l and %r differ") << LO << RO; return true; } } return false; } public: bool equivalentAsOperands(const Constant *L, const Constant *R, const AssumptionContext *AC) { // Use equality as a preliminary filter. if (L == R) return true; if (L->getValueID() != R->getValueID()) return false; // Ask the engine about global values. if (isa(L)) return Engine.equivalentAsOperands(cast(L), cast(R)); // Compare constant expressions structurally. if (isa(L)) return equivalentAsOperands(cast(L), cast(R), AC); // Constants of the "same type" don't always actually have the same // type; I don't know why. Just white-list them. if (isa(L) || isa(L) || isa(L)) return true; // Block addresses only match if we've already encountered the // block. FIXME: tentative matches? if (isa(L)) return Blocks[cast(L)->getBasicBlock()] == cast(R)->getBasicBlock(); // If L and R are ConstantVectors, compare each element if (isa(L)) { const ConstantVector *CVL = cast(L); const ConstantVector *CVR = cast(R); if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements()) return false; for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) { if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC)) return false; } return true; } // If L and R are ConstantArrays, compare the element count and types. if (isa(L)) { const ConstantArray *CAL = cast(L); const ConstantArray *CAR = cast(R); // Sometimes a type may be equivalent, but not uniquified---e.g. it may // contain a GEP instruction. Do a deeper comparison of the types. if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements()) return false; for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) { if (!equivalentAsOperands(CAL->getAggregateElement(I), CAR->getAggregateElement(I), AC)) return false; } return true; } // If L and R are ConstantStructs, compare each field and type. if (isa(L)) { const ConstantStruct *CSL = cast(L); const ConstantStruct *CSR = cast(R); const StructType *LTy = cast(CSL->getType()); const StructType *RTy = cast(CSR->getType()); // The StructTypes should have the same attributes. Don't use // isLayoutIdentical(), because that just checks the element pointers, // which may not work here. if (LTy->getNumElements() != RTy->getNumElements() || LTy->isPacked() != RTy->isPacked()) return false; for (unsigned I = 0; I < LTy->getNumElements(); I++) { const Value *LAgg = CSL->getAggregateElement(I); const Value *RAgg = CSR->getAggregateElement(I); if (LAgg == SavedLHS || RAgg == SavedRHS) { if (LAgg != SavedLHS || RAgg != SavedRHS) // If the left and right operands aren't both re-analyzing the // variable, then the initialiers don't match, so report "false". // Otherwise, we skip these operands.. return false; continue; } if (!equivalentAsOperands(LAgg, RAgg, AC)) { return false; } } return true; } return false; } bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R, const AssumptionContext *AC) { if (L == R) return true; if (L->getOpcode() != R->getOpcode()) return false; switch (L->getOpcode()) { case Instruction::ICmp: case Instruction::FCmp: if (L->getPredicate() != R->getPredicate()) return false; break; case Instruction::GetElementPtr: // FIXME: inbounds? break; default: break; } if (L->getNumOperands() != R->getNumOperands()) return false; for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) { const auto *LOp = L->getOperand(I); const auto *ROp = R->getOperand(I); if (LOp == SavedLHS || ROp == SavedRHS) { if (LOp != SavedLHS || ROp != SavedRHS) // If the left and right operands aren't both re-analyzing the // variable, then the initialiers don't match, so report "false". // Otherwise, we skip these operands.. return false; continue; } if (!equivalentAsOperands(LOp, ROp, AC)) return false; } return true; } // There are cases where we cannot determine whether two values are // equivalent, because it depends on not yet processed basic blocks -- see the // documentation on assumptions. // // AC is the context in which we are currently performing a diff. // When we encounter a pair of values for which we can neither prove // equivalence nor the opposite, we do the following: // * If AC is nullptr, we treat the pair as non-equivalent. // * If AC is set, we add an assumption for the basic blocks given by AC, // and treat the pair as equivalent. The assumption is checked later. bool equivalentAsOperands(const Value *L, const Value *R, const AssumptionContext *AC) { // Fall out if the values have different kind. // This possibly shouldn't take priority over oracles. if (L->getValueID() != R->getValueID()) return false; // Value subtypes: Argument, Constant, Instruction, BasicBlock, // InlineAsm, MDNode, MDString, PseudoSourceValue if (isa(L)) return equivalentAsOperands(cast(L), cast(R), AC); if (isa(L)) { auto It = Values.find(L); if (It != Values.end()) return It->second == R; if (TentativeValues.count(std::make_pair(L, R))) return true; // L and R might be equivalent, this could depend on not yet processed // basic blocks, so we cannot decide here. if (AC) { // Add an assumption, unless there is a conflict with an existing one BlockDiffCandidate &BDC = getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB); auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R}); if (!InsertionResult.second && InsertionResult.first->second != R) { // We already have a conflicting equivalence assumption for L, so at // least one must be wrong, and we know that there is a diff. BDC.KnownToDiffer = true; BDC.EquivalenceAssumptions.clear(); return false; } // Optimistically assume equivalence, and check later once all BBs // have been processed. return true; } // Assumptions disabled, so pessimistically assume non-equivalence. return false; } if (isa(L)) return Values[L] == R; if (isa(L)) return Blocks[cast(L)] != R; // Pretend everything else is identical. return true; } // Avoid a gcc warning about accessing 'this' in an initializer. FunctionDifferenceEngine *this_() { return this; } public: FunctionDifferenceEngine(DifferenceEngine &Engine, const Value *SavedLHS = nullptr, const Value *SavedRHS = nullptr) : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS), Queue(QueueSorter(*this_())) {} void diff(const Function *L, const Function *R) { assert(Values.empty() && "Multiple diffs per engine are not supported!"); if (L->arg_size() != R->arg_size()) Engine.log("different argument counts"); // Map the arguments. for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(), RI = R->arg_begin(), RE = R->arg_end(); LI != LE && RI != RE; ++LI, ++RI) Values[&*LI] = &*RI; tryUnify(&*L->begin(), &*R->begin()); processQueue(); checkAndReportDiffCandidates(); } }; struct DiffEntry { DiffEntry() = default; unsigned Cost = 0; llvm::SmallVector Path; // actually of DifferenceEngine::DiffChange }; bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L, const Instruction *R) { return !diff(L, R, false, false, false); } void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart, BasicBlock::const_iterator RStart) { BasicBlock::const_iterator LE = LStart->getParent()->end(); BasicBlock::const_iterator RE = RStart->getParent()->end(); unsigned NL = std::distance(LStart, LE); SmallVector Paths1(NL+1); SmallVector Paths2(NL+1); DiffEntry *Cur = Paths1.data(); DiffEntry *Next = Paths2.data(); const unsigned LeftCost = 2; const unsigned RightCost = 2; const unsigned MatchCost = 0; assert(TentativeValues.empty()); // Initialize the first column. for (unsigned I = 0; I != NL+1; ++I) { Cur[I].Cost = I * LeftCost; for (unsigned J = 0; J != I; ++J) Cur[I].Path.push_back(DC_left); } for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) { // Initialize the first row. Next[0] = Cur[0]; Next[0].Cost += RightCost; Next[0].Path.push_back(DC_right); unsigned Index = 1; for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) { if (matchForBlockDiff(&*LI, &*RI)) { Next[Index] = Cur[Index-1]; Next[Index].Cost += MatchCost; Next[Index].Path.push_back(DC_match); TentativeValues.insert(std::make_pair(&*LI, &*RI)); } else if (Next[Index-1].Cost <= Cur[Index].Cost) { Next[Index] = Next[Index-1]; Next[Index].Cost += LeftCost; Next[Index].Path.push_back(DC_left); } else { Next[Index] = Cur[Index]; Next[Index].Cost += RightCost; Next[Index].Path.push_back(DC_right); } } std::swap(Cur, Next); } // We don't need the tentative values anymore; everything from here // on out should be non-tentative. TentativeValues.clear(); SmallVectorImpl &Path = Cur[NL].Path; BasicBlock::const_iterator LI = LStart, RI = RStart; DiffLogBuilder Diff(Engine.getConsumer()); // Drop trailing matches. while (Path.size() && Path.back() == DC_match) Path.pop_back(); // Skip leading matches. SmallVectorImpl::iterator PI = Path.begin(), PE = Path.end(); while (PI != PE && *PI == DC_match) { unify(&*LI, &*RI); ++PI; ++LI; ++RI; } for (; PI != PE; ++PI) { switch (static_cast(*PI)) { case DC_match: assert(LI != LE && RI != RE); { const Instruction *L = &*LI, *R = &*RI; unify(L, R); Diff.addMatch(L, R); } ++LI; ++RI; break; case DC_left: assert(LI != LE); Diff.addLeft(&*LI); ++LI; break; case DC_right: assert(RI != RE); Diff.addRight(&*RI); ++RI; break; } } // Finishing unifying and complaining about the tails of the block, // which should be matches all the way through. while (LI != LE) { assert(RI != RE); unify(&*LI, &*RI); ++LI; ++RI; } // If the terminators have different kinds, but one is an invoke and the // other is an unconditional branch immediately following a call, unify // the results and the destinations. const Instruction *LTerm = LStart->getParent()->getTerminator(); const Instruction *RTerm = RStart->getParent()->getTerminator(); if (isa(LTerm) && isa(RTerm)) { if (cast(LTerm)->isConditional()) return; BasicBlock::const_iterator I = LTerm->getIterator(); if (I == LStart->getParent()->begin()) return; --I; if (!isa(*I)) return; const CallInst *LCall = cast(&*I); const InvokeInst *RInvoke = cast(RTerm); if (!equivalentAsOperands(LCall->getCalledOperand(), RInvoke->getCalledOperand(), nullptr)) return; if (!LCall->use_empty()) Values[LCall] = RInvoke; tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest()); } else if (isa(LTerm) && isa(RTerm)) { if (cast(RTerm)->isConditional()) return; BasicBlock::const_iterator I = RTerm->getIterator(); if (I == RStart->getParent()->begin()) return; --I; if (!isa(*I)) return; const CallInst *RCall = cast(I); const InvokeInst *LInvoke = cast(LTerm); if (!equivalentAsOperands(LInvoke->getCalledOperand(), RCall->getCalledOperand(), nullptr)) return; if (!LInvoke->use_empty()) Values[LInvoke] = RCall; tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0)); } } } void DifferenceEngine::Oracle::anchor() { } void DifferenceEngine::diff(const Function *L, const Function *R) { Context C(*this, L, R); // FIXME: types // FIXME: attributes and CC // FIXME: parameter attributes // If both are declarations, we're done. if (L->empty() && R->empty()) return; else if (L->empty()) log("left function is declaration, right function is definition"); else if (R->empty()) log("right function is declaration, left function is definition"); else FunctionDifferenceEngine(*this).diff(L, R); } void DifferenceEngine::diff(const Module *L, const Module *R) { StringSet<> LNames; SmallVector, 20> Queue; unsigned LeftAnonCount = 0; unsigned RightAnonCount = 0; for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) { const Function *LFn = &*I; StringRef Name = LFn->getName(); if (Name.empty()) { ++LeftAnonCount; continue; } LNames.insert(Name); if (Function *RFn = R->getFunction(LFn->getName())) Queue.push_back(std::make_pair(LFn, RFn)); else logf("function %l exists only in left module") << LFn; } for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) { const Function *RFn = &*I; StringRef Name = RFn->getName(); if (Name.empty()) { ++RightAnonCount; continue; } if (!LNames.count(Name)) logf("function %r exists only in right module") << RFn; } if (LeftAnonCount != 0 || RightAnonCount != 0) { SmallString<32> Tmp; logf(("not comparing " + Twine(LeftAnonCount) + " anonymous functions in the left module and " + Twine(RightAnonCount) + " in the right module") .toStringRef(Tmp)); } for (SmallVectorImpl>::iterator I = Queue.begin(), E = Queue.end(); I != E; ++I) diff(I->first, I->second); } bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L, const GlobalValue *R) { if (globalValueOracle) return (*globalValueOracle)(L, R); if (isa(L) && isa(R)) { const GlobalVariable *GVL = cast(L); const GlobalVariable *GVR = cast(R); if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() && GVR->hasLocalLinkage() && GVR->hasUniqueInitializer()) return FunctionDifferenceEngine(*this, GVL, GVR) .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(), nullptr); } return L->getName() == R->getName(); }