/*- * Copyright 2009 Colin Percival * Copyright 2013 Alexander Peslyak * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include #include #include #include #include #include "../crypto_scrypt.h" #include "../pbkdf2-sha256.h" #include "private/common.h" static inline void blkcpy_64(escrypt_block_t *dest, const escrypt_block_t *src) { int i; #if (ARCH_BITS == 32) for (i = 0; i < 16; ++i) { dest->w[i] = src->w[i]; } #else for (i = 0; i < 8; ++i) { dest->d[i] = src->d[i]; } #endif } static inline void blkxor_64(escrypt_block_t *dest, const escrypt_block_t *src) { int i; #if (ARCH_BITS == 32) for (i = 0; i < 16; ++i) { dest->w[i] ^= src->w[i]; } #else for (i = 0; i < 8; ++i) { dest->d[i] ^= src->d[i]; } #endif } static inline void blkcpy(escrypt_block_t *dest, const escrypt_block_t *src, size_t len) { size_t i, L; #if (ARCH_BITS == 32) L = (len >> 2); for (i = 0; i < L; ++i) { dest->w[i] = src->w[i]; } #else L = (len >> 3); for (i = 0; i < L; ++i) { dest->d[i] = src->d[i]; } #endif } static inline void blkxor(escrypt_block_t *dest, const escrypt_block_t *src, size_t len) { size_t i, L; #if (ARCH_BITS == 32) L = (len >> 2); for (i = 0; i < L; ++i) { dest->w[i] ^= src->w[i]; } #else L = (len >> 3); for (i = 0; i < L; ++i) { dest->d[i] ^= src->d[i]; } #endif } /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ static void salsa20_8(uint32_t B[16]) { escrypt_block_t X; uint32_t *x = X.w; size_t i; blkcpy_64(&X, (escrypt_block_t *) B); for (i = 0; i < 8; i += 2) { #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ x[4] ^= R(x[0] + x[12], 7); x[8] ^= R(x[4] + x[0], 9); x[12] ^= R(x[8] + x[4], 13); x[0] ^= R(x[12] + x[8], 18); x[9] ^= R(x[5] + x[1], 7); x[13] ^= R(x[9] + x[5], 9); x[1] ^= R(x[13] + x[9], 13); x[5] ^= R(x[1] + x[13], 18); x[14] ^= R(x[10] + x[6], 7); x[2] ^= R(x[14] + x[10], 9); x[6] ^= R(x[2] + x[14], 13); x[10] ^= R(x[6] + x[2], 18); x[3] ^= R(x[15] + x[11], 7); x[7] ^= R(x[3] + x[15], 9); x[11] ^= R(x[7] + x[3], 13); x[15] ^= R(x[11] + x[7], 18); /* Operate on rows. */ x[1] ^= R(x[0] + x[3], 7); x[2] ^= R(x[1] + x[0], 9); x[3] ^= R(x[2] + x[1], 13); x[0] ^= R(x[3] + x[2], 18); x[6] ^= R(x[5] + x[4], 7); x[7] ^= R(x[6] + x[5], 9); x[4] ^= R(x[7] + x[6], 13); x[5] ^= R(x[4] + x[7], 18); x[11] ^= R(x[10] + x[9], 7); x[8] ^= R(x[11] + x[10], 9); x[9] ^= R(x[8] + x[11], 13); x[10] ^= R(x[9] + x[8], 18); x[12] ^= R(x[15] + x[14], 7); x[13] ^= R(x[12] + x[15], 9); x[14] ^= R(x[13] + x[12], 13); x[15] ^= R(x[14] + x[13], 18); #undef R } for (i = 0; i < 16; i++) { B[i] += x[i]; } } /** * blockmix_salsa8(Bin, Bout, X, r): * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r * bytes in length; the output Bout must also be the same size. The * temporary space X must be 64 bytes. */ static void blockmix_salsa8(const uint32_t *Bin, uint32_t *Bout, uint32_t *X, size_t r) { size_t i; /* 1: X <-- B_{2r - 1} */ blkcpy_64((escrypt_block_t *) X, (escrypt_block_t *) &Bin[(2 * r - 1) * 16]); /* 2: for i = 0 to 2r - 1 do */ for (i = 0; i < 2 * r; i += 2) { /* 3: X <-- H(X \xor B_i) */ blkxor_64((escrypt_block_t *) X, (escrypt_block_t *) &Bin[i * 16]); salsa20_8(X); /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ blkcpy_64((escrypt_block_t *) &Bout[i * 8], (escrypt_block_t *) X); /* 3: X <-- H(X \xor B_i) */ blkxor_64((escrypt_block_t *) X, (escrypt_block_t *) &Bin[i * 16 + 16]); salsa20_8(X); /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ blkcpy_64((escrypt_block_t *) &Bout[i * 8 + r * 16], (escrypt_block_t *) X); } } /** * integerify(B, r): * Return the result of parsing B_{2r-1} as a little-endian integer. */ static inline uint64_t integerify(const void *B, size_t r) { const uint32_t *X = (const uint32_t *) ((uintptr_t)(B) + (2 * r - 1) * 64); return (((uint64_t)(X[1]) << 32) + X[0]); } /** * smix(B, r, N, V, XY): * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; * the temporary storage V must be 128rN bytes in length; the temporary * storage XY must be 256r + 64 bytes in length. The value N must be a * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a * multiple of 64 bytes. */ static void smix(uint8_t *B, size_t r, uint64_t N, uint32_t *V, uint32_t *XY) { uint32_t *X = XY; uint32_t *Y = &XY[32 * r]; uint32_t *Z = &XY[64 * r]; uint64_t i; uint64_t j; size_t k; /* 1: X <-- B */ for (k = 0; k < 32 * r; k++) { X[k] = LOAD32_LE(&B[4 * k]); } /* 2: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { /* 3: V_i <-- X */ blkcpy((escrypt_block_t *) &V[i * (32 * r)], (escrypt_block_t *) X, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(X, Y, Z, r); /* 3: V_i <-- X */ blkcpy((escrypt_block_t *) &V[(i + 1) * (32 * r)], (escrypt_block_t *) Y, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(Y, X, Z, r); } /* 6: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { /* 7: j <-- Integerify(X) mod N */ j = integerify(X, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor((escrypt_block_t *) X, (escrypt_block_t *) &V[j * (32 * r)], 128 * r); blockmix_salsa8(X, Y, Z, r); /* 7: j <-- Integerify(X) mod N */ j = integerify(Y, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor((escrypt_block_t *) Y, (escrypt_block_t *) &V[j * (32 * r)], 128 * r); blockmix_salsa8(Y, X, Z, r); } /* 10: B' <-- X */ for (k = 0; k < 32 * r; k++) { STORE32_LE(&B[4 * k], X[k]); } } /** * escrypt_kdf(local, passwd, passwdlen, salt, saltlen, * N, r, p, buf, buflen): * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, * p, buflen) and write the result into buf. The parameters r, p, and buflen * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N * must be a power of 2 greater than 1. * * Return 0 on success; or -1 on error. */ int escrypt_kdf_nosse(escrypt_local_t *local, const uint8_t *passwd, size_t passwdlen, const uint8_t *salt, size_t saltlen, uint64_t N, uint32_t _r, uint32_t _p, uint8_t *buf, size_t buflen) { size_t B_size, V_size, XY_size, need; uint8_t * B; uint32_t *V, *XY; size_t r = _r, p = _p; uint32_t i; /* Sanity-check parameters. */ #if SIZE_MAX > UINT32_MAX if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { errno = EFBIG; return -1; } #endif if ((uint64_t)(r) * (uint64_t)(p) >= ((uint64_t) 1 << 30)) { errno = EFBIG; return -1; } if (N > UINT32_MAX) { errno = EFBIG; return -1; } if (((N & (N - 1)) != 0) || (N < 2)) { errno = EINVAL; return -1; } if (r == 0 || p == 0) { errno = EINVAL; return -1; } if ((r > SIZE_MAX / 128 / p) || #if SIZE_MAX / 256 <= UINT32_MAX (r > SIZE_MAX / 256) || #endif (N > SIZE_MAX / 128 / r)) { errno = ENOMEM; return -1; } /* Allocate memory. */ B_size = (size_t) 128 * r * p; V_size = (size_t) 128 * r * (size_t) N; need = B_size + V_size; if (need < V_size) { errno = ENOMEM; return -1; } XY_size = (size_t) 256 * r + 64; need += XY_size; if (need < XY_size) { errno = ENOMEM; return -1; } if (local->size < need) { if (free_region(local)) { return -1; } if (!alloc_region(local, need)) { return -1; } } B = (uint8_t *) local->aligned; V = (uint32_t *) ((uint8_t *) B + B_size); XY = (uint32_t *) ((uint8_t *) V + V_size); /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size); /* 2: for i = 0 to p - 1 do */ for (i = 0; i < p; i++) { /* 3: B_i <-- MF(B_i, N) */ smix(&B[(size_t) 128 * i * r], r, N, V, XY); } /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen); /* Success! */ return 0; }