/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2008-2017 Cisco Systems, Inc. All rights reserved. * Copyright 2007 Nuova Systems, Inc. All rights reserved. */ #include "enic.h" #include "vnic_dev.h" #include "vnic_resource.h" #include "vnic_devcmd.h" #include "vnic_nic.h" #include "vnic_stats.h" #define VNIC_MAX_RES_HDR_SIZE \ (sizeof(struct vnic_resource_header) + \ sizeof(struct vnic_resource) * RES_TYPE_MAX) #define VNIC_RES_STRIDE 128 #define VNIC_MAX_FLOW_COUNTERS 2048 void *vnic_dev_priv(struct vnic_dev *vdev) { return vdev->priv; } void vnic_register_cbacks(struct vnic_dev *vdev, void *(*alloc_consistent)(void *priv, size_t size, bus_addr_t *dma_handle, struct iflib_dma_info *res,u8 *name), void (*free_consistent)(void *priv, size_t size, void *vaddr, bus_addr_t dma_handle,struct iflib_dma_info *res)) { vdev->alloc_consistent = alloc_consistent; vdev->free_consistent = free_consistent; } static int vnic_dev_discover_res(struct vnic_dev *vdev, struct vnic_dev_bar *bar, unsigned int num_bars) { struct enic_softc *softc = vdev->softc; struct vnic_resource_header __iomem *rh; struct mgmt_barmap_hdr __iomem *mrh; struct vnic_resource __iomem *r; int r_offset; u8 type; if (num_bars == 0) return -EINVAL; rh = malloc(sizeof(*rh), M_DEVBUF, M_NOWAIT | M_ZERO); mrh = malloc(sizeof(*mrh), M_DEVBUF, M_NOWAIT | M_ZERO); if (!rh) { pr_err("vNIC BAR0 res hdr not mem-mapped\n"); free(rh, M_DEVBUF); free(mrh, M_DEVBUF); return -EINVAL; } /* Check for mgmt vnic in addition to normal vnic */ ENIC_BUS_READ_REGION_4(softc, mem, 0, (void *)rh, sizeof(*rh) / 4); ENIC_BUS_READ_REGION_4(softc, mem, 0, (void *)mrh, sizeof(*mrh) / 4); if ((rh->magic != VNIC_RES_MAGIC) || (rh->version != VNIC_RES_VERSION)) { if ((mrh->magic != MGMTVNIC_MAGIC) || mrh->version != MGMTVNIC_VERSION) { pr_err("vNIC BAR0 res magic/version error " \ "exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n", VNIC_RES_MAGIC, VNIC_RES_VERSION, MGMTVNIC_MAGIC, MGMTVNIC_VERSION, rh->magic, rh->version); free(rh, M_DEVBUF); free(mrh, M_DEVBUF); return -EINVAL; } } if (mrh->magic == MGMTVNIC_MAGIC) r_offset = sizeof(*mrh); else r_offset = sizeof(*rh); r = malloc(sizeof(*r), M_DEVBUF, M_NOWAIT | M_ZERO); ENIC_BUS_READ_REGION_4(softc, mem, r_offset, (void *)r, sizeof(*r) / 4); while ((type = r->type) != RES_TYPE_EOL) { u8 bar_num = r->bar; u32 bar_offset =r->bar_offset; u32 count = r->count; r_offset += sizeof(*r); if (bar_num >= num_bars) continue; switch (type) { case RES_TYPE_WQ: case RES_TYPE_RQ: case RES_TYPE_CQ: case RES_TYPE_INTR_CTRL: case RES_TYPE_INTR_PBA_LEGACY: case RES_TYPE_DEVCMD: break; default: ENIC_BUS_READ_REGION_4(softc, mem, r_offset, (void *)r, sizeof(*r) / 4); continue; } vdev->res[type].count = count; bcopy(&softc->mem, &vdev->res[type].bar, sizeof(softc->mem)); vdev->res[type].bar.offset = bar_offset; ENIC_BUS_READ_REGION_4(softc, mem, r_offset, (void *)r, sizeof(*r) / 4); } free(rh, M_DEVBUF); free(mrh, M_DEVBUF); free(r, M_DEVBUF); return 0; } unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev, enum vnic_res_type type) { return vdev->res[type].count; } void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type, unsigned int index) { struct vnic_res *res; if (!vdev->res[type].bar.tag) return NULL; res = malloc(sizeof(*res), M_DEVBUF, M_NOWAIT | M_ZERO); bcopy(&vdev->res[type], res, sizeof(*res)); switch (type) { case RES_TYPE_WQ: case RES_TYPE_RQ: case RES_TYPE_CQ: case RES_TYPE_INTR_CTRL: res->bar.offset += index * VNIC_RES_STRIDE; default: res->bar.offset += 0; } return res; } unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring, unsigned int desc_count, unsigned int desc_size) { /* The base address of the desc rings must be 512 byte aligned. * Descriptor count is aligned to groups of 32 descriptors. A * count of 0 means the maximum 4096 descriptors. Descriptor * size is aligned to 16 bytes. */ unsigned int count_align = 32; unsigned int desc_align = 16; ring->base_align = 512; if (desc_count == 0) desc_count = 4096; ring->desc_count = VNIC_ALIGN(desc_count, count_align); ring->desc_size = VNIC_ALIGN(desc_size, desc_align); ring->size = ring->desc_count * ring->desc_size; ring->size_unaligned = ring->size + ring->base_align; return ring->size_unaligned; } void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring) { memset(ring->descs, 0, ring->size); } static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, int wait) { struct vnic_res __iomem *devcmd = vdev->devcmd; int delay; u32 status; int err; status = ENIC_BUS_READ_4(devcmd, DEVCMD_STATUS); if (status == 0xFFFFFFFF) { /* PCI-e target device is gone */ return -ENODEV; } if (status & STAT_BUSY) { pr_err("Busy devcmd %d\n", _CMD_N(cmd)); return -EBUSY; } if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) { ENIC_BUS_WRITE_REGION_4(devcmd, DEVCMD_ARGS(0), (void *)&vdev->args[0], VNIC_DEVCMD_NARGS * 2); } ENIC_BUS_WRITE_4(devcmd, DEVCMD_CMD, cmd); if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT)) { return 0; } for (delay = 0; delay < wait; delay++) { udelay(100); status = ENIC_BUS_READ_4(devcmd, DEVCMD_STATUS); if (status == 0xFFFFFFFF) { /* PCI-e target device is gone */ return -ENODEV; } if (!(status & STAT_BUSY)) { if (status & STAT_ERROR) { err = -(int)ENIC_BUS_READ_8(devcmd, DEVCMD_ARGS(0)); if (cmd != CMD_CAPABILITY) pr_err("Devcmd %d failed " \ "with error code %d\n", _CMD_N(cmd), err); return err; } if (_CMD_DIR(cmd) & _CMD_DIR_READ) { ENIC_BUS_READ_REGION_4(devcmd, bar, DEVCMD_ARGS(0), (void *)&vdev->args[0], VNIC_DEVCMD_NARGS * 2); } return 0; } } pr_err("Timedout devcmd %d\n", _CMD_N(cmd)); return -ETIMEDOUT; } static int vnic_dev_cmd_proxy(struct vnic_dev *vdev, enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd, u64 *args, int nargs, int wait) { u32 status; int err; /* * Proxy command consumes 2 arguments. One for proxy index, * the other is for command to be proxied */ if (nargs > VNIC_DEVCMD_NARGS - 2) { pr_err("number of args %d exceeds the maximum\n", nargs); return -EINVAL; } memset(vdev->args, 0, sizeof(vdev->args)); vdev->args[0] = vdev->proxy_index; vdev->args[1] = cmd; memcpy(&vdev->args[2], args, nargs * sizeof(args[0])); err = _vnic_dev_cmd(vdev, proxy_cmd, wait); if (err) return err; status = (u32)vdev->args[0]; if (status & STAT_ERROR) { err = (int)vdev->args[1]; if (err != ERR_ECMDUNKNOWN || cmd != CMD_CAPABILITY) pr_err("Error %d proxy devcmd %d\n", err, _CMD_N(cmd)); return err; } memcpy(args, &vdev->args[1], nargs * sizeof(args[0])); return 0; } static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, u64 *args, int nargs, int wait) { int err; if (nargs > VNIC_DEVCMD_NARGS) { pr_err("number of args %d exceeds the maximum\n", nargs); return -EINVAL; } memset(vdev->args, 0, sizeof(vdev->args)); memcpy(vdev->args, args, nargs * sizeof(args[0])); err = _vnic_dev_cmd(vdev, cmd, wait); memcpy(args, vdev->args, nargs * sizeof(args[0])); return err; } int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, u64 *a0, u64 *a1, int wait) { u64 args[2]; int err; args[0] = *a0; args[1] = *a1; memset(vdev->args, 0, sizeof(vdev->args)); switch (vdev->proxy) { case PROXY_BY_INDEX: err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd, args, ARRAY_SIZE(args), wait); break; case PROXY_BY_BDF: err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd, args, ARRAY_SIZE(args), wait); break; case PROXY_NONE: default: err = vnic_dev_cmd_no_proxy(vdev, cmd, args, 2, wait); break; } if (err == 0) { *a0 = args[0]; *a1 = args[1]; } return err; } int vnic_dev_cmd_args(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, u64 *args, int nargs, int wait) { switch (vdev->proxy) { case PROXY_BY_INDEX: return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd, args, nargs, wait); case PROXY_BY_BDF: return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd, args, nargs, wait); case PROXY_NONE: default: return vnic_dev_cmd_no_proxy(vdev, cmd, args, nargs, wait); } } static int vnic_dev_advanced_filters_cap(struct vnic_dev *vdev, u64 *args, int nargs) { memset(args, 0, nargs * sizeof(*args)); args[0] = CMD_ADD_ADV_FILTER; args[1] = FILTER_CAP_MODE_V1_FLAG; return vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, nargs, 1000); } int vnic_dev_capable_adv_filters(struct vnic_dev *vdev) { u64 a0 = CMD_ADD_ADV_FILTER, a1 = 0; int wait = 1000; int err; err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); if (err) return 0; return (a1 >= (u32)FILTER_DPDK_1); } /* Determine the "best" filtering mode VIC is capaible of. Returns one of 3 * value or 0 on error: * FILTER_DPDK_1- advanced filters availabile * FILTER_USNIC_IP_FLAG - advanced filters but with the restriction that * the IP layer must explicitly specified. I.e. cannot have a UDP * filter that matches both IPv4 and IPv6. * FILTER_IPV4_5TUPLE - fallback if either of the 2 above aren't available. * all other filter types are not available. * Retrun true in filter_tags if supported */ int vnic_dev_capable_filter_mode(struct vnic_dev *vdev, u32 *mode, u8 *filter_actions) { u64 args[4]; int err; u32 max_level = 0; err = vnic_dev_advanced_filters_cap(vdev, args, 4); /* determine supported filter actions */ *filter_actions = FILTER_ACTION_RQ_STEERING_FLAG; /* always available */ if (args[2] == FILTER_CAP_MODE_V1) *filter_actions = args[3]; if (err || ((args[0] == 1) && (args[1] == 0))) { /* Adv filter Command not supported or adv filters available but * not enabled. Try the normal filter capability command. */ args[0] = CMD_ADD_FILTER; args[1] = 0; err = vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, 2, 1000); if (err) return err; max_level = args[1]; goto parse_max_level; } else if (args[2] == FILTER_CAP_MODE_V1) { /* parse filter capability mask in args[1] */ if (args[1] & FILTER_DPDK_1_FLAG) *mode = FILTER_DPDK_1; else if (args[1] & FILTER_USNIC_IP_FLAG) *mode = FILTER_USNIC_IP; else if (args[1] & FILTER_IPV4_5TUPLE_FLAG) *mode = FILTER_IPV4_5TUPLE; return 0; } max_level = args[1]; parse_max_level: if (max_level >= (u32)FILTER_USNIC_IP) *mode = FILTER_USNIC_IP; else *mode = FILTER_IPV4_5TUPLE; return 0; } void vnic_dev_capable_udp_rss_weak(struct vnic_dev *vdev, bool *cfg_chk, bool *weak) { u64 a0 = CMD_NIC_CFG, a1 = 0; int wait = 1000; int err; *cfg_chk = false; *weak = false; err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); if (err == 0 && a0 != 0 && a1 != 0) { *cfg_chk = true; *weak = !!((a1 >> 32) & CMD_NIC_CFG_CAPF_UDP_WEAK); } } int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd) { u64 a0 = (u32)cmd, a1 = 0; int wait = 1000; int err; err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); return !(err || a0); } int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, size_t size, void *value) { u64 a0, a1; int wait = 1000; int err; a0 = offset; a1 = size; err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait); switch (size) { case 1: *(u8 *)value = (u8)a0; break; case 2: *(u16 *)value = (u16)a0; break; case 4: *(u32 *)value = (u32)a0; break; case 8: *(u64 *)value = a0; break; default: BUG(); break; } return err; } int vnic_dev_stats_clear(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait); } int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats) { u64 a0, a1; int wait = 1000; int rc; if (!vdev->stats) return -ENOMEM; *stats = vdev->stats; a0 = vdev->stats_res.idi_paddr; a1 = sizeof(struct vnic_stats); bus_dmamap_sync(vdev->stats_res.idi_tag, vdev->stats_res.idi_map, BUS_DMASYNC_POSTREAD); rc = vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait); bus_dmamap_sync(vdev->stats_res.idi_tag, vdev->stats_res.idi_map, BUS_DMASYNC_PREREAD); return (rc); } /* * Configure counter DMA */ int vnic_dev_counter_dma_cfg(struct vnic_dev *vdev, u32 period, u32 num_counters) { u64 args[3]; int wait = 1000; int err; if (num_counters > VNIC_MAX_FLOW_COUNTERS) return -ENOMEM; if (period > 0 && (period < VNIC_COUNTER_DMA_MIN_PERIOD || num_counters == 0)) return -EINVAL; args[0] = num_counters; args[1] = vdev->flow_counters_res.idi_paddr; args[2] = period; bus_dmamap_sync(vdev->flow_counters_res.idi_tag, vdev->flow_counters_res.idi_map, BUS_DMASYNC_POSTREAD); err = vnic_dev_cmd_args(vdev, CMD_COUNTER_DMA_CONFIG, args, 3, wait); bus_dmamap_sync(vdev->flow_counters_res.idi_tag, vdev->flow_counters_res.idi_map, BUS_DMASYNC_PREREAD); /* record if DMAs need to be stopped on close */ if (!err) vdev->flow_counters_dma_active = (num_counters != 0 && period != 0); return err; } int vnic_dev_close(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait); } int vnic_dev_enable_wait(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT)) return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait); else return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait); } int vnic_dev_disable(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait); } int vnic_dev_open(struct vnic_dev *vdev, int arg) { u64 a0 = (u32)arg, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait); } int vnic_dev_open_done(struct vnic_dev *vdev, int *done) { u64 a0 = 0, a1 = 0; int wait = 1000; int err; *done = 0; err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait); if (err) return err; *done = (a0 == 0); return 0; } int vnic_dev_get_mac_addr(struct vnic_dev *vdev, u8 *mac_addr) { u64 a0 = 0, a1 = 0; int wait = 1000; int err, i; for (i = 0; i < ETH_ALEN; i++) mac_addr[i] = 0; err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait); if (err) return err; for (i = 0; i < ETH_ALEN; i++) mac_addr[i] = ((u8 *)&a0)[i]; return 0; } int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast, int broadcast, int promisc, int allmulti) { u64 a0, a1 = 0; int wait = 1000; int err; a0 = (directed ? CMD_PFILTER_DIRECTED : 0) | (multicast ? CMD_PFILTER_MULTICAST : 0) | (broadcast ? CMD_PFILTER_BROADCAST : 0) | (promisc ? CMD_PFILTER_PROMISCUOUS : 0) | (allmulti ? CMD_PFILTER_ALL_MULTICAST : 0); err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait); if (err) pr_err("Can't set packet filter\n"); return err; } int vnic_dev_add_addr(struct vnic_dev *vdev, u8 *addr) { u64 a0 = 0, a1 = 0; int wait = 1000; int err; int i; for (i = 0; i < ETH_ALEN; i++) ((u8 *)&a0)[i] = addr[i]; err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait); if (err) pr_err("Can't add addr [%02x:%02x:%02x:%02x:%02x:%02x], %d\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], err); return err; } int vnic_dev_del_addr(struct vnic_dev *vdev, u8 *addr) { u64 a0 = 0, a1 = 0; int wait = 1000; int err; int i; for (i = 0; i < ETH_ALEN; i++) ((u8 *)&a0)[i] = addr[i]; err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait); if (err) pr_err("Can't del addr [%02x:%02x:%02x:%02x:%02x:%02x], %d\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], err); return err; } int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev, u8 ig_vlan_rewrite_mode) { u64 a0 = ig_vlan_rewrite_mode, a1 = 0; int wait = 1000; if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE)) return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE, &a0, &a1, wait); else return 0; } void vnic_dev_set_reset_flag(struct vnic_dev *vdev, int state) { vdev->in_reset = state; } static inline int vnic_dev_in_reset(struct vnic_dev *vdev) { return vdev->in_reset; } int vnic_dev_notify_setcmd(struct vnic_dev *vdev, void *notify_addr, bus_addr_t notify_pa, u16 intr) { u64 a0, a1; int wait = 1000; int r; bus_dmamap_sync(vdev->notify_res.idi_tag, vdev->notify_res.idi_map, BUS_DMASYNC_PREWRITE); memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify)); bus_dmamap_sync(vdev->notify_res.idi_tag, vdev->notify_res.idi_map, BUS_DMASYNC_POSTWRITE); if (!vnic_dev_in_reset(vdev)) { vdev->notify = notify_addr; vdev->notify_pa = notify_pa; } a0 = (u64)notify_pa; a1 = ((u64)intr << 32) & 0x0000ffff00000000ULL; a1 += sizeof(struct vnic_devcmd_notify); r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait); if (!vnic_dev_in_reset(vdev)) vdev->notify_sz = (r == 0) ? (u32)a1 : 0; return r; } int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr) { void *notify_addr = NULL; bus_addr_t notify_pa = 0; char name[NAME_MAX]; static u32 instance; if (vdev->notify || vdev->notify_pa) { return vnic_dev_notify_setcmd(vdev, vdev->notify, vdev->notify_pa, intr); } if (!vnic_dev_in_reset(vdev)) { snprintf((char *)name, sizeof(name), "vnic_notify-%u", instance++); iflib_dma_alloc(vdev->softc->ctx, sizeof(struct vnic_devcmd_notify), &vdev->notify_res, BUS_DMA_NOWAIT); notify_pa = vdev->notify_res.idi_paddr; notify_addr = vdev->notify_res.idi_vaddr; } return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr); } int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev) { u64 a0, a1; int wait = 1000; int err; a0 = 0; /* paddr = 0 to unset notify buffer */ a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */ a1 += sizeof(struct vnic_devcmd_notify); err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait); if (!vnic_dev_in_reset(vdev)) { vdev->notify = NULL; vdev->notify_pa = 0; vdev->notify_sz = 0; } return err; } int vnic_dev_notify_unset(struct vnic_dev *vdev) { if (vdev->notify && !vnic_dev_in_reset(vdev)) { iflib_dma_free(&vdev->notify_res); } return vnic_dev_notify_unsetcmd(vdev); } static int vnic_dev_notify_ready(struct vnic_dev *vdev) { u32 *words; unsigned int nwords = vdev->notify_sz / 4; unsigned int i; u32 csum; if (!vdev->notify || !vdev->notify_sz) return 0; do { csum = 0; bus_dmamap_sync(vdev->notify_res.idi_tag, vdev->notify_res.idi_map, BUS_DMASYNC_PREREAD); memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz); bus_dmamap_sync(vdev->notify_res.idi_tag, vdev->notify_res.idi_map, BUS_DMASYNC_POSTREAD); words = (u32 *)&vdev->notify_copy; for (i = 1; i < nwords; i++) csum += words[i]; } while (csum != words[0]); return 1; } int vnic_dev_init(struct vnic_dev *vdev, int arg) { u64 a0 = (u32)arg, a1 = 0; int wait = 1000; int r = 0; if (vnic_dev_capable(vdev, CMD_INIT)) r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait); else { vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait); if (a0 & CMD_INITF_DEFAULT_MAC) { /* Emulate these for old CMD_INIT_v1 which * didn't pass a0 so no CMD_INITF_*. */ vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait); vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait); } } return r; } void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev) { /* Default: hardware intr coal timer is in units of 1.5 usecs */ vdev->intr_coal_timer_info.mul = 2; vdev->intr_coal_timer_info.div = 3; vdev->intr_coal_timer_info.max_usec = vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff); } int vnic_dev_link_status(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.link_state; } u32 vnic_dev_port_speed(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.port_speed; } u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev, u32 usec) { return (usec * vdev->intr_coal_timer_info.mul) / vdev->intr_coal_timer_info.div; } u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev, u32 hw_cycles) { return (hw_cycles * vdev->intr_coal_timer_info.div) / vdev->intr_coal_timer_info.mul; } u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev) { return vdev->intr_coal_timer_info.max_usec; } u32 vnic_dev_mtu(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.mtu; } void vnic_dev_set_intr_mode(struct vnic_dev *vdev, enum vnic_dev_intr_mode intr_mode) { vdev->intr_mode = intr_mode; } enum vnic_dev_intr_mode vnic_dev_get_intr_mode( struct vnic_dev *vdev) { return vdev->intr_mode; } int vnic_dev_alloc_stats_mem(struct vnic_dev *vdev) { char name[NAME_MAX]; static u32 instance; struct enic_softc *softc; softc = vdev->softc; snprintf((char *)name, sizeof(name), "vnic_stats-%u", instance++); iflib_dma_alloc(softc->ctx, sizeof(struct vnic_stats), &vdev->stats_res, 0); vdev->stats = (struct vnic_stats *)vdev->stats_res.idi_vaddr; return vdev->stats == NULL ? -ENOMEM : 0; } /* * Initialize for up to VNIC_MAX_FLOW_COUNTERS */ int vnic_dev_alloc_counter_mem(struct vnic_dev *vdev) { char name[NAME_MAX]; static u32 instance; struct enic_softc *softc; softc = vdev->softc; snprintf((char *)name, sizeof(name), "vnic_flow_ctrs-%u", instance++); iflib_dma_alloc(softc->ctx, sizeof(struct vnic_counter_counts) * VNIC_MAX_FLOW_COUNTERS, &vdev->flow_counters_res, 0); vdev->flow_counters = (struct vnic_counter_counts *)vdev->flow_counters_res.idi_vaddr; vdev->flow_counters_dma_active = 0; return vdev->flow_counters == NULL ? -ENOMEM : 0; } struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev, struct enic_bar_info *mem, unsigned int num_bars) { if (vnic_dev_discover_res(vdev, NULL, num_bars)) goto err_out; vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0); if (!vdev->devcmd) goto err_out; return vdev; err_out: return NULL; } /* * vnic_dev_classifier: Add/Delete classifier entries * @vdev: vdev of the device * @cmd: CLSF_ADD for Add filter * CLSF_DEL for Delete filter * @entry: In case of ADD filter, the caller passes the RQ number in this * variable. * This function stores the filter_id returned by the * firmware in the same variable before return; * * In case of DEL filter, the caller passes the RQ number. Return * value is irrelevant. * @data: filter data * @action: action data */ int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, u8 overlay, u8 config) { u64 a0 = overlay; u64 a1 = config; int wait = 1000; return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait); } int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, u8 overlay, u16 vxlan_udp_port_number) { u64 a1 = vxlan_udp_port_number; u64 a0 = overlay; int wait = 1000; return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait); } int vnic_dev_capable_vxlan(struct vnic_dev *vdev) { u64 a0 = VIC_FEATURE_VXLAN; u64 a1 = 0; int wait = 1000; int ret; ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait); /* 1 if the NIC can do VXLAN for both IPv4 and IPv6 with multiple WQs */ return ret == 0 && (a1 & (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ)) == (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ); } bool vnic_dev_counter_alloc(struct vnic_dev *vdev, uint32_t *idx) { u64 a0 = 0; u64 a1 = 0; int wait = 1000; if (vnic_dev_cmd(vdev, CMD_COUNTER_ALLOC, &a0, &a1, wait)) return false; *idx = (uint32_t)a0; return true; } bool vnic_dev_counter_free(struct vnic_dev *vdev, uint32_t idx) { u64 a0 = idx; u64 a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_COUNTER_FREE, &a0, &a1, wait) == 0; } bool vnic_dev_counter_query(struct vnic_dev *vdev, uint32_t idx, bool reset, uint64_t *packets, uint64_t *bytes) { u64 a0 = idx; u64 a1 = reset ? 1 : 0; int wait = 1000; if (reset) { /* query/reset returns updated counters */ if (vnic_dev_cmd(vdev, CMD_COUNTER_QUERY, &a0, &a1, wait)) return false; *packets = a0; *bytes = a1; } else { /* Get values DMA'd from the adapter */ *packets = vdev->flow_counters[idx].vcc_packets; *bytes = vdev->flow_counters[idx].vcc_bytes; } return true; } device_t dev_from_vnic_dev(struct vnic_dev *vdev) { return (vdev->softc->dev); }