/* Subroutines used for code generation on IBM S/390 and zSeries Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. Contributed by Hartmut Penner (hpenner@de.ibm.com) and Ulrich Weigand (uweigand@de.ibm.com). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "rtl.h" #include "tree.h" #include "tm_p.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "except.h" #include "function.h" #include "recog.h" #include "expr.h" #include "reload.h" #include "toplev.h" #include "basic-block.h" #include "integrate.h" #include "ggc.h" #include "target.h" #include "target-def.h" #include "debug.h" #include "langhooks.h" #include "optabs.h" static bool s390_assemble_integer PARAMS ((rtx, unsigned int, int)); static int s390_adjust_cost PARAMS ((rtx, rtx, rtx, int)); static int s390_adjust_priority PARAMS ((rtx, int)); static void s390_select_rtx_section PARAMS ((enum machine_mode, rtx, unsigned HOST_WIDE_INT)); static void s390_encode_section_info PARAMS ((tree, int)); static const char *s390_strip_name_encoding PARAMS ((const char *)); static bool s390_cannot_force_const_mem PARAMS ((rtx)); static void s390_init_builtins PARAMS ((void)); static rtx s390_expand_builtin PARAMS ((tree, rtx, rtx, enum machine_mode, int)); static void s390_output_mi_thunk PARAMS ((FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree)); #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t" #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t" #undef TARGET_ASM_INTEGER #define TARGET_ASM_INTEGER s390_assemble_integer #undef TARGET_ASM_OPEN_PAREN #define TARGET_ASM_OPEN_PAREN "" #undef TARGET_ASM_CLOSE_PAREN #define TARGET_ASM_CLOSE_PAREN "" #undef TARGET_ASM_SELECT_RTX_SECTION #define TARGET_ASM_SELECT_RTX_SECTION s390_select_rtx_section #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST s390_adjust_cost #undef TARGET_SCHED_ADJUST_PRIORITY #define TARGET_SCHED_ADJUST_PRIORITY s390_adjust_priority #undef TARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO s390_encode_section_info #undef TARGET_STRIP_NAME_ENCODING #define TARGET_STRIP_NAME_ENCODING s390_strip_name_encoding #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS true #endif #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM s390_cannot_force_const_mem #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS s390_init_builtins #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN s390_expand_builtin #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK s390_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true struct gcc_target targetm = TARGET_INITIALIZER; extern int reload_completed; /* The alias set for prologue/epilogue register save/restore. */ static int s390_sr_alias_set = 0; /* Save information from a "cmpxx" operation until the branch or scc is emitted. */ rtx s390_compare_op0, s390_compare_op1; /* The encoding characters for the four TLS models present in ELF. */ static char const tls_model_chars[] = " GLil"; /* Structure used to hold the components of a S/390 memory address. A legitimate address on S/390 is of the general form base + index + displacement where any of the components is optional. base and index are registers of the class ADDR_REGS, displacement is an unsigned 12-bit immediate constant. */ struct s390_address { rtx base; rtx indx; rtx disp; int pointer; }; /* Define the structure for the machine field in struct function. */ struct machine_function GTY(()) { /* Label of start of initial literal pool. */ rtx literal_pool_label; /* Set, if some of the fprs 8-15 need to be saved (64 bit abi). */ int save_fprs_p; /* Number of first and last gpr to be saved, restored. */ int first_save_gpr; int first_restore_gpr; int last_save_gpr; /* Size of stack frame. */ HOST_WIDE_INT frame_size; /* Some local-dynamic TLS symbol name. */ const char *some_ld_name; }; static int s390_match_ccmode_set PARAMS ((rtx, enum machine_mode)); static int s390_branch_condition_mask PARAMS ((rtx)); static const char *s390_branch_condition_mnemonic PARAMS ((rtx, int)); static int check_mode PARAMS ((rtx, enum machine_mode *)); static int general_s_operand PARAMS ((rtx, enum machine_mode, int)); static int s390_decompose_address PARAMS ((rtx, struct s390_address *)); static rtx get_thread_pointer PARAMS ((void)); static rtx legitimize_tls_address PARAMS ((rtx, rtx)); static const char *get_some_local_dynamic_name PARAMS ((void)); static int get_some_local_dynamic_name_1 PARAMS ((rtx *, void *)); static int reg_used_in_mem_p PARAMS ((int, rtx)); static int addr_generation_dependency_p PARAMS ((rtx, rtx)); static int s390_split_branches PARAMS ((rtx, bool *)); static void find_constant_pool_ref PARAMS ((rtx, rtx *)); static void replace_constant_pool_ref PARAMS ((rtx *, rtx, rtx)); static int find_base_register_in_addr PARAMS ((struct s390_address *)); static bool find_base_register_ref PARAMS ((rtx)); static void replace_base_register_ref PARAMS ((rtx *, rtx)); static void s390_optimize_prolog PARAMS ((int)); static bool s390_fixup_clobbered_return_reg PARAMS ((rtx)); static int find_unused_clobbered_reg PARAMS ((void)); static void s390_frame_info PARAMS ((void)); static rtx save_fpr PARAMS ((rtx, int, int)); static rtx restore_fpr PARAMS ((rtx, int, int)); static rtx save_gprs PARAMS ((rtx, int, int, int)); static rtx restore_gprs PARAMS ((rtx, int, int, int)); static int s390_function_arg_size PARAMS ((enum machine_mode, tree)); static struct machine_function * s390_init_machine_status PARAMS ((void)); /* Return true if SET either doesn't set the CC register, or else the source and destination have matching CC modes and that CC mode is at least as constrained as REQ_MODE. */ static int s390_match_ccmode_set (set, req_mode) rtx set; enum machine_mode req_mode; { enum machine_mode set_mode; if (GET_CODE (set) != SET) abort (); if (GET_CODE (SET_DEST (set)) != REG || !CC_REGNO_P (REGNO (SET_DEST (set)))) return 1; set_mode = GET_MODE (SET_DEST (set)); switch (set_mode) { case CCSmode: case CCSRmode: case CCUmode: case CCURmode: case CCLmode: case CCL1mode: case CCL2mode: case CCT1mode: case CCT2mode: case CCT3mode: if (req_mode != set_mode) return 0; break; case CCZmode: if (req_mode != CCSmode && req_mode != CCUmode && req_mode != CCTmode && req_mode != CCSRmode && req_mode != CCURmode) return 0; break; case CCAPmode: case CCANmode: if (req_mode != CCAmode) return 0; break; default: abort (); } return (GET_MODE (SET_SRC (set)) == set_mode); } /* Return true if every SET in INSN that sets the CC register has source and destination with matching CC modes and that CC mode is at least as constrained as REQ_MODE. If REQ_MODE is VOIDmode, always return false. */ int s390_match_ccmode (insn, req_mode) rtx insn; enum machine_mode req_mode; { int i; /* s390_tm_ccmode returns VOIDmode to indicate failure. */ if (req_mode == VOIDmode) return 0; if (GET_CODE (PATTERN (insn)) == SET) return s390_match_ccmode_set (PATTERN (insn), req_mode); if (GET_CODE (PATTERN (insn)) == PARALLEL) for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) { rtx set = XVECEXP (PATTERN (insn), 0, i); if (GET_CODE (set) == SET) if (!s390_match_ccmode_set (set, req_mode)) return 0; } return 1; } /* If a test-under-mask instruction can be used to implement (compare (and ... OP1) OP2), return the CC mode required to do that. Otherwise, return VOIDmode. MIXED is true if the instruction can distinguish between CC1 and CC2 for mixed selected bits (TMxx), it is false if the instruction cannot (TM). */ enum machine_mode s390_tm_ccmode (op1, op2, mixed) rtx op1; rtx op2; int mixed; { int bit0, bit1; /* ??? Fixme: should work on CONST_DOUBLE as well. */ if (GET_CODE (op1) != CONST_INT || GET_CODE (op2) != CONST_INT) return VOIDmode; /* Selected bits all zero: CC0. */ if (INTVAL (op2) == 0) return CCTmode; /* Selected bits all one: CC3. */ if (INTVAL (op2) == INTVAL (op1)) return CCT3mode; /* Exactly two bits selected, mixed zeroes and ones: CC1 or CC2. */ if (mixed) { bit1 = exact_log2 (INTVAL (op2)); bit0 = exact_log2 (INTVAL (op1) ^ INTVAL (op2)); if (bit0 != -1 && bit1 != -1) return bit0 > bit1 ? CCT1mode : CCT2mode; } return VOIDmode; } /* Given a comparison code OP (EQ, NE, etc.) and the operands OP0 and OP1 of a COMPARE, return the mode to be used for the comparison. */ enum machine_mode s390_select_ccmode (code, op0, op1) enum rtx_code code; rtx op0; rtx op1; { switch (code) { case EQ: case NE: if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (XEXP (op0, 1)), 'K')) return CCAPmode; if (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS || GET_CODE (op1) == NEG) return CCLmode; if (GET_CODE (op0) == AND) { /* Check whether we can potentially do it via TM. */ enum machine_mode ccmode; ccmode = s390_tm_ccmode (XEXP (op0, 1), op1, 1); if (ccmode != VOIDmode) { /* Relax CCTmode to CCZmode to allow fall-back to AND if that turns out to be beneficial. */ return ccmode == CCTmode ? CCZmode : ccmode; } } if (register_operand (op0, HImode) && GET_CODE (op1) == CONST_INT && (INTVAL (op1) == -1 || INTVAL (op1) == 65535)) return CCT3mode; if (register_operand (op0, QImode) && GET_CODE (op1) == CONST_INT && (INTVAL (op1) == -1 || INTVAL (op1) == 255)) return CCT3mode; return CCZmode; case LE: case LT: case GE: case GT: if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (XEXP (op0, 1)), 'K')) { if (INTVAL (XEXP((op0), 1)) < 0) return CCANmode; else return CCAPmode; } case UNORDERED: case ORDERED: case UNEQ: case UNLE: case UNLT: case UNGE: case UNGT: case LTGT: if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_CODE (op1) != CONST_INT) return CCSRmode; return CCSmode; case LTU: case GEU: if (GET_CODE (op0) == PLUS) return CCL1mode; if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_CODE (op1) != CONST_INT) return CCURmode; return CCUmode; case LEU: case GTU: if (GET_CODE (op0) == MINUS) return CCL2mode; if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_CODE (op1) != CONST_INT) return CCURmode; return CCUmode; default: abort (); } } /* Return branch condition mask to implement a branch specified by CODE. */ static int s390_branch_condition_mask (code) rtx code; { const int CC0 = 1 << 3; const int CC1 = 1 << 2; const int CC2 = 1 << 1; const int CC3 = 1 << 0; if (GET_CODE (XEXP (code, 0)) != REG || REGNO (XEXP (code, 0)) != CC_REGNUM || XEXP (code, 1) != const0_rtx) abort (); switch (GET_MODE (XEXP (code, 0))) { case CCZmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; default: abort (); } break; case CCT1mode: switch (GET_CODE (code)) { case EQ: return CC1; case NE: return CC0 | CC2 | CC3; default: abort (); } break; case CCT2mode: switch (GET_CODE (code)) { case EQ: return CC2; case NE: return CC0 | CC1 | CC3; default: abort (); } break; case CCT3mode: switch (GET_CODE (code)) { case EQ: return CC3; case NE: return CC0 | CC1 | CC2; default: abort (); } break; case CCLmode: switch (GET_CODE (code)) { case EQ: return CC0 | CC2; case NE: return CC1 | CC3; default: abort (); } break; case CCL1mode: switch (GET_CODE (code)) { case LTU: return CC2 | CC3; /* carry */ case GEU: return CC0 | CC1; /* no carry */ default: abort (); } break; case CCL2mode: switch (GET_CODE (code)) { case GTU: return CC0 | CC1; /* borrow */ case LEU: return CC2 | CC3; /* no borrow */ default: abort (); } break; case CCUmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; case LTU: return CC1; case GTU: return CC2; case LEU: return CC0 | CC1; case GEU: return CC0 | CC2; default: abort (); } break; case CCURmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC2 | CC1 | CC3; case LTU: return CC2; case GTU: return CC1; case LEU: return CC0 | CC2; case GEU: return CC0 | CC1; default: abort (); } break; case CCAPmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; case LT: return CC1 | CC3; case GT: return CC2; case LE: return CC0 | CC1 | CC3; case GE: return CC0 | CC2; default: abort (); } break; case CCANmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; case LT: return CC1; case GT: return CC2 | CC3; case LE: return CC0 | CC1; case GE: return CC0 | CC2 | CC3; default: abort (); } break; case CCSmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; case LT: return CC1; case GT: return CC2; case LE: return CC0 | CC1; case GE: return CC0 | CC2; case UNORDERED: return CC3; case ORDERED: return CC0 | CC1 | CC2; case UNEQ: return CC0 | CC3; case UNLT: return CC1 | CC3; case UNGT: return CC2 | CC3; case UNLE: return CC0 | CC1 | CC3; case UNGE: return CC0 | CC2 | CC3; case LTGT: return CC1 | CC2; default: abort (); } break; case CCSRmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC2 | CC1 | CC3; case LT: return CC2; case GT: return CC1; case LE: return CC0 | CC2; case GE: return CC0 | CC1; case UNORDERED: return CC3; case ORDERED: return CC0 | CC2 | CC1; case UNEQ: return CC0 | CC3; case UNLT: return CC2 | CC3; case UNGT: return CC1 | CC3; case UNLE: return CC0 | CC2 | CC3; case UNGE: return CC0 | CC1 | CC3; case LTGT: return CC2 | CC1; default: abort (); } break; default: abort (); } } /* If INV is false, return assembler mnemonic string to implement a branch specified by CODE. If INV is true, return mnemonic for the corresponding inverted branch. */ static const char * s390_branch_condition_mnemonic (code, inv) rtx code; int inv; { static const char *const mnemonic[16] = { NULL, "o", "h", "nle", "l", "nhe", "lh", "ne", "e", "nlh", "he", "nl", "le", "nh", "no", NULL }; int mask = s390_branch_condition_mask (code); if (inv) mask ^= 15; if (mask < 1 || mask > 14) abort (); return mnemonic[mask]; } /* If OP is an integer constant of mode MODE with exactly one HImode subpart unequal to DEF, return the number of that subpart. As a special case, all HImode subparts of OP are equal to DEF, return zero. Otherwise, return -1. */ int s390_single_hi (op, mode, def) rtx op; enum machine_mode mode; int def; { if (GET_CODE (op) == CONST_INT) { unsigned HOST_WIDE_INT value = 0; int n_parts = GET_MODE_SIZE (mode) / 2; int i, part = -1; for (i = 0; i < n_parts; i++) { if (i == 0) value = (unsigned HOST_WIDE_INT) INTVAL (op); else value >>= 16; if ((value & 0xffff) != (unsigned)(def & 0xffff)) { if (part != -1) return -1; else part = i; } } return part == -1 ? 0 : (n_parts - 1 - part); } else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode) { unsigned HOST_WIDE_INT value = 0; int n_parts = GET_MODE_SIZE (mode) / 2; int i, part = -1; for (i = 0; i < n_parts; i++) { if (i == 0) value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op); else if (i == HOST_BITS_PER_WIDE_INT / 16) value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op); else value >>= 16; if ((value & 0xffff) != (unsigned)(def & 0xffff)) { if (part != -1) return -1; else part = i; } } return part == -1 ? 0 : (n_parts - 1 - part); } return -1; } /* Extract the HImode part number PART from integer constant OP of mode MODE. */ int s390_extract_hi (op, mode, part) rtx op; enum machine_mode mode; int part; { int n_parts = GET_MODE_SIZE (mode) / 2; if (part < 0 || part >= n_parts) abort(); else part = n_parts - 1 - part; if (GET_CODE (op) == CONST_INT) { unsigned HOST_WIDE_INT value = (unsigned HOST_WIDE_INT) INTVAL (op); return ((value >> (16 * part)) & 0xffff); } else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode) { unsigned HOST_WIDE_INT value; if (part < HOST_BITS_PER_WIDE_INT / 16) value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op); else value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op), part -= HOST_BITS_PER_WIDE_INT / 16; return ((value >> (16 * part)) & 0xffff); } abort (); } /* If OP is an integer constant of mode MODE with exactly one QImode subpart unequal to DEF, return the number of that subpart. As a special case, all QImode subparts of OP are equal to DEF, return zero. Otherwise, return -1. */ int s390_single_qi (op, mode, def) rtx op; enum machine_mode mode; int def; { if (GET_CODE (op) == CONST_INT) { unsigned HOST_WIDE_INT value = 0; int n_parts = GET_MODE_SIZE (mode); int i, part = -1; for (i = 0; i < n_parts; i++) { if (i == 0) value = (unsigned HOST_WIDE_INT) INTVAL (op); else value >>= 8; if ((value & 0xff) != (unsigned)(def & 0xff)) { if (part != -1) return -1; else part = i; } } return part == -1 ? 0 : (n_parts - 1 - part); } else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode) { unsigned HOST_WIDE_INT value = 0; int n_parts = GET_MODE_SIZE (mode); int i, part = -1; for (i = 0; i < n_parts; i++) { if (i == 0) value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op); else if (i == HOST_BITS_PER_WIDE_INT / 8) value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op); else value >>= 8; if ((value & 0xff) != (unsigned)(def & 0xff)) { if (part != -1) return -1; else part = i; } } return part == -1 ? 0 : (n_parts - 1 - part); } return -1; } /* Extract the QImode part number PART from integer constant OP of mode MODE. */ int s390_extract_qi (op, mode, part) rtx op; enum machine_mode mode; int part; { int n_parts = GET_MODE_SIZE (mode); if (part < 0 || part >= n_parts) abort(); else part = n_parts - 1 - part; if (GET_CODE (op) == CONST_INT) { unsigned HOST_WIDE_INT value = (unsigned HOST_WIDE_INT) INTVAL (op); return ((value >> (8 * part)) & 0xff); } else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode) { unsigned HOST_WIDE_INT value; if (part < HOST_BITS_PER_WIDE_INT / 8) value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op); else value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op), part -= HOST_BITS_PER_WIDE_INT / 8; return ((value >> (8 * part)) & 0xff); } abort (); } /* Check whether we can (and want to) split a double-word move in mode MODE from SRC to DST into two single-word moves, moving the subword FIRST_SUBWORD first. */ bool s390_split_ok_p (dst, src, mode, first_subword) rtx dst; rtx src; enum machine_mode mode; int first_subword; { /* Floating point registers cannot be split. */ if (FP_REG_P (src) || FP_REG_P (dst)) return false; /* We don't need to split if operands are directly accessable. */ if (s_operand (src, mode) || s_operand (dst, mode)) return false; /* Non-offsettable memory references cannot be split. */ if ((GET_CODE (src) == MEM && !offsettable_memref_p (src)) || (GET_CODE (dst) == MEM && !offsettable_memref_p (dst))) return false; /* Moving the first subword must not clobber a register needed to move the second subword. */ if (register_operand (dst, mode)) { rtx subreg = operand_subword (dst, first_subword, 0, mode); if (reg_overlap_mentioned_p (subreg, src)) return false; } return true; } /* Change optimizations to be performed, depending on the optimization level. LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if `-O' is specified, and 0 if neither is specified. SIZE is nonzero if `-Os' is specified and zero otherwise. */ void optimization_options (level, size) int level ATTRIBUTE_UNUSED; int size ATTRIBUTE_UNUSED; { /* ??? There are apparently still problems with -fcaller-saves. */ flag_caller_saves = 0; /* By default, always emit DWARF-2 unwind info. This allows debugging without maintaining a stack frame back-chain. */ flag_asynchronous_unwind_tables = 1; } void override_options () { /* Acquire a unique set number for our register saves and restores. */ s390_sr_alias_set = new_alias_set (); /* Set up function hooks. */ init_machine_status = s390_init_machine_status; } /* Map for smallest class containing reg regno. */ const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] = { GENERAL_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, ADDR_REGS, NO_REGS, ADDR_REGS }; /* Return true if OP a (const_int 0) operand. OP is the current operation. MODE is the current operation mode. */ int const0_operand (op, mode) register rtx op; enum machine_mode mode; { return op == CONST0_RTX (mode); } /* Return true if OP is constant. OP is the current operation. MODE is the current operation mode. */ int consttable_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return CONSTANT_P (op); } /* Return true if the mode of operand OP matches MODE. If MODE is set to VOIDmode, set it to the mode of OP. */ static int check_mode (op, mode) register rtx op; enum machine_mode *mode; { if (*mode == VOIDmode) *mode = GET_MODE (op); else { if (GET_MODE (op) != VOIDmode && GET_MODE (op) != *mode) return 0; } return 1; } /* Return true if OP a valid operand for the LARL instruction. OP is the current operation. MODE is the current operation mode. */ int larl_operand (op, mode) register rtx op; enum machine_mode mode; { if (! check_mode (op, &mode)) return 0; /* Allow labels and local symbols. */ if (GET_CODE (op) == LABEL_REF) return 1; if (GET_CODE (op) == SYMBOL_REF && XSTR (op, 0)[0] != '@' && !tls_symbolic_operand (op) && (!flag_pic || SYMBOL_REF_FLAG (op) || CONSTANT_POOL_ADDRESS_P (op))) return 1; /* Everything else must have a CONST, so strip it. */ if (GET_CODE (op) != CONST) return 0; op = XEXP (op, 0); /* Allow adding *even* constants. */ if (GET_CODE (op) == PLUS) { if (GET_CODE (XEXP (op, 1)) != CONST_INT || (INTVAL (XEXP (op, 1)) & 1) != 0) return 0; op = XEXP (op, 0); } /* Labels and local symbols allowed here as well. */ if (GET_CODE (op) == LABEL_REF) return 1; if (GET_CODE (op) == SYMBOL_REF && XSTR (op, 0)[0] != '@' && !tls_symbolic_operand (op) && (!flag_pic || SYMBOL_REF_FLAG (op) || CONSTANT_POOL_ADDRESS_P (op))) return 1; /* Now we must have a @GOTENT offset or @PLT stub or an @INDNTPOFF TLS offset. */ if (GET_CODE (op) == UNSPEC && XINT (op, 1) == 111) return 1; if (GET_CODE (op) == UNSPEC && XINT (op, 1) == 113) return 1; if (GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_INDNTPOFF) return 1; return 0; } /* Helper routine to implement s_operand and s_imm_operand. OP is the current operation. MODE is the current operation mode. ALLOW_IMMEDIATE specifies whether immediate operands should be accepted or not. */ static int general_s_operand (op, mode, allow_immediate) register rtx op; enum machine_mode mode; int allow_immediate; { struct s390_address addr; /* Call general_operand first, so that we don't have to check for many special cases. */ if (!general_operand (op, mode)) return 0; /* Just like memory_operand, allow (subreg (mem ...)) after reload. */ if (reload_completed && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM) op = SUBREG_REG (op); switch (GET_CODE (op)) { /* Constants that we are sure will be forced to the literal pool in reload are OK as s-operand. Note that we cannot call s390_preferred_reload_class here because it might not be known yet at this point whether the current function is a leaf or not. */ case CONST_INT: case CONST_DOUBLE: if (!allow_immediate || reload_completed) break; if (!legitimate_reload_constant_p (op)) return 1; if (!TARGET_64BIT) return 1; break; /* Memory operands are OK unless they already use an index register. */ case MEM: if (GET_CODE (XEXP (op, 0)) == ADDRESSOF) return 1; if (s390_decompose_address (XEXP (op, 0), &addr) && !addr.indx) return 1; break; default: break; } return 0; } /* Return true if OP is a valid S-type operand. OP is the current operation. MODE is the current operation mode. */ int s_operand (op, mode) register rtx op; enum machine_mode mode; { return general_s_operand (op, mode, 0); } /* Return true if OP is a valid S-type operand or an immediate operand that can be addressed as S-type operand by forcing it into the literal pool. OP is the current operation. MODE is the current operation mode. */ int s_imm_operand (op, mode) register rtx op; enum machine_mode mode; { return general_s_operand (op, mode, 1); } /* Return true if OP is a valid operand for a 'Q' constraint. This differs from s_operand in that only memory operands without index register are accepted, nothing else. */ int q_constraint (op) register rtx op; { struct s390_address addr; if (GET_CODE (op) != MEM) return 0; if (!s390_decompose_address (XEXP (op, 0), &addr)) return 0; if (addr.indx) return 0; return 1; } /* Return the cost of an address rtx ADDR. */ int s390_address_cost (addr) rtx addr; { struct s390_address ad; if (!s390_decompose_address (addr, &ad)) return 1000; return ad.indx? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (1); } /* Return true if OP is a valid operand for the BRAS instruction. OP is the current operation. MODE is the current operation mode. */ int bras_sym_operand (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { register enum rtx_code code = GET_CODE (op); /* Allow SYMBOL_REFs. */ if (code == SYMBOL_REF) return 1; /* Allow @PLT stubs. */ if (code == CONST && GET_CODE (XEXP (op, 0)) == UNSPEC && XINT (XEXP (op, 0), 1) == 113) return 1; return 0; } /* If OP is a SYMBOL_REF of a thread-local symbol, return its TLS mode, otherwise return 0. */ int tls_symbolic_operand (op) register rtx op; { const char *symbol_str; if (GET_CODE (op) != SYMBOL_REF) return 0; symbol_str = XSTR (op, 0); if (symbol_str[0] != '%') return 0; return strchr (tls_model_chars, symbol_str[1]) - tls_model_chars; } /* Return true if OP is a load multiple operation. It is known to be a PARALLEL and the first section will be tested. OP is the current operation. MODE is the current operation mode. */ int load_multiple_operation (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int count = XVECLEN (op, 0); unsigned int dest_regno; rtx src_addr; int i, off; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM) return 0; dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0); /* Check, is base, or base + displacement. */ if (GET_CODE (src_addr) == REG) off = 0; else if (GET_CODE (src_addr) == PLUS && GET_CODE (XEXP (src_addr, 0)) == REG && GET_CODE (XEXP (src_addr, 1)) == CONST_INT) { off = INTVAL (XEXP (src_addr, 1)); src_addr = XEXP (src_addr, 0); } else return 0; if (src_addr == frame_pointer_rtx || src_addr == arg_pointer_rtx) return 0; for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i); if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != Pmode || REGNO (SET_DEST (elt)) != dest_regno + i || GET_CODE (SET_SRC (elt)) != MEM || GET_MODE (SET_SRC (elt)) != Pmode || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr) || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != off + i * UNITS_PER_WORD) return 0; } return 1; } /* Return true if OP is a store multiple operation. It is known to be a PARALLEL and the first section will be tested. OP is the current operation. MODE is the current operation mode. */ int store_multiple_operation (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int count = XVECLEN (op, 0); unsigned int src_regno; rtx dest_addr; int i, off; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG) return 0; src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0); /* Check, is base, or base + displacement. */ if (GET_CODE (dest_addr) == REG) off = 0; else if (GET_CODE (dest_addr) == PLUS && GET_CODE (XEXP (dest_addr, 0)) == REG && GET_CODE (XEXP (dest_addr, 1)) == CONST_INT) { off = INTVAL (XEXP (dest_addr, 1)); dest_addr = XEXP (dest_addr, 0); } else return 0; if (dest_addr == frame_pointer_rtx || dest_addr == arg_pointer_rtx) return 0; for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i); if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != Pmode || REGNO (SET_SRC (elt)) != src_regno + i || GET_CODE (SET_DEST (elt)) != MEM || GET_MODE (SET_DEST (elt)) != Pmode || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr) || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != off + i * UNITS_PER_WORD) return 0; } return 1; } /* Return true if OP contains a symbol reference */ int symbolic_reference_mentioned_p (op) rtx op; { register const char *fmt; register int i; if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return 1; fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { register int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return 1; } else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i))) return 1; } return 0; } /* Return true if OP contains a reference to a thread-local symbol. */ int tls_symbolic_reference_mentioned_p (op) rtx op; { register const char *fmt; register int i; if (GET_CODE (op) == SYMBOL_REF) return tls_symbolic_operand (op); fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { register int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (tls_symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return 1; } else if (fmt[i] == 'e' && tls_symbolic_reference_mentioned_p (XEXP (op, i))) return 1; } return 0; } /* Return true if OP is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */ int legitimate_pic_operand_p (op) register rtx op; { /* Accept all non-symbolic constants. */ if (!SYMBOLIC_CONST (op)) return 1; /* Reject everything else; must be handled via emit_symbolic_move. */ return 0; } /* Returns true if the constant value OP is a legitimate general operand. It is given that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */ int legitimate_constant_p (op) register rtx op; { /* Accept all non-symbolic constants. */ if (!SYMBOLIC_CONST (op)) return 1; /* Accept immediate LARL operands. */ if (TARGET_64BIT && larl_operand (op, VOIDmode)) return 1; /* Thread-local symbols are never legal constants. This is so that emit_call knows that computing such addresses might require a function call. */ if (TLS_SYMBOLIC_CONST (op)) return 0; /* In the PIC case, symbolic constants must *not* be forced into the literal pool. We accept them here, so that they will be handled by emit_symbolic_move. */ if (flag_pic) return 1; /* All remaining non-PIC symbolic constants are forced into the literal pool. */ return 0; } /* Determine if it's legal to put X into the constant pool. This is not possible if X contains the address of a symbol that is not constant (TLS) or not known at final link time (PIC). */ static bool s390_cannot_force_const_mem (x) rtx x; { switch (GET_CODE (x)) { case CONST_INT: case CONST_DOUBLE: /* Accept all non-symbolic constants. */ return false; case LABEL_REF: /* Labels are OK iff we are non-PIC. */ return flag_pic != 0; case SYMBOL_REF: /* 'Naked' TLS symbol references are never OK, non-TLS symbols are OK iff we are non-PIC. */ if (tls_symbolic_operand (x)) return true; else return flag_pic != 0; case CONST: return s390_cannot_force_const_mem (XEXP (x, 0)); case PLUS: case MINUS: return s390_cannot_force_const_mem (XEXP (x, 0)) || s390_cannot_force_const_mem (XEXP (x, 1)); case UNSPEC: switch (XINT (x, 1)) { /* Only lt-relative or GOT-relative UNSPECs are OK. */ case 100: case 104: case 112: case 114: case UNSPEC_TLSGD: case UNSPEC_TLSLDM: case UNSPEC_NTPOFF: case UNSPEC_DTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: return false; default: return true; } break; default: abort (); } } /* Returns true if the constant value OP is a legitimate general operand during and after reload. The difference to legitimate_constant_p is that this function will not accept a constant that would need to be forced to the literal pool before it can be used as operand. */ int legitimate_reload_constant_p (op) register rtx op; { /* Accept l(g)hi operands. */ if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (op), 'K')) return 1; /* Accept lliXX operands. */ if (TARGET_64BIT && s390_single_hi (op, DImode, 0) >= 0) return 1; /* Accept larl operands. */ if (TARGET_64BIT && larl_operand (op, VOIDmode)) return 1; /* Everything else cannot be handled without reload. */ return 0; } /* Given an rtx OP being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. */ enum reg_class s390_preferred_reload_class (op, class) rtx op; enum reg_class class; { /* This can happen if a floating point constant is being reloaded into an integer register. Leave well alone. */ if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT && class != FP_REGS) return class; switch (GET_CODE (op)) { /* Constants we cannot reload must be forced into the literal pool. */ case CONST_DOUBLE: case CONST_INT: if (legitimate_reload_constant_p (op)) return class; else return NO_REGS; /* If a symbolic constant or a PLUS is reloaded, it is most likely being used as an address, so prefer ADDR_REGS. If 'class' is not a superset of ADDR_REGS, e.g. FP_REGS, reject this reload. */ case PLUS: case LABEL_REF: case SYMBOL_REF: case CONST: if (reg_class_subset_p (ADDR_REGS, class)) return ADDR_REGS; else return NO_REGS; default: break; } return class; } /* Return the register class of a scratch register needed to load IN into a register of class CLASS in MODE. We need a temporary when loading a PLUS expression which is not a legitimate operand of the LOAD ADDRESS instruction. */ enum reg_class s390_secondary_input_reload_class (class, mode, in) enum reg_class class ATTRIBUTE_UNUSED; enum machine_mode mode; rtx in; { if (s390_plus_operand (in, mode)) return ADDR_REGS; return NO_REGS; } /* Return the register class of a scratch register needed to store a register of class CLASS in MODE into OUT: We need a temporary when storing a double-word to a non-offsettable memory address. */ enum reg_class s390_secondary_output_reload_class (class, mode, out) enum reg_class class; enum machine_mode mode; rtx out; { if ((TARGET_64BIT ? mode == TImode : (mode == DImode || mode == DFmode)) && reg_classes_intersect_p (GENERAL_REGS, class) && GET_CODE (out) == MEM && !offsettable_memref_p (out) && !s_operand (out, VOIDmode)) return ADDR_REGS; return NO_REGS; } /* Return true if OP is a PLUS that is not a legitimate operand for the LA instruction. OP is the current operation. MODE is the current operation mode. */ int s390_plus_operand (op, mode) register rtx op; enum machine_mode mode; { if (!check_mode (op, &mode) || mode != Pmode) return FALSE; if (GET_CODE (op) != PLUS) return FALSE; if (legitimate_la_operand_p (op)) return FALSE; return TRUE; } /* Generate code to load SRC, which is PLUS that is not a legitimate operand for the LA instruction, into TARGET. SCRATCH may be used as scratch register. */ void s390_expand_plus_operand (target, src, scratch) register rtx target; register rtx src; register rtx scratch; { rtx sum1, sum2; struct s390_address ad; /* src must be a PLUS; get its two operands. */ if (GET_CODE (src) != PLUS || GET_MODE (src) != Pmode) abort (); /* Check if any of the two operands is already scheduled for replacement by reload. This can happen e.g. when float registers occur in an address. */ sum1 = find_replacement (&XEXP (src, 0)); sum2 = find_replacement (&XEXP (src, 1)); src = gen_rtx_PLUS (Pmode, sum1, sum2); /* If the address is already strictly valid, there's nothing to do. */ if (!s390_decompose_address (src, &ad) || (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base)) || (ad.indx && !REG_OK_FOR_INDEX_STRICT_P (ad.indx))) { /* Otherwise, one of the operands cannot be an address register; we reload its value into the scratch register. */ if (true_regnum (sum1) < 1 || true_regnum (sum1) > 15) { emit_move_insn (scratch, sum1); sum1 = scratch; } if (true_regnum (sum2) < 1 || true_regnum (sum2) > 15) { emit_move_insn (scratch, sum2); sum2 = scratch; } /* According to the way these invalid addresses are generated in reload.c, it should never happen (at least on s390) that *neither* of the PLUS components, after find_replacements was applied, is an address register. */ if (sum1 == scratch && sum2 == scratch) { debug_rtx (src); abort (); } src = gen_rtx_PLUS (Pmode, sum1, sum2); } /* Emit the LOAD ADDRESS pattern. Note that reload of PLUS is only ever performed on addresses, so we can mark the sum as legitimate for LA in any case. */ s390_load_address (target, src); } /* Decompose a RTL expression ADDR for a memory address into its components, returned in OUT. Returns 0 if ADDR is not a valid memory address, nonzero otherwise. If OUT is NULL, don't return the components, but check for validity only. Note: Only addresses in canonical form are recognized. LEGITIMIZE_ADDRESS should convert non-canonical forms to the canonical form so that they will be recognized. */ static int s390_decompose_address (addr, out) register rtx addr; struct s390_address *out; { rtx base = NULL_RTX; rtx indx = NULL_RTX; rtx disp = NULL_RTX; int pointer = FALSE; /* Decompose address into base + index + displacement. */ if (GET_CODE (addr) == REG || GET_CODE (addr) == UNSPEC) base = addr; else if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0); rtx op1 = XEXP (addr, 1); enum rtx_code code0 = GET_CODE (op0); enum rtx_code code1 = GET_CODE (op1); if (code0 == REG || code0 == UNSPEC) { if (code1 == REG || code1 == UNSPEC) { indx = op0; /* index + base */ base = op1; } else { base = op0; /* base + displacement */ disp = op1; } } else if (code0 == PLUS) { indx = XEXP (op0, 0); /* index + base + disp */ base = XEXP (op0, 1); disp = op1; } else { return FALSE; } } else disp = addr; /* displacement */ /* Prefer to use pointer as base, not index. */ if (base && indx) { int base_ptr = GET_CODE (base) == UNSPEC || (REG_P (base) && REG_POINTER (base)); int indx_ptr = GET_CODE (indx) == UNSPEC || (REG_P (indx) && REG_POINTER (indx)); if (!base_ptr && indx_ptr) { rtx tmp = base; base = indx; indx = tmp; } } /* Validate base register. */ if (base) { if (GET_CODE (base) == UNSPEC) { if (XVECLEN (base, 0) != 1 || XINT (base, 1) != 101) return FALSE; base = XVECEXP (base, 0, 0); pointer = TRUE; } if (GET_CODE (base) != REG || GET_MODE (base) != Pmode) return FALSE; if (REGNO (base) == BASE_REGISTER || REGNO (base) == STACK_POINTER_REGNUM || REGNO (base) == FRAME_POINTER_REGNUM || ((reload_completed || reload_in_progress) && frame_pointer_needed && REGNO (base) == HARD_FRAME_POINTER_REGNUM) || REGNO (base) == ARG_POINTER_REGNUM || (REGNO (base) >= FIRST_VIRTUAL_REGISTER && REGNO (base) <= LAST_VIRTUAL_REGISTER) || (flag_pic && REGNO (base) == PIC_OFFSET_TABLE_REGNUM)) pointer = TRUE; } /* Validate index register. */ if (indx) { if (GET_CODE (indx) == UNSPEC) { if (XVECLEN (indx, 0) != 1 || XINT (indx, 1) != 101) return FALSE; indx = XVECEXP (indx, 0, 0); pointer = TRUE; } if (GET_CODE (indx) != REG || GET_MODE (indx) != Pmode) return FALSE; if (REGNO (indx) == BASE_REGISTER || REGNO (indx) == STACK_POINTER_REGNUM || REGNO (indx) == FRAME_POINTER_REGNUM || ((reload_completed || reload_in_progress) && frame_pointer_needed && REGNO (indx) == HARD_FRAME_POINTER_REGNUM) || REGNO (indx) == ARG_POINTER_REGNUM || (REGNO (indx) >= FIRST_VIRTUAL_REGISTER && REGNO (indx) <= LAST_VIRTUAL_REGISTER) || (flag_pic && REGNO (indx) == PIC_OFFSET_TABLE_REGNUM)) pointer = TRUE; } /* Validate displacement. */ if (disp) { /* Allow integer constant in range. */ if (GET_CODE (disp) == CONST_INT) { /* If the argument pointer is involved, the displacement will change later anyway as the argument pointer gets eliminated. This could make a valid displacement invalid, but it is more likely to make an invalid displacement valid, because we sometimes access the register save area via negative offsets to the arg pointer. Thus we don't check the displacement for validity here. If after elimination the displacement turns out to be invalid after all, this is fixed up by reload in any case. */ if (base != arg_pointer_rtx && indx != arg_pointer_rtx) { if (INTVAL (disp) < 0 || INTVAL (disp) >= 4096) return FALSE; } } /* In the small-PIC case, the linker converts @GOT12 and @GOTNTPOFF offsets to possible displacements. */ else if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == UNSPEC && (XINT (XEXP (disp, 0), 1) == 110 || XINT (XEXP (disp, 0), 1) == UNSPEC_GOTNTPOFF)) { if (flag_pic != 1) return FALSE; pointer = TRUE; } /* Accept chunkfied literal pool symbol references. */ else if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == MINUS && GET_CODE (XEXP (XEXP (disp, 0), 0)) == LABEL_REF && GET_CODE (XEXP (XEXP (disp, 0), 1)) == LABEL_REF) { pointer = TRUE; } /* Likewise if a constant offset is present. */ else if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT && GET_CODE (XEXP (XEXP (disp, 0), 0)) == MINUS && GET_CODE (XEXP (XEXP (XEXP (disp, 0), 0), 0)) == LABEL_REF && GET_CODE (XEXP (XEXP (XEXP (disp, 0), 0), 1)) == LABEL_REF) { pointer = TRUE; } /* We can convert literal pool addresses to displacements by basing them off the base register. */ else { /* In some cases, we can accept an additional small constant offset. Split these off here. */ unsigned int offset = 0; if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT) { offset = INTVAL (XEXP (XEXP (disp, 0), 1)); disp = XEXP (XEXP (disp, 0), 0); } /* Now we must have a literal pool address. */ if (GET_CODE (disp) != SYMBOL_REF || !CONSTANT_POOL_ADDRESS_P (disp)) return FALSE; /* If we have an offset, make sure it does not exceed the size of the constant pool entry. */ if (offset && offset >= GET_MODE_SIZE (get_pool_mode (disp))) return FALSE; /* Either base or index must be free to hold the base register. */ if (base && indx) return FALSE; /* Convert the address. */ if (base) indx = gen_rtx_REG (Pmode, BASE_REGISTER); else base = gen_rtx_REG (Pmode, BASE_REGISTER); disp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, disp), 100); disp = gen_rtx_CONST (Pmode, disp); if (offset) disp = plus_constant (disp, offset); pointer = TRUE; } } if (!base && !indx) pointer = TRUE; if (out) { out->base = base; out->indx = indx; out->disp = disp; out->pointer = pointer; } return TRUE; } /* Return nonzero if ADDR is a valid memory address. STRICT specifies whether strict register checking applies. */ int legitimate_address_p (mode, addr, strict) enum machine_mode mode ATTRIBUTE_UNUSED; register rtx addr; int strict; { struct s390_address ad; if (!s390_decompose_address (addr, &ad)) return FALSE; if (strict) { if (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base)) return FALSE; if (ad.indx && !REG_OK_FOR_INDEX_STRICT_P (ad.indx)) return FALSE; } else { if (ad.base && !REG_OK_FOR_BASE_NONSTRICT_P (ad.base)) return FALSE; if (ad.indx && !REG_OK_FOR_INDEX_NONSTRICT_P (ad.indx)) return FALSE; } return TRUE; } /* Return 1 if OP is a valid operand for the LA instruction. In 31-bit, we need to prove that the result is used as an address, as LA performs only a 31-bit addition. */ int legitimate_la_operand_p (op) register rtx op; { struct s390_address addr; if (!s390_decompose_address (op, &addr)) return FALSE; if (TARGET_64BIT || addr.pointer) return TRUE; return FALSE; } /* Return 1 if OP is a valid operand for the LA instruction, and we prefer to use LA over addition to compute it. */ int preferred_la_operand_p (op) register rtx op; { struct s390_address addr; if (!s390_decompose_address (op, &addr)) return FALSE; if (!TARGET_64BIT && !addr.pointer) return FALSE; if (addr.pointer) return TRUE; if ((addr.base && REG_P (addr.base) && REG_POINTER (addr.base)) || (addr.indx && REG_P (addr.indx) && REG_POINTER (addr.indx))) return TRUE; return FALSE; } /* Emit a forced load-address operation to load SRC into DST. This will use the LOAD ADDRESS instruction even in situations where legitimate_la_operand_p (SRC) returns false. */ void s390_load_address (dst, src) rtx dst; rtx src; { if (TARGET_64BIT) emit_move_insn (dst, src); else emit_insn (gen_force_la_31 (dst, src)); } /* Return a legitimate reference for ORIG (an address) using the register REG. If REG is 0, a new pseudo is generated. There are two types of references that must be handled: 1. Global data references must load the address from the GOT, via the PIC reg. An insn is emitted to do this load, and the reg is returned. 2. Static data references, constant pool addresses, and code labels compute the address as an offset from the GOT, whose base is in the PIC reg. Static data objects have SYMBOL_REF_FLAG set to differentiate them from global data objects. The returned address is the PIC reg + an unspec constant. GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC reg also appears in the address. */ rtx legitimize_pic_address (orig, reg) rtx orig; rtx reg; { rtx addr = orig; rtx new = orig; rtx base; if (GET_CODE (addr) == LABEL_REF || (GET_CODE (addr) == SYMBOL_REF && (SYMBOL_REF_FLAG (addr) || CONSTANT_POOL_ADDRESS_P (addr)))) { /* This is a local symbol. */ if (TARGET_64BIT && larl_operand (addr, VOIDmode)) { /* Access local symbols PC-relative via LARL. This is the same as in the non-PIC case, so it is handled automatically ... */ } else { /* Access local symbols relative to the literal pool. */ rtx temp = reg? reg : gen_reg_rtx (Pmode); addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 100); addr = gen_rtx_CONST (Pmode, addr); addr = force_const_mem (Pmode, addr); emit_move_insn (temp, addr); base = gen_rtx_REG (Pmode, BASE_REGISTER); base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101); new = gen_rtx_PLUS (Pmode, base, temp); if (reg != 0) { emit_move_insn (reg, new); new = reg; } } } else if (GET_CODE (addr) == SYMBOL_REF) { if (reg == 0) reg = gen_reg_rtx (Pmode); if (flag_pic == 1) { /* Assume GOT offset < 4k. This is handled the same way in both 31- and 64-bit code (@GOT12). */ if (reload_in_progress || reload_completed) regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 110); new = gen_rtx_CONST (Pmode, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new); new = gen_rtx_MEM (Pmode, new); RTX_UNCHANGING_P (new) = 1; emit_move_insn (reg, new); new = reg; } else if (TARGET_64BIT) { /* If the GOT offset might be >= 4k, we determine the position of the GOT entry via a PC-relative LARL (@GOTENT). */ rtx temp = gen_reg_rtx (Pmode); new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 111); new = gen_rtx_CONST (Pmode, new); emit_move_insn (temp, new); new = gen_rtx_MEM (Pmode, temp); RTX_UNCHANGING_P (new) = 1; emit_move_insn (reg, new); new = reg; } else { /* If the GOT offset might be >= 4k, we have to load it from the literal pool (@GOT). */ rtx temp = gen_reg_rtx (Pmode); if (reload_in_progress || reload_completed) regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1; addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 112); addr = gen_rtx_CONST (Pmode, addr); addr = force_const_mem (Pmode, addr); emit_move_insn (temp, addr); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp); new = gen_rtx_MEM (Pmode, new); RTX_UNCHANGING_P (new) = 1; emit_move_insn (reg, new); new = reg; } } else { if (GET_CODE (addr) == CONST) { addr = XEXP (addr, 0); if (GET_CODE (addr) == UNSPEC) { if (XVECLEN (addr, 0) != 1) abort (); switch (XINT (addr, 1)) { /* If someone moved an @GOT or lt-relative UNSPEC out of the literal pool, force them back in. */ case 100: case 112: case 114: new = force_const_mem (Pmode, orig); break; /* @GOTENT is OK as is. */ case 111: break; /* @PLT is OK as is on 64-bit, must be converted to lt-relative PLT on 31-bit. */ case 113: if (!TARGET_64BIT) { rtx temp = reg? reg : gen_reg_rtx (Pmode); addr = XVECEXP (addr, 0, 0); addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 114); addr = gen_rtx_CONST (Pmode, addr); addr = force_const_mem (Pmode, addr); emit_move_insn (temp, addr); base = gen_rtx_REG (Pmode, BASE_REGISTER); base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101); new = gen_rtx_PLUS (Pmode, base, temp); if (reg != 0) { emit_move_insn (reg, new); new = reg; } } break; /* Everything else cannot happen. */ default: abort (); } } else if (GET_CODE (addr) != PLUS) abort (); } if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1); /* Check first to see if this is a constant offset from a local symbol reference. */ if ((GET_CODE (op0) == LABEL_REF || (GET_CODE (op0) == SYMBOL_REF && (SYMBOL_REF_FLAG (op0) || CONSTANT_POOL_ADDRESS_P (op0)))) && GET_CODE (op1) == CONST_INT) { if (TARGET_64BIT && larl_operand (op0, VOIDmode)) { if (INTVAL (op1) & 1) { /* LARL can't handle odd offsets, so emit a pair of LARL and LA. */ rtx temp = reg? reg : gen_reg_rtx (Pmode); if (INTVAL (op1) < 0 || INTVAL (op1) >= 4096) { int even = INTVAL (op1) - 1; op0 = gen_rtx_PLUS (Pmode, op0, GEN_INT (even)); op0 = gen_rtx_CONST (Pmode, op0); op1 = GEN_INT (1); } emit_move_insn (temp, op0); new = gen_rtx_PLUS (Pmode, temp, op1); if (reg != 0) { emit_move_insn (reg, new); new = reg; } } else { /* If the offset is even, we can just use LARL. This will happen automatically. */ } } else { /* Access local symbols relative to the literal pool. */ rtx temp = reg? reg : gen_reg_rtx (Pmode); addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), 100); addr = gen_rtx_PLUS (Pmode, addr, op1); addr = gen_rtx_CONST (Pmode, addr); addr = force_const_mem (Pmode, addr); emit_move_insn (temp, addr); base = gen_rtx_REG (Pmode, BASE_REGISTER); base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101); new = gen_rtx_PLUS (Pmode, base, temp); if (reg != 0) { emit_move_insn (reg, new); new = reg; } } } /* Now, check whether it is an LT-relative symbol plus offset that was pulled out of the literal pool. Force it back in. */ else if (GET_CODE (op0) == UNSPEC && GET_CODE (op1) == CONST_INT && XINT (op0, 1) == 100) { if (XVECLEN (op0, 0) != 1) abort (); new = force_const_mem (Pmode, orig); } /* Otherwise, compute the sum. */ else { base = legitimize_pic_address (XEXP (addr, 0), reg); new = legitimize_pic_address (XEXP (addr, 1), base == reg ? NULL_RTX : reg); if (GET_CODE (new) == CONST_INT) new = plus_constant (base, INTVAL (new)); else { if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1))) { base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0)); new = XEXP (new, 1); } new = gen_rtx_PLUS (Pmode, base, new); } if (GET_CODE (new) == CONST) new = XEXP (new, 0); new = force_operand (new, 0); } } } return new; } /* Load the thread pointer into a register. */ static rtx get_thread_pointer () { rtx tp; tp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TP); tp = force_reg (Pmode, tp); mark_reg_pointer (tp, BITS_PER_WORD); return tp; } /* Construct the SYMBOL_REF for the tls_get_offset function. */ static GTY(()) rtx s390_tls_symbol; rtx s390_tls_get_offset () { if (!s390_tls_symbol) s390_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_offset"); return s390_tls_symbol; } /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute this (thread-local) address. REG may be used as temporary. */ static rtx legitimize_tls_address (addr, reg) rtx addr; rtx reg; { rtx new, tls_call, temp, base, r2, insn; if (GET_CODE (addr) == SYMBOL_REF) switch (tls_symbolic_operand (addr)) { case TLS_MODEL_GLOBAL_DYNAMIC: start_sequence (); r2 = gen_rtx_REG (Pmode, 2); tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_TLSGD); new = gen_rtx_CONST (Pmode, tls_call); new = force_const_mem (Pmode, new); emit_move_insn (r2, new); emit_call_insn (gen_call_value_tls (r2, tls_call)); insn = get_insns (); end_sequence (); new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF); temp = gen_reg_rtx (Pmode); emit_libcall_block (insn, temp, r2, new); new = gen_rtx_PLUS (Pmode, get_thread_pointer (), temp); if (reg != 0) { s390_load_address (reg, new); new = reg; } break; case TLS_MODEL_LOCAL_DYNAMIC: start_sequence (); r2 = gen_rtx_REG (Pmode, 2); tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM); new = gen_rtx_CONST (Pmode, tls_call); new = force_const_mem (Pmode, new); emit_move_insn (r2, new); emit_call_insn (gen_call_value_tls (r2, tls_call)); insn = get_insns (); end_sequence (); new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM_NTPOFF); temp = gen_reg_rtx (Pmode); emit_libcall_block (insn, temp, r2, new); new = gen_rtx_PLUS (Pmode, get_thread_pointer (), temp); base = gen_reg_rtx (Pmode); s390_load_address (base, new); new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_DTPOFF); new = gen_rtx_CONST (Pmode, new); new = force_const_mem (Pmode, new); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new); new = gen_rtx_PLUS (Pmode, base, temp); if (reg != 0) { s390_load_address (reg, new); new = reg; } break; case TLS_MODEL_INITIAL_EXEC: if (flag_pic == 1) { /* Assume GOT offset < 4k. This is handled the same way in both 31- and 64-bit code. */ if (reload_in_progress || reload_completed) regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF); new = gen_rtx_CONST (Pmode, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new); new = gen_rtx_MEM (Pmode, new); RTX_UNCHANGING_P (new) = 1; temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new); } else if (TARGET_64BIT) { /* If the GOT offset might be >= 4k, we determine the position of the GOT entry via a PC-relative LARL. */ new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF); new = gen_rtx_CONST (Pmode, new); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new); new = gen_rtx_MEM (Pmode, temp); RTX_UNCHANGING_P (new) = 1; temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new); } else if (flag_pic) { /* If the GOT offset might be >= 4k, we have to load it from the literal pool. */ if (reload_in_progress || reload_completed) regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF); new = gen_rtx_CONST (Pmode, new); new = force_const_mem (Pmode, new); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp); new = gen_rtx_MEM (Pmode, new); RTX_UNCHANGING_P (new) = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, new, addr), UNSPEC_TLS_LOAD); temp = gen_reg_rtx (Pmode); emit_insn (gen_rtx_SET (Pmode, temp, new)); } else { /* In position-dependent code, load the absolute address of the GOT entry from the literal pool. */ new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF); new = gen_rtx_CONST (Pmode, new); new = force_const_mem (Pmode, new); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new); new = temp; new = gen_rtx_MEM (Pmode, new); RTX_UNCHANGING_P (new) = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, new, addr), UNSPEC_TLS_LOAD); temp = gen_reg_rtx (Pmode); emit_insn (gen_rtx_SET (Pmode, temp, new)); } new = gen_rtx_PLUS (Pmode, get_thread_pointer (), temp); if (reg != 0) { s390_load_address (reg, new); new = reg; } break; case TLS_MODEL_LOCAL_EXEC: new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF); new = gen_rtx_CONST (Pmode, new); new = force_const_mem (Pmode, new); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new); new = gen_rtx_PLUS (Pmode, get_thread_pointer (), temp); if (reg != 0) { s390_load_address (reg, new); new = reg; } break; default: abort (); } else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == UNSPEC) { switch (XINT (XEXP (addr, 0), 1)) { case UNSPEC_INDNTPOFF: if (TARGET_64BIT) new = addr; else abort (); break; default: abort (); } } else abort (); /* for now ... */ return new; } /* Emit insns to move operands[1] into operands[0]. */ void emit_symbolic_move (operands) rtx *operands; { rtx temp = no_new_pseudos ? operands[0] : gen_reg_rtx (Pmode); if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (Pmode, operands[1]); else if (TLS_SYMBOLIC_CONST (operands[1])) operands[1] = legitimize_tls_address (operands[1], temp); else if (flag_pic) operands[1] = legitimize_pic_address (operands[1], temp); } /* Try machine-dependent ways of modifying an illegitimate address X to be legitimate. If we find one, return the new, valid address. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE is the mode of the operand pointed to by X. When -fpic is used, special handling is needed for symbolic references. See comments by legitimize_pic_address for details. */ rtx legitimize_address (x, oldx, mode) register rtx x; register rtx oldx ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; { rtx constant_term = const0_rtx; if (TLS_SYMBOLIC_CONST (x)) { x = legitimize_tls_address (x, 0); if (legitimate_address_p (mode, x, FALSE)) return x; } else if (flag_pic) { if (SYMBOLIC_CONST (x) || (GET_CODE (x) == PLUS && (SYMBOLIC_CONST (XEXP (x, 0)) || SYMBOLIC_CONST (XEXP (x, 1))))) x = legitimize_pic_address (x, 0); if (legitimate_address_p (mode, x, FALSE)) return x; } x = eliminate_constant_term (x, &constant_term); /* Optimize loading of large displacements by splitting them into the multiple of 4K and the rest; this allows the former to be CSE'd if possible. Don't do this if the displacement is added to a register pointing into the stack frame, as the offsets will change later anyway. */ if (GET_CODE (constant_term) == CONST_INT && (INTVAL (constant_term) < 0 || INTVAL (constant_term) >= 4096) && !(REG_P (x) && REGNO_PTR_FRAME_P (REGNO (x)))) { HOST_WIDE_INT lower = INTVAL (constant_term) & 0xfff; HOST_WIDE_INT upper = INTVAL (constant_term) ^ lower; rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (GEN_INT (upper), temp); if (val != temp) emit_move_insn (temp, val); x = gen_rtx_PLUS (Pmode, x, temp); constant_term = GEN_INT (lower); } if (GET_CODE (x) == PLUS) { if (GET_CODE (XEXP (x, 0)) == REG) { register rtx temp = gen_reg_rtx (Pmode); register rtx val = force_operand (XEXP (x, 1), temp); if (val != temp) emit_move_insn (temp, val); x = gen_rtx_PLUS (Pmode, XEXP (x, 0), temp); } else if (GET_CODE (XEXP (x, 1)) == REG) { register rtx temp = gen_reg_rtx (Pmode); register rtx val = force_operand (XEXP (x, 0), temp); if (val != temp) emit_move_insn (temp, val); x = gen_rtx_PLUS (Pmode, temp, XEXP (x, 1)); } } if (constant_term != const0_rtx) x = gen_rtx_PLUS (Pmode, x, constant_term); return x; } /* Emit code to move LEN bytes from DST to SRC. */ void s390_expand_movstr (dst, src, len) rtx dst; rtx src; rtx len; { rtx (*gen_short) PARAMS ((rtx, rtx, rtx)) = TARGET_64BIT ? gen_movstr_short_64 : gen_movstr_short_31; rtx (*gen_long) PARAMS ((rtx, rtx, rtx, rtx)) = TARGET_64BIT ? gen_movstr_long_64 : gen_movstr_long_31; if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256) { if (INTVAL (len) > 0) emit_insn ((*gen_short) (dst, src, GEN_INT (INTVAL (len) - 1))); } else if (TARGET_MVCLE) { enum machine_mode double_mode = TARGET_64BIT ? TImode : DImode; enum machine_mode single_mode = TARGET_64BIT ? DImode : SImode; rtx reg0 = gen_reg_rtx (double_mode); rtx reg1 = gen_reg_rtx (double_mode); emit_insn (gen_rtx_CLOBBER (VOIDmode, reg0)); emit_insn (gen_rtx_CLOBBER (VOIDmode, reg1)); emit_move_insn (gen_highpart (single_mode, reg0), force_operand (XEXP (dst, 0), NULL_RTX)); emit_move_insn (gen_highpart (single_mode, reg1), force_operand (XEXP (src, 0), NULL_RTX)); convert_move (gen_lowpart (single_mode, reg0), len, 1); convert_move (gen_lowpart (single_mode, reg1), len, 1); emit_insn ((*gen_long) (reg0, reg1, reg0, reg1)); } else { rtx dst_addr, src_addr, count, blocks, temp; rtx end_label = gen_label_rtx (); enum machine_mode mode; tree type; mode = GET_MODE (len); if (mode == VOIDmode) mode = word_mode; type = (*lang_hooks.types.type_for_mode) (mode, 1); if (!type) abort (); dst_addr = gen_reg_rtx (Pmode); src_addr = gen_reg_rtx (Pmode); count = gen_reg_rtx (mode); blocks = gen_reg_rtx (mode); convert_move (count, len, 1); emit_cmp_and_jump_insns (count, const0_rtx, EQ, NULL_RTX, mode, 1, end_label); emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX)); emit_move_insn (src_addr, force_operand (XEXP (src, 0), NULL_RTX)); dst = change_address (dst, VOIDmode, dst_addr); src = change_address (src, VOIDmode, src_addr); temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, 0); if (temp != count) emit_move_insn (count, temp); temp = expand_binop (mode, ashr_optab, count, GEN_INT (8), blocks, 1, 0); if (temp != blocks) emit_move_insn (blocks, temp); expand_start_loop (1); expand_exit_loop_top_cond (0, build (NE_EXPR, type, make_tree (type, blocks), make_tree (type, const0_rtx))); emit_insn ((*gen_short) (dst, src, GEN_INT (255))); s390_load_address (dst_addr, gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256))); s390_load_address (src_addr, gen_rtx_PLUS (Pmode, src_addr, GEN_INT (256))); temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, 0); if (temp != blocks) emit_move_insn (blocks, temp); expand_end_loop (); emit_insn ((*gen_short) (dst, src, convert_to_mode (word_mode, count, 1))); emit_label (end_label); } } /* Emit code to clear LEN bytes at DST. */ void s390_expand_clrstr (dst, len) rtx dst; rtx len; { rtx (*gen_short) PARAMS ((rtx, rtx)) = TARGET_64BIT ? gen_clrstr_short_64 : gen_clrstr_short_31; rtx (*gen_long) PARAMS ((rtx, rtx, rtx)) = TARGET_64BIT ? gen_clrstr_long_64 : gen_clrstr_long_31; if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256) { if (INTVAL (len) > 0) emit_insn ((*gen_short) (dst, GEN_INT (INTVAL (len) - 1))); } else if (TARGET_MVCLE) { enum machine_mode double_mode = TARGET_64BIT ? TImode : DImode; enum machine_mode single_mode = TARGET_64BIT ? DImode : SImode; rtx reg0 = gen_reg_rtx (double_mode); rtx reg1 = gen_reg_rtx (double_mode); emit_insn (gen_rtx_CLOBBER (VOIDmode, reg0)); emit_insn (gen_rtx_CLOBBER (VOIDmode, reg1)); emit_move_insn (gen_highpart (single_mode, reg0), force_operand (XEXP (dst, 0), NULL_RTX)); convert_move (gen_lowpart (single_mode, reg0), len, 1); emit_move_insn (gen_highpart (single_mode, reg1), const0_rtx); emit_move_insn (gen_lowpart (single_mode, reg1), const0_rtx); emit_insn ((*gen_long) (reg0, reg1, reg0)); } else { rtx dst_addr, src_addr, count, blocks, temp; rtx end_label = gen_label_rtx (); enum machine_mode mode; tree type; mode = GET_MODE (len); if (mode == VOIDmode) mode = word_mode; type = (*lang_hooks.types.type_for_mode) (mode, 1); if (!type) abort (); dst_addr = gen_reg_rtx (Pmode); src_addr = gen_reg_rtx (Pmode); count = gen_reg_rtx (mode); blocks = gen_reg_rtx (mode); convert_move (count, len, 1); emit_cmp_and_jump_insns (count, const0_rtx, EQ, NULL_RTX, mode, 1, end_label); emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX)); dst = change_address (dst, VOIDmode, dst_addr); temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, 0); if (temp != count) emit_move_insn (count, temp); temp = expand_binop (mode, ashr_optab, count, GEN_INT (8), blocks, 1, 0); if (temp != blocks) emit_move_insn (blocks, temp); expand_start_loop (1); expand_exit_loop_top_cond (0, build (NE_EXPR, type, make_tree (type, blocks), make_tree (type, const0_rtx))); emit_insn ((*gen_short) (dst, GEN_INT (255))); s390_load_address (dst_addr, gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256))); temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, 0); if (temp != blocks) emit_move_insn (blocks, temp); expand_end_loop (); emit_insn ((*gen_short) (dst, convert_to_mode (word_mode, count, 1))); emit_label (end_label); } } /* Emit code to compare LEN bytes at OP0 with those at OP1, and return the result in TARGET. */ void s390_expand_cmpmem (target, op0, op1, len) rtx target; rtx op0; rtx op1; rtx len; { rtx (*gen_short) PARAMS ((rtx, rtx, rtx)) = TARGET_64BIT ? gen_cmpmem_short_64 : gen_cmpmem_short_31; rtx (*gen_long) PARAMS ((rtx, rtx, rtx, rtx)) = TARGET_64BIT ? gen_cmpmem_long_64 : gen_cmpmem_long_31; rtx (*gen_result) PARAMS ((rtx)) = GET_MODE (target) == DImode ? gen_cmpint_di : gen_cmpint_si; op0 = protect_from_queue (op0, 0); op1 = protect_from_queue (op1, 0); len = protect_from_queue (len, 0); if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256) { if (INTVAL (len) > 0) { emit_insn ((*gen_short) (op0, op1, GEN_INT (INTVAL (len) - 1))); emit_insn ((*gen_result) (target)); } else emit_move_insn (target, const0_rtx); } else /* if (TARGET_MVCLE) */ { enum machine_mode double_mode = TARGET_64BIT ? TImode : DImode; enum machine_mode single_mode = TARGET_64BIT ? DImode : SImode; rtx reg0 = gen_reg_rtx (double_mode); rtx reg1 = gen_reg_rtx (double_mode); emit_insn (gen_rtx_CLOBBER (VOIDmode, reg0)); emit_insn (gen_rtx_CLOBBER (VOIDmode, reg1)); emit_move_insn (gen_highpart (single_mode, reg0), force_operand (XEXP (op0, 0), NULL_RTX)); emit_move_insn (gen_highpart (single_mode, reg1), force_operand (XEXP (op1, 0), NULL_RTX)); convert_move (gen_lowpart (single_mode, reg0), len, 1); convert_move (gen_lowpart (single_mode, reg1), len, 1); emit_insn ((*gen_long) (reg0, reg1, reg0, reg1)); emit_insn ((*gen_result) (target)); } #if 0 /* Deactivate for now as profile code cannot cope with CC being live across basic block boundaries. */ else { rtx addr0, addr1, count, blocks, temp; rtx end_label = gen_label_rtx (); enum machine_mode mode; tree type; mode = GET_MODE (len); if (mode == VOIDmode) mode = word_mode; type = (*lang_hooks.types.type_for_mode) (mode, 1); if (!type) abort (); addr0 = gen_reg_rtx (Pmode); addr1 = gen_reg_rtx (Pmode); count = gen_reg_rtx (mode); blocks = gen_reg_rtx (mode); convert_move (count, len, 1); emit_cmp_and_jump_insns (count, const0_rtx, EQ, NULL_RTX, mode, 1, end_label); emit_move_insn (addr0, force_operand (XEXP (op0, 0), NULL_RTX)); emit_move_insn (addr1, force_operand (XEXP (op1, 0), NULL_RTX)); op0 = change_address (op0, VOIDmode, addr0); op1 = change_address (op1, VOIDmode, addr1); temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, 0); if (temp != count) emit_move_insn (count, temp); temp = expand_binop (mode, ashr_optab, count, GEN_INT (8), blocks, 1, 0); if (temp != blocks) emit_move_insn (blocks, temp); expand_start_loop (1); expand_exit_loop_top_cond (0, build (NE_EXPR, type, make_tree (type, blocks), make_tree (type, const0_rtx))); emit_insn ((*gen_short) (op0, op1, GEN_INT (255))); temp = gen_rtx_NE (VOIDmode, gen_rtx_REG (CCSmode, 33), const0_rtx); temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp, gen_rtx_LABEL_REF (VOIDmode, end_label), pc_rtx); temp = gen_rtx_SET (VOIDmode, pc_rtx, temp); emit_jump_insn (temp); s390_load_address (addr0, gen_rtx_PLUS (Pmode, addr0, GEN_INT (256))); s390_load_address (addr1, gen_rtx_PLUS (Pmode, addr1, GEN_INT (256))); temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, 0); if (temp != blocks) emit_move_insn (blocks, temp); expand_end_loop (); emit_insn ((*gen_short) (op0, op1, convert_to_mode (word_mode, count, 1))); emit_label (end_label); emit_insn ((*gen_result) (target)); } #endif } /* This is called from dwarf2out.c via ASM_OUTPUT_DWARF_DTPREL. We need to emit DTP-relative relocations. */ void s390_output_dwarf_dtprel (file, size, x) FILE *file; int size; rtx x; { switch (size) { case 4: fputs ("\t.long\t", file); break; case 8: fputs ("\t.quad\t", file); break; default: abort (); } output_addr_const (file, x); fputs ("@DTPOFF", file); } /* In the name of slightly smaller debug output, and to cater to general assembler losage, recognize various UNSPEC sequences and turn them back into a direct symbol reference. */ rtx s390_simplify_dwarf_addr (orig_x) rtx orig_x; { rtx x = orig_x, y; if (GET_CODE (x) != MEM) return orig_x; x = XEXP (x, 0); if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST && GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM) { y = XEXP (XEXP (x, 1), 0); if (GET_CODE (y) == UNSPEC && XINT (y, 1) == 110) return XVECEXP (y, 0, 0); return orig_x; } if (GET_CODE (x) == CONST) { y = XEXP (x, 0); if (GET_CODE (y) == UNSPEC && XINT (y, 1) == 111) return XVECEXP (y, 0, 0); return orig_x; } return orig_x; } /* Locate some local-dynamic symbol still in use by this function so that we can print its name in local-dynamic base patterns. */ static const char * get_some_local_dynamic_name () { rtx insn; if (cfun->machine->some_ld_name) return cfun->machine->some_ld_name; for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) if (INSN_P (insn) && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0)) return cfun->machine->some_ld_name; abort (); } static int get_some_local_dynamic_name_1 (px, data) rtx *px; void *data ATTRIBUTE_UNUSED; { rtx x = *px; if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) { x = get_pool_constant (x); return for_each_rtx (&x, get_some_local_dynamic_name_1, 0); } if (GET_CODE (x) == SYMBOL_REF && tls_symbolic_operand (x) == TLS_MODEL_LOCAL_DYNAMIC) { cfun->machine->some_ld_name = XSTR (x, 0); return 1; } return 0; } /* Output symbolic constant X in assembler syntax to stdio stream FILE. */ void s390_output_symbolic_const (file, x) FILE *file; rtx x; { switch (GET_CODE (x)) { case CONST: case ZERO_EXTEND: case SIGN_EXTEND: s390_output_symbolic_const (file, XEXP (x, 0)); break; case PLUS: s390_output_symbolic_const (file, XEXP (x, 0)); fprintf (file, "+"); s390_output_symbolic_const (file, XEXP (x, 1)); break; case MINUS: s390_output_symbolic_const (file, XEXP (x, 0)); fprintf (file, "-"); s390_output_symbolic_const (file, XEXP (x, 1)); break; case CONST_INT: case LABEL_REF: case CODE_LABEL: case SYMBOL_REF: output_addr_const (file, x); break; case UNSPEC: if (XVECLEN (x, 0) != 1) output_operand_lossage ("invalid UNSPEC as operand (1)"); switch (XINT (x, 1)) { case 100: case 104: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "-"); s390_output_symbolic_const (file, cfun->machine->literal_pool_label); break; case 105: s390_output_symbolic_const (file, cfun->machine->literal_pool_label); fprintf (file, "-"); s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); break; case 110: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@GOT12"); break; case 111: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@GOTENT"); break; case 112: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@GOT"); break; case 113: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@PLT"); break; case 114: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@PLT-"); s390_output_symbolic_const (file, cfun->machine->literal_pool_label); break; case UNSPEC_TLSGD: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@TLSGD"); break; case UNSPEC_TLSLDM: assemble_name (file, get_some_local_dynamic_name ()); fprintf (file, "@TLSLDM"); break; case UNSPEC_DTPOFF: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@DTPOFF"); break; case UNSPEC_NTPOFF: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@NTPOFF"); break; case UNSPEC_GOTNTPOFF: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@GOTNTPOFF"); break; case UNSPEC_INDNTPOFF: s390_output_symbolic_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@INDNTPOFF"); break; default: output_operand_lossage ("invalid UNSPEC as operand (2)"); break; } break; default: fatal_insn ("UNKNOWN in s390_output_symbolic_const !?", x); break; } } /* Output address operand ADDR in assembler syntax to stdio stream FILE. */ void print_operand_address (file, addr) FILE *file; rtx addr; { struct s390_address ad; if (!s390_decompose_address (addr, &ad) || (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base)) || (ad.indx && !REG_OK_FOR_INDEX_STRICT_P (ad.indx))) output_operand_lossage ("Cannot decompose address."); if (ad.disp) s390_output_symbolic_const (file, ad.disp); else fprintf (file, "0"); if (ad.base && ad.indx) fprintf (file, "(%s,%s)", reg_names[REGNO (ad.indx)], reg_names[REGNO (ad.base)]); else if (ad.base) fprintf (file, "(%s)", reg_names[REGNO (ad.base)]); } /* Output operand X in assembler syntax to stdio stream FILE. CODE specified the format flag. The following format flags are recognized: 'C': print opcode suffix for branch condition. 'D': print opcode suffix for inverse branch condition. 'J': print tls_load/tls_gdcall/tls_ldcall suffix 'O': print only the displacement of a memory reference. 'R': print only the base register of a memory reference. 'N': print the second word of a DImode operand. 'M': print the second word of a TImode operand. 'b': print integer X as if it's an unsigned byte. 'x': print integer X as if it's an unsigned word. 'h': print integer X as if it's a signed word. */ void print_operand (file, x, code) FILE *file; rtx x; int code; { switch (code) { case 'C': fprintf (file, s390_branch_condition_mnemonic (x, FALSE)); return; case 'D': fprintf (file, s390_branch_condition_mnemonic (x, TRUE)); return; case 'J': if (GET_CODE (x) == SYMBOL_REF) { fprintf (file, "%s", ":tls_load:"); output_addr_const (file, x); } else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD) { fprintf (file, "%s", ":tls_gdcall:"); output_addr_const (file, XVECEXP (x, 0, 0)); } else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM) { fprintf (file, "%s", ":tls_ldcall:"); assemble_name (file, get_some_local_dynamic_name ()); } else abort (); return; case 'O': { struct s390_address ad; if (GET_CODE (x) != MEM || !s390_decompose_address (XEXP (x, 0), &ad) || (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base)) || ad.indx) abort (); if (ad.disp) s390_output_symbolic_const (file, ad.disp); else fprintf (file, "0"); } return; case 'R': { struct s390_address ad; if (GET_CODE (x) != MEM || !s390_decompose_address (XEXP (x, 0), &ad) || (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base)) || ad.indx) abort (); if (ad.base) fprintf (file, "%s", reg_names[REGNO (ad.base)]); else fprintf (file, "0"); } return; case 'N': if (GET_CODE (x) == REG) x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1); else if (GET_CODE (x) == MEM) x = change_address (x, VOIDmode, plus_constant (XEXP (x, 0), 4)); else abort (); break; case 'M': if (GET_CODE (x) == REG) x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1); else if (GET_CODE (x) == MEM) x = change_address (x, VOIDmode, plus_constant (XEXP (x, 0), 8)); else abort (); break; } switch (GET_CODE (x)) { case REG: fprintf (file, "%s", reg_names[REGNO (x)]); break; case MEM: output_address (XEXP (x, 0)); break; case CONST: case CODE_LABEL: case LABEL_REF: case SYMBOL_REF: s390_output_symbolic_const (file, x); break; case CONST_INT: if (code == 'b') fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xff); else if (code == 'x') fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xffff); else if (code == 'h') fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((INTVAL (x) & 0xffff) ^ 0x8000) - 0x8000); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case CONST_DOUBLE: if (GET_MODE (x) != VOIDmode) abort (); if (code == 'b') fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xff); else if (code == 'x') fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xffff); else if (code == 'h') fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((CONST_DOUBLE_LOW (x) & 0xffff) ^ 0x8000) - 0x8000); else abort (); break; default: fatal_insn ("UNKNOWN in print_operand !?", x); break; } } /* Target hook for assembling integer objects. We need to define it here to work a round a bug in some versions of GAS, which couldn't handle values smaller than INT_MIN when printed in decimal. */ static bool s390_assemble_integer (x, size, aligned_p) rtx x; unsigned int size; int aligned_p; { if (size == 8 && aligned_p && GET_CODE (x) == CONST_INT && INTVAL (x) < INT_MIN) { fputs ("\t.quad\t", asm_out_file); fprintf (asm_out_file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x)); putc ('\n', asm_out_file); return true; } return default_assemble_integer (x, size, aligned_p); } #define DEBUG_SCHED 0 /* Returns true if register REGNO is used for forming a memory address in expression X. */ static int reg_used_in_mem_p (regno, x) int regno; rtx x; { enum rtx_code code = GET_CODE (x); int i, j; const char *fmt; if (code == MEM) { if (refers_to_regno_p (regno, regno+1, XEXP (x, 0), 0)) return 1; } else if (code == SET && GET_CODE (SET_DEST (x)) == PC) { if (refers_to_regno_p (regno, regno+1, SET_SRC (x), 0)) return 1; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e' && reg_used_in_mem_p (regno, XEXP (x, i))) return 1; else if (fmt[i] == 'E') for (j = 0; j < XVECLEN (x, i); j++) if (reg_used_in_mem_p (regno, XVECEXP (x, i, j))) return 1; } return 0; } /* Returns true if expression DEP_RTX sets an address register used by instruction INSN to address memory. */ static int addr_generation_dependency_p (dep_rtx, insn) rtx dep_rtx; rtx insn; { rtx target, pat; if (GET_CODE (dep_rtx) == SET) { target = SET_DEST (dep_rtx); if (GET_CODE (target) == STRICT_LOW_PART) target = XEXP (target, 0); while (GET_CODE (target) == SUBREG) target = SUBREG_REG (target); if (GET_CODE (target) == REG) { int regno = REGNO (target); if (get_attr_type (insn) == TYPE_LA) { pat = PATTERN (insn); if (GET_CODE (pat) == PARALLEL) { if (XVECLEN (pat, 0) != 2) abort(); pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) == SET) return refers_to_regno_p (regno, regno+1, SET_SRC (pat), 0); else abort(); } else if (get_attr_atype (insn) == ATYPE_MEM) return reg_used_in_mem_p (regno, PATTERN (insn)); } } return 0; } /* Return the modified cost of the dependency of instruction INSN on instruction DEP_INSN through the link LINK. COST is the default cost of that dependency. Data dependencies are all handled without delay. However, if a register is modified and subsequently used as base or index register of a memory reference, at least 4 cycles need to pass between setting and using the register to avoid pipeline stalls. An exception is the LA instruction. An address generated by LA can be used by introducing only a one cycle stall on the pipeline. */ static int s390_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { rtx dep_rtx; int i; /* If the dependence is an anti-dependence, there is no cost. For an output dependence, there is sometimes a cost, but it doesn't seem worth handling those few cases. */ if (REG_NOTE_KIND (link) != 0) return 0; /* If we can't recognize the insns, we can't really do anything. */ if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) return cost; dep_rtx = PATTERN (dep_insn); if (GET_CODE (dep_rtx) == SET) { if (addr_generation_dependency_p (dep_rtx, insn)) { cost += (get_attr_type (dep_insn) == TYPE_LA) ? 1 : 4; if (DEBUG_SCHED) { fprintf (stderr, "\n\nAddress dependency detected: cost %d\n", cost); debug_rtx (dep_insn); debug_rtx (insn); } } } else if (GET_CODE (dep_rtx) == PARALLEL) { for (i = 0; i < XVECLEN (dep_rtx, 0); i++) { if (addr_generation_dependency_p (XVECEXP (dep_rtx, 0, i), insn)) { cost += (get_attr_type (dep_insn) == TYPE_LA) ? 1 : 4; if (DEBUG_SCHED) { fprintf (stderr, "\n\nAddress dependency detected: cost %d\n" ,cost); debug_rtx (dep_insn); debug_rtx (insn); } } } } return cost; } /* A C statement (sans semicolon) to update the integer scheduling priority INSN_PRIORITY (INSN). Reduce the priority to execute the INSN earlier, increase the priority to execute INSN later. Do not define this macro if you do not need to adjust the scheduling priorities of insns. A LA instruction maybe scheduled later, since the pipeline bypasses the calculated value. */ static int s390_adjust_priority (insn, priority) rtx insn ATTRIBUTE_UNUSED; int priority; { if (! INSN_P (insn)) return priority; if (GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER) return priority; switch (get_attr_type (insn)) { default: break; case TYPE_LA: if (priority >= 0 && priority < 0x01000000) priority <<= 3; break; case TYPE_LM: /* LM in epilogue should never be scheduled. This is due to literal access done in function body. The usage of register 13 is not mentioned explicitly, leading to scheduling 'LM' accross this instructions. */ priority = 0x7fffffff; break; } return priority; } /* Split all branches that exceed the maximum distance. Returns true if this created a new literal pool entry. Code generated by this routine is allowed to use TEMP_REG as temporary scratch register. If this is done, TEMP_USED is set to true. */ static int s390_split_branches (temp_reg, temp_used) rtx temp_reg; bool *temp_used; { int new_literal = 0; rtx insn, pat, tmp, target; rtx *label; /* We need correct insn addresses. */ shorten_branches (get_insns ()); /* Find all branches that exceed 64KB, and split them. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) != JUMP_INSN) continue; pat = PATTERN (insn); if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) > 2) pat = XVECEXP (pat, 0, 0); if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx) continue; if (GET_CODE (SET_SRC (pat)) == LABEL_REF) { label = &SET_SRC (pat); } else if (GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE) { if (GET_CODE (XEXP (SET_SRC (pat), 1)) == LABEL_REF) label = &XEXP (SET_SRC (pat), 1); else if (GET_CODE (XEXP (SET_SRC (pat), 2)) == LABEL_REF) label = &XEXP (SET_SRC (pat), 2); else continue; } else continue; if (get_attr_length (insn) <= (TARGET_64BIT ? 6 : 4)) continue; *temp_used = 1; if (TARGET_64BIT) { tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, *label), insn); INSN_ADDRESSES_NEW (tmp, -1); target = temp_reg; } else if (!flag_pic) { new_literal = 1; tmp = force_const_mem (Pmode, *label); tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, tmp), insn); INSN_ADDRESSES_NEW (tmp, -1); target = temp_reg; } else { new_literal = 1; tmp = gen_rtx_UNSPEC (SImode, gen_rtvec (1, *label), 104); tmp = gen_rtx_CONST (SImode, tmp); tmp = force_const_mem (SImode, tmp); tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, tmp), insn); INSN_ADDRESSES_NEW (tmp, -1); target = gen_rtx_REG (Pmode, BASE_REGISTER); target = gen_rtx_PLUS (Pmode, target, temp_reg); } if (!validate_change (insn, label, target, 0)) abort (); } return new_literal; } /* Find a literal pool symbol referenced in RTX X, and store it at REF. Will abort if X contains references to more than one such pool symbol; multiple references to the same symbol are allowed, however. The rtx pointed to by REF must be initialized to NULL_RTX by the caller before calling this routine. */ static void find_constant_pool_ref (x, ref) rtx x; rtx *ref; { int i, j; const char *fmt; if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) { if (*ref == NULL_RTX) *ref = x; else if (*ref != x) abort(); } fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { find_constant_pool_ref (XEXP (x, i), ref); } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (x, i); j++) find_constant_pool_ref (XVECEXP (x, i, j), ref); } } } /* Replace every reference to the literal pool symbol REF in X by the address ADDR. Fix up MEMs as required. */ static void replace_constant_pool_ref (x, ref, addr) rtx *x; rtx ref; rtx addr; { int i, j; const char *fmt; if (*x == ref) abort (); /* Literal pool references can only occur inside a MEM ... */ if (GET_CODE (*x) == MEM) { rtx memref = XEXP (*x, 0); if (memref == ref) { *x = replace_equiv_address (*x, addr); return; } if (GET_CODE (memref) == CONST && GET_CODE (XEXP (memref, 0)) == PLUS && GET_CODE (XEXP (XEXP (memref, 0), 1)) == CONST_INT && XEXP (XEXP (memref, 0), 0) == ref) { HOST_WIDE_INT off = INTVAL (XEXP (XEXP (memref, 0), 1)); *x = replace_equiv_address (*x, plus_constant (addr, off)); return; } } /* ... or a load-address type pattern. */ if (GET_CODE (*x) == SET) { rtx addrref = SET_SRC (*x); if (addrref == ref) { SET_SRC (*x) = addr; return; } if (GET_CODE (addrref) == CONST && GET_CODE (XEXP (addrref, 0)) == PLUS && GET_CODE (XEXP (XEXP (addrref, 0), 1)) == CONST_INT && XEXP (XEXP (addrref, 0), 0) == ref) { HOST_WIDE_INT off = INTVAL (XEXP (XEXP (addrref, 0), 1)); SET_SRC (*x) = plus_constant (addr, off); return; } } fmt = GET_RTX_FORMAT (GET_CODE (*x)); for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { replace_constant_pool_ref (&XEXP (*x, i), ref, addr); } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (*x, i); j++) replace_constant_pool_ref (&XVECEXP (*x, i, j), ref, addr); } } } /* Check whether ADDR is an address that uses the base register, without actually constituting a literal pool access. (This happens in 31-bit PIC mode, where the base register is used as anchor for relative addressing of local symbols.) Returns 1 if the base register occupies the base slot, returns 2 if the base register occupies the index slot, returns 0 if the address is not of this form. */ static int find_base_register_in_addr (addr) struct s390_address *addr; { /* If DISP is complex, we might have a literal pool reference. */ if (addr->disp && GET_CODE (addr->disp) != CONST_INT) return 0; if (addr->base && REG_P (addr->base) && REGNO (addr->base) == BASE_REGISTER) return 1; if (addr->indx && REG_P (addr->indx) && REGNO (addr->indx) == BASE_REGISTER) return 2; return 0; } /* Return true if X contains an address that uses the base register, without actually constituting a literal pool access. */ static bool find_base_register_ref (x) rtx x; { bool retv = FALSE; struct s390_address addr; int i, j; const char *fmt; /* Addresses can only occur inside a MEM ... */ if (GET_CODE (x) == MEM) { if (s390_decompose_address (XEXP (x, 0), &addr) && find_base_register_in_addr (&addr)) return TRUE; } /* ... or a load-address type pattern. */ if (GET_CODE (x) == SET && GET_CODE (SET_DEST (x)) == REG) { if (s390_decompose_address (SET_SRC (x), &addr) && find_base_register_in_addr (&addr)) return TRUE; } fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { retv |= find_base_register_ref (XEXP (x, i)); } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (x, i); j++) retv |= find_base_register_ref (XVECEXP (x, i, j)); } } return retv; } /* If X contains an address that uses the base register, without actually constituting a literal pool access, replace the base register with REPL in all such cases. Handles both MEMs and load address patterns. */ static void replace_base_register_ref (x, repl) rtx *x; rtx repl; { struct s390_address addr; rtx new_addr; int i, j, pos; const char *fmt; /* Addresses can only occur inside a MEM ... */ if (GET_CODE (*x) == MEM) { if (s390_decompose_address (XEXP (*x, 0), &addr) && (pos = find_base_register_in_addr (&addr))) { if (pos == 1) addr.base = repl; else addr.indx = repl; new_addr = addr.base; if (addr.indx) new_addr = gen_rtx_PLUS (Pmode, new_addr, addr.indx); if (addr.disp) new_addr = gen_rtx_PLUS (Pmode, new_addr, addr.disp); *x = replace_equiv_address (*x, new_addr); return; } } /* ... or a load-address type pattern. */ if (GET_CODE (*x) == SET && GET_CODE (SET_DEST (*x)) == REG) { if (s390_decompose_address (SET_SRC (*x), &addr) && (pos = find_base_register_in_addr (&addr))) { if (pos == 1) addr.base = repl; else addr.indx = repl; new_addr = addr.base; if (addr.indx) new_addr = gen_rtx_PLUS (Pmode, new_addr, addr.indx); if (addr.disp) new_addr = gen_rtx_PLUS (Pmode, new_addr, addr.disp); SET_SRC (*x) = new_addr; return; } } fmt = GET_RTX_FORMAT (GET_CODE (*x)); for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { replace_base_register_ref (&XEXP (*x, i), repl); } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (*x, i); j++) replace_base_register_ref (&XVECEXP (*x, i, j), repl); } } } /* We keep a list of constants we which we have to add to internal constant tables in the middle of large functions. */ #define NR_C_MODES 6 enum machine_mode constant_modes[NR_C_MODES] = { DFmode, DImode, SFmode, SImode, HImode, QImode }; rtx (*gen_consttable[NR_C_MODES])(rtx) = { gen_consttable_df, gen_consttable_di, gen_consttable_sf, gen_consttable_si, gen_consttable_hi, gen_consttable_qi }; struct constant { struct constant *next; rtx value; rtx label; }; struct constant_pool { struct constant_pool *next; rtx first_insn; rtx pool_insn; bitmap insns; struct constant *constants[NR_C_MODES]; rtx label; int size; bool anchor; }; static struct constant_pool * s390_chunkify_start PARAMS ((rtx, bool *)); static void s390_chunkify_finish PARAMS ((struct constant_pool *, rtx)); static void s390_chunkify_cancel PARAMS ((struct constant_pool *)); static struct constant_pool *s390_start_pool PARAMS ((struct constant_pool **, rtx)); static void s390_end_pool PARAMS ((struct constant_pool *, rtx)); static void s390_add_pool_insn PARAMS ((struct constant_pool *, rtx)); static struct constant_pool *s390_find_pool PARAMS ((struct constant_pool *, rtx)); static void s390_add_constant PARAMS ((struct constant_pool *, rtx, enum machine_mode)); static rtx s390_find_constant PARAMS ((struct constant_pool *, rtx, enum machine_mode)); static void s390_add_anchor PARAMS ((struct constant_pool *)); static rtx s390_dump_pool PARAMS ((struct constant_pool *)); static void s390_free_pool PARAMS ((struct constant_pool *)); /* Create new constant pool covering instructions starting at INSN and chain it to the end of POOL_LIST. */ static struct constant_pool * s390_start_pool (pool_list, insn) struct constant_pool **pool_list; rtx insn; { struct constant_pool *pool, **prev; int i; pool = (struct constant_pool *) xmalloc (sizeof *pool); pool->next = NULL; for (i = 0; i < NR_C_MODES; i++) pool->constants[i] = NULL; pool->label = gen_label_rtx (); pool->first_insn = insn; pool->pool_insn = NULL_RTX; pool->insns = BITMAP_XMALLOC (); pool->size = 0; pool->anchor = FALSE; for (prev = pool_list; *prev; prev = &(*prev)->next) ; *prev = pool; return pool; } /* End range of instructions covered by POOL at INSN and emit placeholder insn representing the pool. */ static void s390_end_pool (pool, insn) struct constant_pool *pool; rtx insn; { rtx pool_size = GEN_INT (pool->size + 8 /* alignment slop */); if (!insn) insn = get_last_insn (); pool->pool_insn = emit_insn_after (gen_pool (pool_size), insn); INSN_ADDRESSES_NEW (pool->pool_insn, -1); } /* Add INSN to the list of insns covered by POOL. */ static void s390_add_pool_insn (pool, insn) struct constant_pool *pool; rtx insn; { bitmap_set_bit (pool->insns, INSN_UID (insn)); } /* Return pool out of POOL_LIST that covers INSN. */ static struct constant_pool * s390_find_pool (pool_list, insn) struct constant_pool *pool_list; rtx insn; { struct constant_pool *pool; for (pool = pool_list; pool; pool = pool->next) if (bitmap_bit_p (pool->insns, INSN_UID (insn))) break; return pool; } /* Add constant VAL of mode MODE to the constant pool POOL. */ static void s390_add_constant (pool, val, mode) struct constant_pool *pool; rtx val; enum machine_mode mode; { struct constant *c; int i; for (i = 0; i < NR_C_MODES; i++) if (constant_modes[i] == mode) break; if (i == NR_C_MODES) abort (); for (c = pool->constants[i]; c != NULL; c = c->next) if (rtx_equal_p (val, c->value)) break; if (c == NULL) { c = (struct constant *) xmalloc (sizeof *c); c->value = val; c->label = gen_label_rtx (); c->next = pool->constants[i]; pool->constants[i] = c; pool->size += GET_MODE_SIZE (mode); } } /* Find constant VAL of mode MODE in the constant pool POOL. Return an RTX describing the distance from the start of the pool to the location of the new constant. */ static rtx s390_find_constant (pool, val, mode) struct constant_pool *pool; rtx val; enum machine_mode mode; { struct constant *c; rtx offset; int i; for (i = 0; i < NR_C_MODES; i++) if (constant_modes[i] == mode) break; if (i == NR_C_MODES) abort (); for (c = pool->constants[i]; c != NULL; c = c->next) if (rtx_equal_p (val, c->value)) break; if (c == NULL) abort (); offset = gen_rtx_MINUS (Pmode, gen_rtx_LABEL_REF (Pmode, c->label), gen_rtx_LABEL_REF (Pmode, pool->label)); offset = gen_rtx_CONST (Pmode, offset); return offset; } /* Set 'anchor' flag in POOL. */ static void s390_add_anchor (pool) struct constant_pool *pool; { if (!pool->anchor) { pool->anchor = TRUE; pool->size += 4; } } /* Dump out the constants in POOL. */ static rtx s390_dump_pool (pool) struct constant_pool *pool; { struct constant *c; rtx insn; int i; /* Pool start insn switches to proper section and guarantees necessary alignment. */ if (TARGET_64BIT) insn = emit_insn_after (gen_pool_start_64 (), pool->pool_insn); else insn = emit_insn_after (gen_pool_start_31 (), pool->pool_insn); INSN_ADDRESSES_NEW (insn, -1); insn = emit_label_after (pool->label, insn); INSN_ADDRESSES_NEW (insn, -1); /* Emit anchor if we need one. */ if (pool->anchor) { rtx anchor = gen_rtx_LABEL_REF (VOIDmode, pool->label); anchor = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, anchor), 105); anchor = gen_rtx_CONST (VOIDmode, anchor); insn = emit_insn_after (gen_consttable_si (anchor), insn); INSN_ADDRESSES_NEW (insn, -1); } /* Dump constants in descending alignment requirement order, ensuring proper alignment for every constant. */ for (i = 0; i < NR_C_MODES; i++) for (c = pool->constants[i]; c; c = c->next) { /* Convert 104 unspecs to pool-relative references. */ rtx value = c->value; if (GET_CODE (value) == CONST && GET_CODE (XEXP (value, 0)) == UNSPEC && XINT (XEXP (value, 0), 1) == 104 && XVECLEN (XEXP (value, 0), 0) == 1) { value = gen_rtx_MINUS (Pmode, XVECEXP (XEXP (value, 0), 0, 0), gen_rtx_LABEL_REF (VOIDmode, pool->label)); value = gen_rtx_CONST (VOIDmode, value); } insn = emit_label_after (c->label, insn); INSN_ADDRESSES_NEW (insn, -1); insn = emit_insn_after (gen_consttable[i] (value), insn); INSN_ADDRESSES_NEW (insn, -1); } /* Pool end insn switches back to previous section and guarantees necessary alignment. */ if (TARGET_64BIT) insn = emit_insn_after (gen_pool_end_64 (), insn); else insn = emit_insn_after (gen_pool_end_31 (), insn); INSN_ADDRESSES_NEW (insn, -1); insn = emit_barrier_after (insn); INSN_ADDRESSES_NEW (insn, -1); /* Remove placeholder insn. */ remove_insn (pool->pool_insn); return insn; } /* Free all memory used by POOL. */ static void s390_free_pool (pool) struct constant_pool *pool; { int i; for (i = 0; i < NR_C_MODES; i++) { struct constant *c = pool->constants[i]; while (c != NULL) { struct constant *next = c->next; free (c); c = next; } } BITMAP_XFREE (pool->insns); free (pool); } /* Chunkify the literal pool if required. Code generated by this routine is allowed to use TEMP_REG as temporary scratch register. If this is done, TEMP_USED is set to true. */ #define S390_POOL_CHUNK_MIN 0xc00 #define S390_POOL_CHUNK_MAX 0xe00 static struct constant_pool * s390_chunkify_start (temp_reg, temp_used) rtx temp_reg; bool *temp_used; { rtx base_reg = gen_rtx_REG (Pmode, BASE_REGISTER); struct constant_pool *curr_pool = NULL, *pool_list = NULL; int extra_size = 0; bitmap far_labels; rtx insn; rtx (*gen_reload_base) PARAMS ((rtx, rtx)) = TARGET_64BIT? gen_reload_base_64 : gen_reload_base_31; /* Do we need to chunkify the literal pool? */ if (get_pool_size () < S390_POOL_CHUNK_MAX) return NULL; /* We need correct insn addresses. */ shorten_branches (get_insns ()); /* Scan all insns and move literals to pool chunks. Also, emit anchor reload insns before every insn that uses the literal pool base register as anchor pointer. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN) { rtx pool_ref = NULL_RTX; find_constant_pool_ref (PATTERN (insn), &pool_ref); if (pool_ref) { if (!curr_pool) curr_pool = s390_start_pool (&pool_list, insn); s390_add_constant (curr_pool, get_pool_constant (pool_ref), get_pool_mode (pool_ref)); s390_add_pool_insn (curr_pool, insn); } else if (!TARGET_64BIT && flag_pic && find_base_register_ref (PATTERN (insn))) { rtx new = gen_reload_anchor (temp_reg, base_reg); new = emit_insn_before (new, insn); INSN_ADDRESSES_NEW (new, INSN_ADDRESSES (INSN_UID (insn))); extra_size += 8; *temp_used = 1; if (!curr_pool) curr_pool = s390_start_pool (&pool_list, new); s390_add_anchor (curr_pool); s390_add_pool_insn (curr_pool, insn); } } if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CODE_LABEL) if (curr_pool) s390_add_pool_insn (curr_pool, insn); if (!curr_pool || INSN_ADDRESSES_SIZE () <= (size_t) INSN_UID (insn) || INSN_ADDRESSES (INSN_UID (insn)) == -1) continue; if (TARGET_64BIT) { if (curr_pool->size < S390_POOL_CHUNK_MAX) continue; s390_end_pool (curr_pool, NULL_RTX); curr_pool = NULL; } else { int chunk_size = INSN_ADDRESSES (INSN_UID (insn)) - INSN_ADDRESSES (INSN_UID (curr_pool->first_insn)) + extra_size; /* We will later have to insert base register reload insns. Those will have an effect on code size, which we need to consider here. This calculation makes rather pessimistic worst-case assumptions. */ if (GET_CODE (insn) == CODE_LABEL) extra_size += 6; if (chunk_size < S390_POOL_CHUNK_MIN && curr_pool->size < S390_POOL_CHUNK_MIN) continue; /* Pool chunks can only be inserted after BARRIERs ... */ if (GET_CODE (insn) == BARRIER) { s390_end_pool (curr_pool, insn); curr_pool = NULL; extra_size = 0; } /* ... so if we don't find one in time, create one. */ else if ((chunk_size > S390_POOL_CHUNK_MAX || curr_pool->size > S390_POOL_CHUNK_MAX)) { rtx label, jump, barrier; /* We can insert the barrier only after a 'real' insn. */ if (GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN) continue; if (get_attr_length (insn) == 0) continue; /* Don't separate insns created by s390_split_branches. */ if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET && rtx_equal_p (SET_DEST (PATTERN (insn)), temp_reg)) continue; label = gen_label_rtx (); jump = emit_jump_insn_after (gen_jump (label), insn); barrier = emit_barrier_after (jump); insn = emit_label_after (label, barrier); JUMP_LABEL (jump) = label; LABEL_NUSES (label) = 1; INSN_ADDRESSES_NEW (jump, -1); INSN_ADDRESSES_NEW (barrier, -1); INSN_ADDRESSES_NEW (insn, -1); s390_end_pool (curr_pool, barrier); curr_pool = NULL; extra_size = 0; } } } if (curr_pool) s390_end_pool (curr_pool, NULL_RTX); /* Find all labels that are branched into from an insn belonging to a different chunk. */ far_labels = BITMAP_XMALLOC (); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { /* Labels marked with LABEL_PRESERVE_P can be target of non-local jumps, so we have to mark them. The same holds for named labels. Don't do that, however, if it is the label before a jump table. */ if (GET_CODE (insn) == CODE_LABEL && (LABEL_PRESERVE_P (insn) || LABEL_NAME (insn))) { rtx vec_insn = next_real_insn (insn); rtx vec_pat = vec_insn && GET_CODE (vec_insn) == JUMP_INSN ? PATTERN (vec_insn) : NULL_RTX; if (!vec_pat || !(GET_CODE (vec_pat) == ADDR_VEC || GET_CODE (vec_pat) == ADDR_DIFF_VEC)) bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (insn)); } /* If we have a direct jump (conditional or unconditional) or a casesi jump, check all potential targets. */ else if (GET_CODE (insn) == JUMP_INSN) { rtx pat = PATTERN (insn); if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) > 2) pat = XVECEXP (pat, 0, 0); if (GET_CODE (pat) == SET) { rtx label = JUMP_LABEL (insn); if (label) { if (s390_find_pool (pool_list, label) != s390_find_pool (pool_list, insn)) bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label)); } } else if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) == 2 && GET_CODE (XVECEXP (pat, 0, 0)) == SET && GET_CODE (XVECEXP (pat, 0, 1)) == USE && GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == LABEL_REF) { /* Find the jump table used by this casesi jump. */ rtx vec_label = XEXP (XEXP (XVECEXP (pat, 0, 1), 0), 0); rtx vec_insn = next_real_insn (vec_label); rtx vec_pat = vec_insn && GET_CODE (vec_insn) == JUMP_INSN ? PATTERN (vec_insn) : NULL_RTX; if (vec_pat && (GET_CODE (vec_pat) == ADDR_VEC || GET_CODE (vec_pat) == ADDR_DIFF_VEC)) { int i, diff_p = GET_CODE (vec_pat) == ADDR_DIFF_VEC; for (i = 0; i < XVECLEN (vec_pat, diff_p); i++) { rtx label = XEXP (XVECEXP (vec_pat, diff_p, i), 0); if (s390_find_pool (pool_list, label) != s390_find_pool (pool_list, insn)) bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label)); } } } } } /* Insert base register reload insns before every pool. */ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next) { rtx new_insn = gen_reload_base (base_reg, curr_pool->label); rtx insn = curr_pool->first_insn; INSN_ADDRESSES_NEW (emit_insn_before (new_insn, insn), -1); } /* Insert base register reload insns at every far label. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == CODE_LABEL && bitmap_bit_p (far_labels, CODE_LABEL_NUMBER (insn))) { struct constant_pool *pool = s390_find_pool (pool_list, insn); if (pool) { rtx new_insn = gen_reload_base (base_reg, pool->label); INSN_ADDRESSES_NEW (emit_insn_after (new_insn, insn), -1); } } BITMAP_XFREE (far_labels); /* Recompute insn addresses. */ init_insn_lengths (); shorten_branches (get_insns ()); return pool_list; } /* POOL_LIST is a chunk list as prepared by s390_chunkify_start. After we have decided to use this list, finish implementing all changes to the current function as required. Code generated by this routine is allowed to use TEMP_REG as temporary scratch register. */ static void s390_chunkify_finish (pool_list, temp_reg) struct constant_pool *pool_list; rtx temp_reg; { rtx base_reg = gen_rtx_REG (Pmode, BASE_REGISTER); struct constant_pool *curr_pool = NULL; rtx insn; /* Replace all literal pool references. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { curr_pool = s390_find_pool (pool_list, insn); if (!curr_pool) continue; if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN) { rtx addr, pool_ref = NULL_RTX; find_constant_pool_ref (PATTERN (insn), &pool_ref); if (pool_ref) { addr = s390_find_constant (curr_pool, get_pool_constant (pool_ref), get_pool_mode (pool_ref)); addr = gen_rtx_PLUS (Pmode, base_reg, addr); replace_constant_pool_ref (&PATTERN (insn), pool_ref, addr); INSN_CODE (insn) = -1; } else if (!TARGET_64BIT && flag_pic && find_base_register_ref (PATTERN (insn))) { replace_base_register_ref (&PATTERN (insn), temp_reg); } } } /* Dump out all literal pools. */ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next) s390_dump_pool (curr_pool); /* Free pool list. */ while (pool_list) { struct constant_pool *next = pool_list->next; s390_free_pool (pool_list); pool_list = next; } } /* POOL_LIST is a chunk list as prepared by s390_chunkify_start. We have decided we cannot use this list, so revert all changes to the current function that were done by s390_chunkify_start. */ static void s390_chunkify_cancel (pool_list) struct constant_pool *pool_list; { struct constant_pool *curr_pool = NULL; rtx insn; /* Remove all pool placeholder insns. */ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next) { /* Did we insert an extra barrier? Remove it. */ rtx barrier = PREV_INSN (curr_pool->pool_insn); rtx jump = barrier? PREV_INSN (barrier) : NULL_RTX; rtx label = NEXT_INSN (curr_pool->pool_insn); if (jump && GET_CODE (jump) == JUMP_INSN && barrier && GET_CODE (barrier) == BARRIER && label && GET_CODE (label) == CODE_LABEL && GET_CODE (PATTERN (jump)) == SET && SET_DEST (PATTERN (jump)) == pc_rtx && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF && XEXP (SET_SRC (PATTERN (jump)), 0) == label) { remove_insn (jump); remove_insn (barrier); remove_insn (label); } remove_insn (curr_pool->pool_insn); } /* Remove all base/anchor register reload insns. */ for (insn = get_insns (); insn; ) { rtx next_insn = NEXT_INSN (insn); if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC && (XINT (SET_SRC (PATTERN (insn)), 1) == 210 || XINT (SET_SRC (PATTERN (insn)), 1) == 211)) remove_insn (insn); insn = next_insn; } /* Free pool list. */ while (pool_list) { struct constant_pool *next = pool_list->next; s390_free_pool (pool_list); pool_list = next; } } /* Index of constant pool chunk that is currently being processed. Set to -1 before function output has started. */ int s390_pool_count = -1; /* Number of elements of current constant pool. */ int s390_nr_constants; /* Output main constant pool to stdio stream FILE. */ void s390_output_constant_pool (start_label, end_label) rtx start_label; rtx end_label; { if (TARGET_64BIT) { readonly_data_section (); ASM_OUTPUT_ALIGN (asm_out_file, 3); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (start_label)); } else { ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (start_label)); ASM_OUTPUT_ALIGN (asm_out_file, 2); } s390_pool_count = 0; output_constant_pool (current_function_name, current_function_decl); s390_pool_count = -1; if (TARGET_64BIT) function_section (current_function_decl); else { ASM_OUTPUT_ALIGN (asm_out_file, 1); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (end_label)); } } /* Rework the prolog/epilog to avoid saving/restoring registers unnecessarily. If TEMP_REGNO is nonnegative, it specifies the number of a caller-saved register used as temporary scratch register by code emitted during machine dependent reorg. */ static void s390_optimize_prolog (temp_regno) int temp_regno; { int save_first, save_last, restore_first, restore_last; int i, j; rtx insn, new_insn, next_insn; /* Recompute regs_ever_live data for special registers. */ regs_ever_live[BASE_REGISTER] = 0; regs_ever_live[RETURN_REGNUM] = 0; regs_ever_live[STACK_POINTER_REGNUM] = cfun->machine->frame_size > 0; /* If there is (possibly) any pool entry, we need to load the base register. ??? FIXME: this should be more precise. */ if (get_pool_size ()) regs_ever_live[BASE_REGISTER] = 1; /* In non-leaf functions, the prolog/epilog code relies on RETURN_REGNUM being saved in any case. */ if (!current_function_is_leaf) regs_ever_live[RETURN_REGNUM] = 1; /* We need to save/restore the temporary register. */ if (temp_regno >= 0) regs_ever_live[temp_regno] = 1; /* Find first and last gpr to be saved. */ for (i = 6; i < 16; i++) if (regs_ever_live[i]) if (!global_regs[i] || i == STACK_POINTER_REGNUM || i == RETURN_REGNUM || i == BASE_REGISTER || (flag_pic && i == (int)PIC_OFFSET_TABLE_REGNUM)) break; for (j = 15; j > i; j--) if (regs_ever_live[j]) if (!global_regs[j] || j == STACK_POINTER_REGNUM || j == RETURN_REGNUM || j == BASE_REGISTER || (flag_pic && j == (int)PIC_OFFSET_TABLE_REGNUM)) break; if (i == 16) { /* Nothing to save/restore. */ save_first = restore_first = -1; save_last = restore_last = -1; } else { /* Save/restore from i to j. */ save_first = restore_first = i; save_last = restore_last = j; } /* Varargs functions need to save gprs 2 to 6. */ if (current_function_stdarg) { save_first = 2; if (save_last < 6) save_last = 6; } /* If all special registers are in fact used, there's nothing we can do, so no point in walking the insn list. */ if (i <= BASE_REGISTER && j >= BASE_REGISTER && i <= RETURN_REGNUM && j >= RETURN_REGNUM) return; /* Search for prolog/epilog insns and replace them. */ for (insn = get_insns (); insn; insn = next_insn) { int first, last, off; rtx set, base, offset; next_insn = NEXT_INSN (insn); if (GET_CODE (insn) != INSN) continue; if (GET_CODE (PATTERN (insn)) != PARALLEL) continue; if (store_multiple_operation (PATTERN (insn), VOIDmode)) { set = XVECEXP (PATTERN (insn), 0, 0); first = REGNO (SET_SRC (set)); last = first + XVECLEN (PATTERN (insn), 0) - 1; offset = const0_rtx; base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset); off = INTVAL (offset) - first * UNITS_PER_WORD; if (GET_CODE (base) != REG || off < 0) continue; if (first > BASE_REGISTER && first > RETURN_REGNUM) continue; if (last < BASE_REGISTER && last < RETURN_REGNUM) continue; if (save_first != -1) { new_insn = save_gprs (base, off, save_first, save_last); new_insn = emit_insn_before (new_insn, insn); INSN_ADDRESSES_NEW (new_insn, -1); } remove_insn (insn); } if (load_multiple_operation (PATTERN (insn), VOIDmode)) { set = XVECEXP (PATTERN (insn), 0, 0); first = REGNO (SET_DEST (set)); last = first + XVECLEN (PATTERN (insn), 0) - 1; offset = const0_rtx; base = eliminate_constant_term (XEXP (SET_SRC (set), 0), &offset); off = INTVAL (offset) - first * UNITS_PER_WORD; if (GET_CODE (base) != REG || off < 0) continue; if (first > BASE_REGISTER && first > RETURN_REGNUM) continue; if (last < BASE_REGISTER && last < RETURN_REGNUM) continue; if (restore_first != -1) { new_insn = restore_gprs (base, off, restore_first, restore_last); new_insn = emit_insn_before (new_insn, insn); INSN_ADDRESSES_NEW (new_insn, -1); } remove_insn (insn); } } } /* Check whether any insn in the function makes use of the original value of RETURN_REG (e.g. for __builtin_return_address). If so, insert an insn reloading that value. Return true if any such insn was found. */ static bool s390_fixup_clobbered_return_reg (return_reg) rtx return_reg; { bool replacement_done = 0; rtx insn; /* If we never called __builtin_return_address, register 14 might have been used as temp during the prolog; we do not want to touch those uses. */ if (!has_hard_reg_initial_val (Pmode, REGNO (return_reg))) return false; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { rtx reg, off, new_insn; if (GET_CODE (insn) != INSN) continue; if (!reg_referenced_p (return_reg, PATTERN (insn))) continue; if (GET_CODE (PATTERN (insn)) == PARALLEL && store_multiple_operation (PATTERN (insn), VOIDmode)) continue; if (frame_pointer_needed) reg = hard_frame_pointer_rtx; else reg = stack_pointer_rtx; off = GEN_INT (cfun->machine->frame_size + REGNO (return_reg) * UNITS_PER_WORD); if (INTVAL (off) >= 4096) { off = force_const_mem (Pmode, off); new_insn = gen_rtx_SET (Pmode, return_reg, off); new_insn = emit_insn_before (new_insn, insn); INSN_ADDRESSES_NEW (new_insn, -1); off = return_reg; } new_insn = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, reg, off)); new_insn = gen_rtx_SET (Pmode, return_reg, new_insn); new_insn = emit_insn_before (new_insn, insn); INSN_ADDRESSES_NEW (new_insn, -1); replacement_done = 1; } return replacement_done; } /* Perform machine-dependent processing. */ void s390_machine_dependent_reorg (first) rtx first ATTRIBUTE_UNUSED; { bool fixed_up_clobbered_return_reg = 0; rtx temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM); bool temp_used = 0; /* Make sure all splits have been performed; splits after machine_dependent_reorg might confuse insn length counts. */ split_all_insns_noflow (); /* There are two problematic situations we need to correct: - the literal pool might be > 4096 bytes in size, so that some of its elements cannot be directly accessed - a branch target might be > 64K away from the branch, so that it is not possible to use a PC-relative instruction. To fix those, we split the single literal pool into multiple pool chunks, reloading the pool base register at various points throughout the function to ensure it always points to the pool chunk the following code expects, and / or replace PC-relative branches by absolute branches. However, the two problems are interdependent: splitting the literal pool can move a branch further away from its target, causing the 64K limit to overflow, and on the other hand, replacing a PC-relative branch by an absolute branch means we need to put the branch target address into the literal pool, possibly causing it to overflow. So, we loop trying to fix up both problems until we manage to satisfy both conditions at the same time. Note that the loop is guaranteed to terminate as every pass of the loop strictly decreases the total number of PC-relative branches in the function. (This is not completely true as there might be branch-over-pool insns introduced by chunkify_start. Those never need to be split however.) */ for (;;) { struct constant_pool *pool_list; /* Try to chunkify the literal pool. */ pool_list = s390_chunkify_start (temp_reg, &temp_used); /* Split out-of-range branches. If this has created new literal pool entries, cancel current chunk list and recompute it. */ if (s390_split_branches (temp_reg, &temp_used)) { if (pool_list) s390_chunkify_cancel (pool_list); continue; } /* Check whether we have clobbered a use of the return register (e.g. for __builtin_return_address). If so, add insns reloading the register where necessary. */ if (temp_used && !fixed_up_clobbered_return_reg && s390_fixup_clobbered_return_reg (temp_reg)) { fixed_up_clobbered_return_reg = 1; /* The fixup insns might have caused a jump to overflow. */ if (pool_list) s390_chunkify_cancel (pool_list); continue; } /* If we made it up to here, both conditions are satisfied. Finish up pool chunkification if required. */ if (pool_list) s390_chunkify_finish (pool_list, temp_reg); break; } s390_optimize_prolog (temp_used? RETURN_REGNUM : -1); } /* Return an RTL expression representing the value of the return address for the frame COUNT steps up from the current frame. FRAME is the frame pointer of that frame. */ rtx s390_return_addr_rtx (count, frame) int count; rtx frame; { rtx addr; /* For the current frame, we use the initial value of RETURN_REGNUM. This works both in leaf and non-leaf functions. */ if (count == 0) return get_hard_reg_initial_val (Pmode, RETURN_REGNUM); /* For frames farther back, we read the stack slot where the corresponding RETURN_REGNUM value was saved. */ addr = plus_constant (frame, RETURN_REGNUM * UNITS_PER_WORD); addr = memory_address (Pmode, addr); return gen_rtx_MEM (Pmode, addr); } /* Find first call clobbered register unsused in a function. This could be used as base register in a leaf function or for holding the return address before epilogue. */ static int find_unused_clobbered_reg () { int i; for (i = 0; i < 6; i++) if (!regs_ever_live[i]) return i; return 0; } /* Fill FRAME with info about frame of current function. */ static void s390_frame_info () { char gprs_ever_live[16]; int i, j; HOST_WIDE_INT fsize = get_frame_size (); if (fsize > 0x7fff0000) fatal_error ("Total size of local variables exceeds architecture limit."); /* fprs 8 - 15 are caller saved for 64 Bit ABI. */ cfun->machine->save_fprs_p = 0; if (TARGET_64BIT) for (i = 24; i < 32; i++) if (regs_ever_live[i] && !global_regs[i]) { cfun->machine->save_fprs_p = 1; break; } cfun->machine->frame_size = fsize + cfun->machine->save_fprs_p * 64; /* Does function need to setup frame and save area. */ if (! current_function_is_leaf || cfun->machine->frame_size > 0 || current_function_calls_alloca || current_function_stdarg) cfun->machine->frame_size += STARTING_FRAME_OFFSET; /* Find first and last gpr to be saved. Note that at this point, we assume the return register and the base register always need to be saved. This is done because the usage of these register might change even after the prolog was emitted. If it turns out later that we really don't need them, the prolog/epilog code is modified again. */ for (i = 0; i < 16; i++) gprs_ever_live[i] = regs_ever_live[i] && !global_regs[i]; if (flag_pic) gprs_ever_live[PIC_OFFSET_TABLE_REGNUM] = regs_ever_live[PIC_OFFSET_TABLE_REGNUM]; gprs_ever_live[BASE_REGISTER] = 1; gprs_ever_live[RETURN_REGNUM] = 1; gprs_ever_live[STACK_POINTER_REGNUM] = cfun->machine->frame_size > 0; for (i = 6; i < 16; i++) if (gprs_ever_live[i]) break; for (j = 15; j > i; j--) if (gprs_ever_live[j]) break; /* Save / Restore from gpr i to j. */ cfun->machine->first_save_gpr = i; cfun->machine->first_restore_gpr = i; cfun->machine->last_save_gpr = j; /* Varargs functions need to save gprs 2 to 6. */ if (current_function_stdarg) cfun->machine->first_save_gpr = 2; } /* Return offset between argument pointer and frame pointer initially after prologue. */ int s390_arg_frame_offset () { HOST_WIDE_INT fsize = get_frame_size (); int save_fprs_p, i; /* fprs 8 - 15 are caller saved for 64 Bit ABI. */ save_fprs_p = 0; if (TARGET_64BIT) for (i = 24; i < 32; i++) if (regs_ever_live[i] && !global_regs[i]) { save_fprs_p = 1; break; } fsize = fsize + save_fprs_p * 64; /* Does function need to setup frame and save area. */ if (! current_function_is_leaf || fsize > 0 || current_function_calls_alloca || current_function_stdarg) fsize += STARTING_FRAME_OFFSET; return fsize + STACK_POINTER_OFFSET; } /* Emit insn to save fpr REGNUM at offset OFFSET relative to register BASE. Return generated insn. */ static rtx save_fpr (base, offset, regnum) rtx base; int offset; int regnum; { rtx addr; addr = gen_rtx_MEM (DFmode, plus_constant (base, offset)); set_mem_alias_set (addr, s390_sr_alias_set); return emit_move_insn (addr, gen_rtx_REG (DFmode, regnum)); } /* Emit insn to restore fpr REGNUM from offset OFFSET relative to register BASE. Return generated insn. */ static rtx restore_fpr (base, offset, regnum) rtx base; int offset; int regnum; { rtx addr; addr = gen_rtx_MEM (DFmode, plus_constant (base, offset)); set_mem_alias_set (addr, s390_sr_alias_set); return emit_move_insn (gen_rtx_REG (DFmode, regnum), addr); } /* Generate insn to save registers FIRST to LAST into the register save area located at offset OFFSET relative to register BASE. */ static rtx save_gprs (base, offset, first, last) rtx base; int offset; int first; int last; { rtx addr, insn, note; int i; addr = plus_constant (base, offset + first * UNITS_PER_WORD); addr = gen_rtx_MEM (Pmode, addr); set_mem_alias_set (addr, s390_sr_alias_set); /* Special-case single register. */ if (first == last) { if (TARGET_64BIT) insn = gen_movdi (addr, gen_rtx_REG (Pmode, first)); else insn = gen_movsi (addr, gen_rtx_REG (Pmode, first)); RTX_FRAME_RELATED_P (insn) = 1; return insn; } insn = gen_store_multiple (addr, gen_rtx_REG (Pmode, first), GEN_INT (last - first + 1)); /* We need to set the FRAME_RELATED flag on all SETs inside the store-multiple pattern. However, we must not emit DWARF records for registers 2..5 if they are stored for use by variable arguments ... ??? Unfortunately, it is not enough to simply not the the FRAME_RELATED flags for those SETs, because the first SET of the PARALLEL is always treated as if it had the flag set, even if it does not. Therefore we emit a new pattern without those registers as REG_FRAME_RELATED_EXPR note. */ if (first >= 6) { rtx pat = PATTERN (insn); for (i = 0; i < XVECLEN (pat, 0); i++) if (GET_CODE (XVECEXP (pat, 0, i)) == SET) RTX_FRAME_RELATED_P (XVECEXP (pat, 0, i)) = 1; RTX_FRAME_RELATED_P (insn) = 1; } else if (last >= 6) { addr = plus_constant (base, offset + 6 * UNITS_PER_WORD); note = gen_store_multiple (gen_rtx_MEM (Pmode, addr), gen_rtx_REG (Pmode, 6), GEN_INT (last - 6 + 1)); note = PATTERN (note); REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, note, REG_NOTES (insn)); for (i = 0; i < XVECLEN (note, 0); i++) if (GET_CODE (XVECEXP (note, 0, i)) == SET) RTX_FRAME_RELATED_P (XVECEXP (note, 0, i)) = 1; RTX_FRAME_RELATED_P (insn) = 1; } return insn; } /* Generate insn to restore registers FIRST to LAST from the register save area located at offset OFFSET relative to register BASE. */ static rtx restore_gprs (base, offset, first, last) rtx base; int offset; int first; int last; { rtx addr, insn; addr = plus_constant (base, offset + first * UNITS_PER_WORD); addr = gen_rtx_MEM (Pmode, addr); set_mem_alias_set (addr, s390_sr_alias_set); /* Special-case single register. */ if (first == last) { if (TARGET_64BIT) insn = gen_movdi (gen_rtx_REG (Pmode, first), addr); else insn = gen_movsi (gen_rtx_REG (Pmode, first), addr); return insn; } insn = gen_load_multiple (gen_rtx_REG (Pmode, first), addr, GEN_INT (last - first + 1)); return insn; } /* Expand the prologue into a bunch of separate insns. */ void s390_emit_prologue () { rtx insn, addr; rtx temp_reg; rtx pool_start_label, pool_end_label; int i; /* Compute frame_info. */ s390_frame_info (); /* Choose best register to use for temp use within prologue. */ if (!current_function_is_leaf && !has_hard_reg_initial_val (Pmode, RETURN_REGNUM) && get_pool_size () < S390_POOL_CHUNK_MAX / 2) temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM); else temp_reg = gen_rtx_REG (Pmode, 1); /* Save call saved gprs. */ insn = save_gprs (stack_pointer_rtx, 0, cfun->machine->first_save_gpr, cfun->machine->last_save_gpr); emit_insn (insn); /* Dump constant pool and set constant pool register. */ pool_start_label = gen_label_rtx(); pool_end_label = gen_label_rtx(); cfun->machine->literal_pool_label = pool_start_label; if (TARGET_64BIT) insn = emit_insn (gen_literal_pool_64 (gen_rtx_REG (Pmode, BASE_REGISTER), pool_start_label, pool_end_label)); else insn = emit_insn (gen_literal_pool_31 (gen_rtx_REG (Pmode, BASE_REGISTER), pool_start_label, pool_end_label)); /* Save fprs for variable args. */ if (current_function_stdarg) { /* Save fpr 0 and 2. */ save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 32, 16); save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 24, 17); if (TARGET_64BIT) { /* Save fpr 4 and 6. */ save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 16, 18); save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 8, 19); } } /* Save fprs 4 and 6 if used (31 bit ABI). */ if (!TARGET_64BIT) { /* Save fpr 4 and 6. */ if (regs_ever_live[18] && !global_regs[18]) { insn = save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 16, 18); RTX_FRAME_RELATED_P (insn) = 1; } if (regs_ever_live[19] && !global_regs[19]) { insn = save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 8, 19); RTX_FRAME_RELATED_P (insn) = 1; } } /* Decrement stack pointer. */ if (cfun->machine->frame_size > 0) { rtx frame_off = GEN_INT (-cfun->machine->frame_size); /* Save incoming stack pointer into temp reg. */ if (TARGET_BACKCHAIN || cfun->machine->save_fprs_p) { insn = emit_insn (gen_move_insn (temp_reg, stack_pointer_rtx)); } /* Substract frame size from stack pointer. */ frame_off = GEN_INT (-cfun->machine->frame_size); if (!CONST_OK_FOR_LETTER_P (-cfun->machine->frame_size, 'K')) frame_off = force_const_mem (Pmode, frame_off); insn = emit_insn (gen_add2_insn (stack_pointer_rtx, frame_off)); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-cfun->machine->frame_size))), REG_NOTES (insn)); /* Set backchain. */ if (TARGET_BACKCHAIN) { addr = gen_rtx_MEM (Pmode, stack_pointer_rtx); set_mem_alias_set (addr, s390_sr_alias_set); insn = emit_insn (gen_move_insn (addr, temp_reg)); } /* If we support asynchronous exceptions (e.g. for Java), we need to make sure the backchain pointer is set up before any possibly trapping memory access. */ if (TARGET_BACKCHAIN && flag_non_call_exceptions) { addr = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)); emit_insn (gen_rtx_CLOBBER (VOIDmode, addr)); } } /* Save fprs 8 - 15 (64 bit ABI). */ if (cfun->machine->save_fprs_p) { insn = emit_insn (gen_add2_insn (temp_reg, GEN_INT(-64))); for (i = 24; i < 32; i++) if (regs_ever_live[i] && !global_regs[i]) { rtx addr = plus_constant (stack_pointer_rtx, cfun->machine->frame_size - 64 + (i-24)*8); insn = save_fpr (temp_reg, (i-24)*8, i); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, gen_rtx_MEM (DFmode, addr), gen_rtx_REG (DFmode, i)), REG_NOTES (insn)); } } /* Set frame pointer, if needed. */ if (frame_pointer_needed) { insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; } /* Set up got pointer, if needed. */ if (flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM]) { rtx got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); SYMBOL_REF_FLAG (got_symbol) = 1; if (TARGET_64BIT) { insn = emit_insn (gen_movdi (pic_offset_table_rtx, got_symbol)); /* It can happen that the GOT pointer isn't really needed ... */ REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX, REG_NOTES (insn)); } else { got_symbol = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, got_symbol), 100); got_symbol = gen_rtx_CONST (VOIDmode, got_symbol); got_symbol = force_const_mem (Pmode, got_symbol); insn = emit_move_insn (pic_offset_table_rtx, got_symbol); REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX, REG_NOTES (insn)); got_symbol = gen_rtx_REG (Pmode, BASE_REGISTER); got_symbol = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, got_symbol), 101); got_symbol = gen_rtx_PLUS (Pmode, got_symbol, pic_offset_table_rtx); insn = emit_move_insn (pic_offset_table_rtx, got_symbol); REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX, REG_NOTES (insn)); } } } /* Expand the epilogue into a bunch of separate insns. */ void s390_emit_epilogue () { rtx frame_pointer, return_reg; int area_bottom, area_top, offset = 0; rtvec p; /* Check whether to use frame or stack pointer for restore. */ frame_pointer = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx; /* Compute which parts of the save area we need to access. */ if (cfun->machine->first_restore_gpr != -1) { area_bottom = cfun->machine->first_restore_gpr * UNITS_PER_WORD; area_top = (cfun->machine->last_save_gpr + 1) * UNITS_PER_WORD; } else { area_bottom = INT_MAX; area_top = INT_MIN; } if (TARGET_64BIT) { if (cfun->machine->save_fprs_p) { if (area_bottom > -64) area_bottom = -64; if (area_top < 0) area_top = 0; } } else { if (regs_ever_live[18] && !global_regs[18]) { if (area_bottom > STACK_POINTER_OFFSET - 16) area_bottom = STACK_POINTER_OFFSET - 16; if (area_top < STACK_POINTER_OFFSET - 8) area_top = STACK_POINTER_OFFSET - 8; } if (regs_ever_live[19] && !global_regs[19]) { if (area_bottom > STACK_POINTER_OFFSET - 8) area_bottom = STACK_POINTER_OFFSET - 8; if (area_top < STACK_POINTER_OFFSET) area_top = STACK_POINTER_OFFSET; } } /* Check whether we can access the register save area. If not, increment the frame pointer as required. */ if (area_top <= area_bottom) { /* Nothing to restore. */ } else if (cfun->machine->frame_size + area_bottom >= 0 && cfun->machine->frame_size + area_top <= 4096) { /* Area is in range. */ offset = cfun->machine->frame_size; } else { rtx insn, frame_off; offset = area_bottom < 0 ? -area_bottom : 0; frame_off = GEN_INT (cfun->machine->frame_size - offset); if (!CONST_OK_FOR_LETTER_P (INTVAL (frame_off), 'K')) frame_off = force_const_mem (Pmode, frame_off); insn = emit_insn (gen_add2_insn (frame_pointer, frame_off)); } /* Restore call saved fprs. */ if (TARGET_64BIT) { int i; if (cfun->machine->save_fprs_p) for (i = 24; i < 32; i++) if (regs_ever_live[i] && !global_regs[i]) restore_fpr (frame_pointer, offset - 64 + (i-24) * 8, i); } else { if (regs_ever_live[18] && !global_regs[18]) restore_fpr (frame_pointer, offset + STACK_POINTER_OFFSET - 16, 18); if (regs_ever_live[19] && !global_regs[19]) restore_fpr (frame_pointer, offset + STACK_POINTER_OFFSET - 8, 19); } /* Return register. */ return_reg = gen_rtx_REG (Pmode, RETURN_REGNUM); /* Restore call saved gprs. */ if (cfun->machine->first_restore_gpr != -1) { rtx insn, addr; int i; /* Check for global register and save them to stack location from where they get restored. */ for (i = cfun->machine->first_restore_gpr; i <= cfun->machine->last_save_gpr; i++) { /* These registers are special and need to be restored in any case. */ if (i == STACK_POINTER_REGNUM || i == RETURN_REGNUM || i == BASE_REGISTER || (flag_pic && i == (int)PIC_OFFSET_TABLE_REGNUM)) continue; if (global_regs[i]) { addr = plus_constant (frame_pointer, offset + i * UNITS_PER_WORD); addr = gen_rtx_MEM (Pmode, addr); set_mem_alias_set (addr, s390_sr_alias_set); emit_move_insn (addr, gen_rtx_REG (Pmode, i)); } } /* Fetch return address from stack before load multiple, this will do good for scheduling. */ if (!current_function_is_leaf) { int return_regnum = find_unused_clobbered_reg(); if (!return_regnum) return_regnum = 4; return_reg = gen_rtx_REG (Pmode, return_regnum); addr = plus_constant (frame_pointer, offset + RETURN_REGNUM * UNITS_PER_WORD); addr = gen_rtx_MEM (Pmode, addr); set_mem_alias_set (addr, s390_sr_alias_set); emit_move_insn (return_reg, addr); } /* ??? As references to the base register are not made explicit in insn RTX code, we have to add a barrier here to prevent incorrect scheduling. */ emit_insn (gen_blockage()); insn = restore_gprs (frame_pointer, offset, cfun->machine->first_restore_gpr, cfun->machine->last_save_gpr); emit_insn (insn); } /* Return to caller. */ p = rtvec_alloc (2); RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode); RTVEC_ELT (p, 1) = gen_rtx_USE (VOIDmode, return_reg); emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p)); } /* Return the size in bytes of a function argument of type TYPE and/or mode MODE. At least one of TYPE or MODE must be specified. */ static int s390_function_arg_size (mode, type) enum machine_mode mode; tree type; { if (type) return int_size_in_bytes (type); /* No type info available for some library calls ... */ if (mode != BLKmode) return GET_MODE_SIZE (mode); /* If we have neither type nor mode, abort */ abort (); } /* Return 1 if a function argument of type TYPE and mode MODE is to be passed by reference. The ABI specifies that only structures of size 1, 2, 4, or 8 bytes are passed by value, all other structures (and complex numbers) are passed by reference. */ int s390_function_arg_pass_by_reference (mode, type) enum machine_mode mode; tree type; { int size = s390_function_arg_size (mode, type); if (size > 8) return 1; if (type) { if (AGGREGATE_TYPE_P (type) && size != 1 && size != 2 && size != 4 && size != 8) return 1; if (TREE_CODE (type) == COMPLEX_TYPE || TREE_CODE (type) == VECTOR_TYPE) return 1; } return 0; } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.). The boolean NAMED specifies whether the argument is a named argument (as opposed to an unnamed argument matching an ellipsis). */ void s390_function_arg_advance (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named ATTRIBUTE_UNUSED; { if (! TARGET_SOFT_FLOAT && (mode == DFmode || mode == SFmode)) { cum->fprs++; } else if (s390_function_arg_pass_by_reference (mode, type)) { cum->gprs += 1; } else { int size = s390_function_arg_size (mode, type); cum->gprs += ((size + UNITS_PER_WORD-1) / UNITS_PER_WORD); } } /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). On S/390, we use general purpose registers 2 through 6 to pass integer, pointer, and certain structure arguments, and floating point registers 0 and 2 (0, 2, 4, and 6 on 64-bit) to pass floating point arguments. All remaining arguments are pushed to the stack. */ rtx s390_function_arg (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named ATTRIBUTE_UNUSED; { if (s390_function_arg_pass_by_reference (mode, type)) return 0; if (! TARGET_SOFT_FLOAT && (mode == DFmode || mode == SFmode)) { if (cum->fprs + 1 > (TARGET_64BIT? 4 : 2)) return 0; else return gen_rtx (REG, mode, cum->fprs + 16); } else { int size = s390_function_arg_size (mode, type); int n_gprs = (size + UNITS_PER_WORD-1) / UNITS_PER_WORD; if (cum->gprs + n_gprs > 5) return 0; else return gen_rtx (REG, mode, cum->gprs + 2); } } /* Create and return the va_list datatype. On S/390, va_list is an array type equivalent to typedef struct __va_list_tag { long __gpr; long __fpr; void *__overflow_arg_area; void *__reg_save_area; } va_list[1]; where __gpr and __fpr hold the number of general purpose or floating point arguments used up to now, respectively, __overflow_arg_area points to the stack location of the next argument passed on the stack, and __reg_save_area always points to the start of the register area in the call frame of the current function. The function prologue saves all registers used for argument passing into this area if the function uses variable arguments. */ tree s390_build_va_list () { tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl; record = (*lang_hooks.types.make_type) (RECORD_TYPE); type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record); f_gpr = build_decl (FIELD_DECL, get_identifier ("__gpr"), long_integer_type_node); f_fpr = build_decl (FIELD_DECL, get_identifier ("__fpr"), long_integer_type_node); f_ovf = build_decl (FIELD_DECL, get_identifier ("__overflow_arg_area"), ptr_type_node); f_sav = build_decl (FIELD_DECL, get_identifier ("__reg_save_area"), ptr_type_node); DECL_FIELD_CONTEXT (f_gpr) = record; DECL_FIELD_CONTEXT (f_fpr) = record; DECL_FIELD_CONTEXT (f_ovf) = record; DECL_FIELD_CONTEXT (f_sav) = record; TREE_CHAIN (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_gpr; TREE_CHAIN (f_gpr) = f_fpr; TREE_CHAIN (f_fpr) = f_ovf; TREE_CHAIN (f_ovf) = f_sav; layout_type (record); /* The correct type is an array type of one element. */ return build_array_type (record, build_index_type (size_zero_node)); } /* Implement va_start by filling the va_list structure VALIST. STDARG_P is always true, and ignored. NEXTARG points to the first anonymous stack argument. The following global variables are used to initialize the va_list structure: current_function_args_info: holds number of gprs and fprs used for named arguments. current_function_arg_offset_rtx: holds the offset of the first anonymous stack argument (relative to the virtual arg pointer). */ void s390_va_start (valist, nextarg) tree valist; rtx nextarg ATTRIBUTE_UNUSED; { HOST_WIDE_INT n_gpr, n_fpr; int off; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist); gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr); fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr); ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf); sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav); /* Count number of gp and fp argument registers used. */ n_gpr = current_function_args_info.gprs; n_fpr = current_function_args_info.fprs; t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr, build_int_2 (n_gpr, 0)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); t = build (MODIFY_EXPR, TREE_TYPE (fpr), fpr, build_int_2 (n_fpr, 0)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Find the overflow area. */ t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx); off = INTVAL (current_function_arg_offset_rtx); off = off < 0 ? 0 : off; if (TARGET_DEBUG_ARG) fprintf (stderr, "va_start: n_gpr = %d, n_fpr = %d off %d\n", (int)n_gpr, (int)n_fpr, off); t = build (PLUS_EXPR, TREE_TYPE (ovf), t, build_int_2 (off, 0)); t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Find the register save area. */ t = make_tree (TREE_TYPE (sav), virtual_incoming_args_rtx); t = build (PLUS_EXPR, TREE_TYPE (sav), t, build_int_2 (-STACK_POINTER_OFFSET, -1)); t = build (MODIFY_EXPR, TREE_TYPE (sav), sav, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Implement va_arg by updating the va_list structure VALIST as required to retrieve an argument of type TYPE, and returning that argument. Generates code equivalent to: if (integral value) { if (size <= 4 && args.gpr < 5 || size > 4 && args.gpr < 4 ) ret = args.reg_save_area[args.gpr+8] else ret = *args.overflow_arg_area++; } else if (float value) { if (args.fgpr < 2) ret = args.reg_save_area[args.fpr+64] else ret = *args.overflow_arg_area++; } else if (aggregate value) { if (args.gpr < 5) ret = *args.reg_save_area[args.gpr] else ret = **args.overflow_arg_area++; } */ rtx s390_va_arg (valist, type) tree valist; tree type; { tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, reg, t, u; int indirect_p, size, n_reg, sav_ofs, sav_scale, max_reg; rtx lab_false, lab_over, addr_rtx, r; f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist); gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr); fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr); ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf); sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav); size = int_size_in_bytes (type); if (s390_function_arg_pass_by_reference (TYPE_MODE (type), type)) { if (TARGET_DEBUG_ARG) { fprintf (stderr, "va_arg: aggregate type"); debug_tree (type); } /* Aggregates are passed by reference. */ indirect_p = 1; reg = gpr; n_reg = 1; sav_ofs = 2 * UNITS_PER_WORD; sav_scale = UNITS_PER_WORD; size = UNITS_PER_WORD; max_reg = 4; } else if (FLOAT_TYPE_P (type) && ! TARGET_SOFT_FLOAT) { if (TARGET_DEBUG_ARG) { fprintf (stderr, "va_arg: float type"); debug_tree (type); } /* FP args go in FP registers, if present. */ indirect_p = 0; reg = fpr; n_reg = 1; sav_ofs = 16 * UNITS_PER_WORD; sav_scale = 8; /* TARGET_64BIT has up to 4 parameter in fprs */ max_reg = TARGET_64BIT ? 3 : 1; } else { if (TARGET_DEBUG_ARG) { fprintf (stderr, "va_arg: other type"); debug_tree (type); } /* Otherwise into GP registers. */ indirect_p = 0; reg = gpr; n_reg = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; sav_ofs = 2 * UNITS_PER_WORD; if (TARGET_64BIT) sav_ofs += TYPE_MODE (type) == SImode ? 4 : TYPE_MODE (type) == HImode ? 6 : TYPE_MODE (type) == QImode ? 7 : 0; else sav_ofs += TYPE_MODE (type) == HImode ? 2 : TYPE_MODE (type) == QImode ? 3 : 0; sav_scale = UNITS_PER_WORD; if (n_reg > 1) max_reg = 3; else max_reg = 4; } /* Pull the value out of the saved registers ... */ lab_false = gen_label_rtx (); lab_over = gen_label_rtx (); addr_rtx = gen_reg_rtx (Pmode); emit_cmp_and_jump_insns (expand_expr (reg, NULL_RTX, Pmode, EXPAND_NORMAL), GEN_INT (max_reg), GT, const1_rtx, Pmode, 0, lab_false); if (sav_ofs) t = build (PLUS_EXPR, ptr_type_node, sav, build_int_2 (sav_ofs, 0)); else t = sav; u = build (MULT_EXPR, long_integer_type_node, reg, build_int_2 (sav_scale, 0)); TREE_SIDE_EFFECTS (u) = 1; t = build (PLUS_EXPR, ptr_type_node, t, u); TREE_SIDE_EFFECTS (t) = 1; r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL); if (r != addr_rtx) emit_move_insn (addr_rtx, r); emit_jump_insn (gen_jump (lab_over)); emit_barrier (); emit_label (lab_false); /* ... Otherwise out of the overflow area. */ t = save_expr (ovf); /* In 64 BIT for each argument on stack, a full 64 bit slot is allocated. */ if (size < UNITS_PER_WORD) { t = build (PLUS_EXPR, TREE_TYPE (t), t, build_int_2 (UNITS_PER_WORD-size, 0)); t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); t = save_expr (ovf); } r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL); if (r != addr_rtx) emit_move_insn (addr_rtx, r); t = build (PLUS_EXPR, TREE_TYPE (t), t, build_int_2 (size, 0)); t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); emit_label (lab_over); /* If less than max_regs a registers are retrieved out of register save area, increment. */ u = build (PREINCREMENT_EXPR, TREE_TYPE (reg), reg, build_int_2 (n_reg, 0)); TREE_SIDE_EFFECTS (u) = 1; expand_expr (u, const0_rtx, VOIDmode, EXPAND_NORMAL); if (indirect_p) { r = gen_rtx_MEM (Pmode, addr_rtx); set_mem_alias_set (r, get_varargs_alias_set ()); emit_move_insn (addr_rtx, r); } return addr_rtx; } /* Builtins. */ enum s390_builtin { S390_BUILTIN_THREAD_POINTER, S390_BUILTIN_SET_THREAD_POINTER, S390_BUILTIN_max }; static unsigned int const code_for_builtin_64[S390_BUILTIN_max] = { CODE_FOR_get_tp_64, CODE_FOR_set_tp_64 }; static unsigned int const code_for_builtin_31[S390_BUILTIN_max] = { CODE_FOR_get_tp_31, CODE_FOR_set_tp_31 }; static void s390_init_builtins () { tree ftype; ftype = build_function_type (ptr_type_node, void_list_node); builtin_function ("__builtin_thread_pointer", ftype, S390_BUILTIN_THREAD_POINTER, BUILT_IN_MD, NULL, NULL_TREE); ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); builtin_function ("__builtin_set_thread_pointer", ftype, S390_BUILTIN_SET_THREAD_POINTER, BUILT_IN_MD, NULL, NULL_TREE); } /* Expand an expression EXP that calls a built-in function, with result going to TARGET if that's convenient (and in mode MODE if that's convenient). SUBTARGET may be used as the target for computing one of EXP's operands. IGNORE is nonzero if the value is to be ignored. */ static rtx s390_expand_builtin (exp, target, subtarget, mode, ignore) tree exp; rtx target; rtx subtarget ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; int ignore ATTRIBUTE_UNUSED; { #define MAX_ARGS 2 unsigned int const *code_for_builtin = TARGET_64BIT ? code_for_builtin_64 : code_for_builtin_31; tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); unsigned int fcode = DECL_FUNCTION_CODE (fndecl); tree arglist = TREE_OPERAND (exp, 1); enum insn_code icode; rtx op[MAX_ARGS], pat; int arity; bool nonvoid; if (fcode >= S390_BUILTIN_max) internal_error ("bad builtin fcode"); icode = code_for_builtin[fcode]; if (icode == 0) internal_error ("bad builtin fcode"); nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node; for (arglist = TREE_OPERAND (exp, 1), arity = 0; arglist; arglist = TREE_CHAIN (arglist), arity++) { const struct insn_operand_data *insn_op; tree arg = TREE_VALUE (arglist); if (arg == error_mark_node) return NULL_RTX; if (arity > MAX_ARGS) return NULL_RTX; insn_op = &insn_data[icode].operand[arity + nonvoid]; op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, 0); if (!(*insn_op->predicate) (op[arity], insn_op->mode)) op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]); } if (nonvoid) { enum machine_mode tmode = insn_data[icode].operand[0].mode; if (!target || GET_MODE (target) != tmode || !(*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); } switch (arity) { case 0: pat = GEN_FCN (icode) (target); break; case 1: if (nonvoid) pat = GEN_FCN (icode) (target, op[0]); else pat = GEN_FCN (icode) (op[0]); break; case 2: pat = GEN_FCN (icode) (target, op[0], op[1]); break; default: abort (); } if (!pat) return NULL_RTX; emit_insn (pat); if (nonvoid) return target; else return const0_rtx; } /* Output assembly code for the trampoline template to stdio stream FILE. On S/390, we use gpr 1 internally in the trampoline code; gpr 0 is used to hold the static chain. */ void s390_trampoline_template (file) FILE *file; { if (TARGET_64BIT) { fprintf (file, "larl\t%s,0f\n", reg_names[1]); fprintf (file, "lg\t%s,0(%s)\n", reg_names[0], reg_names[1]); fprintf (file, "lg\t%s,8(%s)\n", reg_names[1], reg_names[1]); fprintf (file, "br\t%s\n", reg_names[1]); fprintf (file, "0:\t.quad\t0\n"); fprintf (file, ".quad\t0\n"); } else { fprintf (file, "basr\t%s,0\n", reg_names[1]); fprintf (file, "l\t%s,10(%s)\n", reg_names[0], reg_names[1]); fprintf (file, "l\t%s,14(%s)\n", reg_names[1], reg_names[1]); fprintf (file, "br\t%s\n", reg_names[1]); fprintf (file, ".long\t0\n"); fprintf (file, ".long\t0\n"); } } /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. */ void s390_initialize_trampoline (addr, fnaddr, cxt) rtx addr; rtx fnaddr; rtx cxt; { emit_move_insn (gen_rtx (MEM, Pmode, memory_address (Pmode, plus_constant (addr, (TARGET_64BIT ? 20 : 12) ))), cxt); emit_move_insn (gen_rtx (MEM, Pmode, memory_address (Pmode, plus_constant (addr, (TARGET_64BIT ? 28 : 16) ))), fnaddr); } /* Return rtx for 64-bit constant formed from the 32-bit subwords LOW and HIGH, independent of the host word size. */ rtx s390_gen_rtx_const_DI (high, low) int high; int low; { #if HOST_BITS_PER_WIDE_INT >= 64 HOST_WIDE_INT val; val = (HOST_WIDE_INT)high; val <<= 32; val |= (HOST_WIDE_INT)low; return GEN_INT (val); #else #if HOST_BITS_PER_WIDE_INT >= 32 return immed_double_const ((HOST_WIDE_INT)low, (HOST_WIDE_INT)high, DImode); #else abort (); #endif #endif } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ void s390_function_profiler (file, labelno) FILE *file; int labelno; { rtx op[7]; char label[128]; ASM_GENERATE_INTERNAL_LABEL (label, "LP", labelno); fprintf (file, "# function profiler \n"); op[0] = gen_rtx_REG (Pmode, RETURN_REGNUM); op[1] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM); op[1] = gen_rtx_MEM (Pmode, plus_constant (op[1], UNITS_PER_WORD)); op[2] = gen_rtx_REG (Pmode, 1); op[3] = gen_rtx_SYMBOL_REF (Pmode, label); SYMBOL_REF_FLAG (op[3]) = 1; op[4] = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); if (flag_pic) { op[4] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[4]), 113); op[4] = gen_rtx_CONST (Pmode, op[4]); } if (TARGET_64BIT) { output_asm_insn ("stg\t%0,%1", op); output_asm_insn ("larl\t%2,%3", op); output_asm_insn ("brasl\t%0,%4", op); output_asm_insn ("lg\t%0,%1", op); } else if (!flag_pic) { op[6] = gen_label_rtx (); output_asm_insn ("st\t%0,%1", op); output_asm_insn ("bras\t%2,%l6", op); output_asm_insn (".long\t%4", op); output_asm_insn (".long\t%3", op); ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6])); output_asm_insn ("l\t%0,0(%2)", op); output_asm_insn ("l\t%2,4(%2)", op); output_asm_insn ("basr\t%0,%0", op); output_asm_insn ("l\t%0,%1", op); } else { op[5] = gen_label_rtx (); op[6] = gen_label_rtx (); output_asm_insn ("st\t%0,%1", op); output_asm_insn ("bras\t%2,%l6", op); ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5])); output_asm_insn (".long\t%4-%l5", op); output_asm_insn (".long\t%3-%l5", op); ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6])); output_asm_insn ("lr\t%0,%2", op); output_asm_insn ("a\t%0,0(%2)", op); output_asm_insn ("a\t%2,4(%2)", op); output_asm_insn ("basr\t%0,%0", op); output_asm_insn ("l\t%0,%1", op); } } /* Select section for constant in constant pool. In 32-bit mode, constants go in the function section; in 64-bit mode in .rodata. */ static void s390_select_rtx_section (mode, x, align) enum machine_mode mode ATTRIBUTE_UNUSED; rtx x ATTRIBUTE_UNUSED; unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED; { if (TARGET_64BIT) readonly_data_section (); else function_section (current_function_decl); } /* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF into its name and SYMBOL_REF_FLAG. */ static void s390_encode_section_info (decl, first) tree decl; int first ATTRIBUTE_UNUSED; { bool local_p = (*targetm.binds_local_p) (decl); rtx rtl, symbol; rtl = DECL_P (decl) ? DECL_RTL (decl) : TREE_CST_RTL (decl); if (GET_CODE (rtl) != MEM) return; symbol = XEXP (rtl, 0); if (GET_CODE (symbol) != SYMBOL_REF) return; /* When using PIC, SYMBOL_REF_FLAG marks non-global symbols that can be accessed directly. */ if (flag_pic) SYMBOL_REF_FLAG (symbol) = local_p; /* Encode thread-local data with %[GLil] for "global dynamic", "local dynamic", "initial exec" or "local exec" TLS models, respectively. */ if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl)) { const char *symbol_str = XSTR (symbol, 0); char *newstr; size_t len; enum tls_model kind = decl_tls_model (decl); if (!flag_pic) { /* We don't allow non-pic code for shared libraries, so don't generate GD/LD TLS models for non-pic code. */ switch (kind) { case TLS_MODEL_GLOBAL_DYNAMIC: kind = TLS_MODEL_INITIAL_EXEC; break; case TLS_MODEL_LOCAL_DYNAMIC: kind = TLS_MODEL_LOCAL_EXEC; break; default: break; } } if (symbol_str[0] == '%') { if (symbol_str[1] == tls_model_chars[kind]) return; symbol_str += 2; } len = strlen (symbol_str) + 1; newstr = alloca (len + 2); newstr[0] = '%'; newstr[1] = tls_model_chars[kind]; memcpy (newstr + 2, symbol_str, len); XSTR (symbol, 0) = ggc_alloc_string (newstr, len + 2 - 1); } /* If a variable has a forced alignment to < 2 bytes, mark it with '@' to prevent it from being used as LARL operand. */ else if (TREE_CODE (decl) == VAR_DECL && DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) < 16 && XSTR (symbol, 0)[0] != '@') { const char *symbol_str = XSTR (symbol, 0); size_t len = strlen (symbol_str) + 1; char *newstr = alloca (len + 1); newstr[0] = '@'; memcpy (newstr + 1, symbol_str, len); XSTR (symbol, 0) = ggc_alloc_string (newstr, len + 1 - 1); } } /* Undo the above when printing symbol names. */ static const char * s390_strip_name_encoding (str) const char *str; { if (str[0] == '%') str += 2; if (str[0] == '@') str += 1; if (str[0] == '*') str += 1; return str; } /* Output thunk to FILE that implements a C++ virtual function call (with multiple inheritance) to FUNCTION. The thunk adjusts the this pointer by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment stored at VCALL_OFFSET in the vtable whose address is located at offset 0 relative to the resulting this pointer. */ static void s390_output_mi_thunk (file, thunk, delta, vcall_offset, function) FILE *file; tree thunk ATTRIBUTE_UNUSED; HOST_WIDE_INT delta; HOST_WIDE_INT vcall_offset; tree function; { rtx op[10]; int nonlocal = 0; /* Operand 0 is the target function. */ op[0] = XEXP (DECL_RTL (function), 0); if (flag_pic && !SYMBOL_REF_FLAG (op[0])) { nonlocal = 1; op[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[0]), TARGET_64BIT ? 113 : flag_pic == 2 ? 112 : 110); op[0] = gen_rtx_CONST (Pmode, op[0]); } /* Operand 1 is the 'this' pointer. */ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)))) op[1] = gen_rtx_REG (Pmode, 3); else op[1] = gen_rtx_REG (Pmode, 2); /* Operand 2 is the delta. */ op[2] = GEN_INT (delta); /* Operand 3 is the vcall_offset. */ op[3] = GEN_INT (vcall_offset); /* Operand 4 is the temporary register. */ op[4] = gen_rtx_REG (Pmode, 1); /* Operands 5 to 8 can be used as labels. */ op[5] = NULL_RTX; op[6] = NULL_RTX; op[7] = NULL_RTX; op[8] = NULL_RTX; /* Operand 9 can be used for temporary register. */ op[9] = NULL_RTX; /* Generate code. */ if (TARGET_64BIT) { /* Setup literal pool pointer if required. */ if (!CONST_OK_FOR_LETTER_P (delta, 'K') || !CONST_OK_FOR_LETTER_P (vcall_offset, 'K')) { op[5] = gen_label_rtx (); output_asm_insn ("larl\t%4,%5", op); } /* Add DELTA to this pointer. */ if (delta) { if (CONST_OK_FOR_LETTER_P (delta, 'J')) output_asm_insn ("la\t%1,%2(%1)", op); else if (CONST_OK_FOR_LETTER_P (delta, 'K')) output_asm_insn ("aghi\t%1,%2", op); else { op[6] = gen_label_rtx (); output_asm_insn ("agf\t%1,%6-%5(%4)", op); } } /* Perform vcall adjustment. */ if (vcall_offset) { if (CONST_OK_FOR_LETTER_P (vcall_offset, 'J')) { output_asm_insn ("lg\t%4,0(%1)", op); output_asm_insn ("ag\t%1,%3(%4)", op); } else if (CONST_OK_FOR_LETTER_P (vcall_offset, 'K')) { output_asm_insn ("lghi\t%4,%3", op); output_asm_insn ("ag\t%4,0(%1)", op); output_asm_insn ("ag\t%1,0(%4)", op); } else { op[7] = gen_label_rtx (); output_asm_insn ("llgf\t%4,%7-%5(%4)", op); output_asm_insn ("ag\t%4,0(%1)", op); output_asm_insn ("ag\t%1,0(%4)", op); } } /* Jump to target. */ output_asm_insn ("jg\t%0", op); /* Output literal pool if required. */ if (op[5]) { output_asm_insn (".align\t4", op); ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5])); } if (op[6]) { ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6])); output_asm_insn (".long\t%2", op); } if (op[7]) { ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[7])); output_asm_insn (".long\t%3", op); } } else { /* Setup base pointer if required. */ if (!vcall_offset || !CONST_OK_FOR_LETTER_P (delta, 'K') || !CONST_OK_FOR_LETTER_P (vcall_offset, 'K')) { op[5] = gen_label_rtx (); output_asm_insn ("basr\t%4,0", op); ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5])); } /* Add DELTA to this pointer. */ if (delta) { if (CONST_OK_FOR_LETTER_P (delta, 'J')) output_asm_insn ("la\t%1,%2(%1)", op); else if (CONST_OK_FOR_LETTER_P (delta, 'K')) output_asm_insn ("ahi\t%1,%2", op); else { op[6] = gen_label_rtx (); output_asm_insn ("a\t%1,%6-%5(%4)", op); } } /* Perform vcall adjustment. */ if (vcall_offset) { if (CONST_OK_FOR_LETTER_P (vcall_offset, 'J')) { output_asm_insn ("lg\t%4,0(%1)", op); output_asm_insn ("a\t%1,%3(%4)", op); } else if (CONST_OK_FOR_LETTER_P (vcall_offset, 'K')) { output_asm_insn ("lhi\t%4,%3", op); output_asm_insn ("a\t%4,0(%1)", op); output_asm_insn ("a\t%1,0(%4)", op); } else { op[7] = gen_label_rtx (); output_asm_insn ("l\t%4,%7-%5(%4)", op); output_asm_insn ("a\t%4,0(%1)", op); output_asm_insn ("a\t%1,0(%4)", op); } /* We had to clobber the base pointer register. Re-setup the base pointer (with a different base). */ op[5] = gen_label_rtx (); output_asm_insn ("basr\t%4,0", op); ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5])); } /* Jump to target. */ op[8] = gen_label_rtx (); if (!flag_pic) output_asm_insn ("l\t%4,%8-%5(%4)", op); else if (!nonlocal) output_asm_insn ("a\t%4,%8-%5(%4)", op); /* We cannot call through .plt, since .plt requires %r12 loaded. */ else if (flag_pic == 1) { output_asm_insn ("a\t%4,%8-%5(%4)", op); output_asm_insn ("l\t%4,%0(%4)", op); } else if (flag_pic == 2) { op[9] = gen_rtx_REG (Pmode, 0); output_asm_insn ("l\t%9,%8-4-%5(%4)", op); output_asm_insn ("a\t%4,%8-%5(%4)", op); output_asm_insn ("ar\t%4,%9", op); output_asm_insn ("l\t%4,0(%4)", op); } output_asm_insn ("br\t%4", op); /* Output literal pool. */ output_asm_insn (".align\t4", op); if (nonlocal && flag_pic == 2) output_asm_insn (".long\t%0", op); if (nonlocal) { op[0] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); SYMBOL_REF_FLAG (op[0]) = 1; } ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[8])); if (!flag_pic) output_asm_insn (".long\t%0", op); else output_asm_insn (".long\t%0-%5", op); if (op[6]) { ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6])); output_asm_insn (".long\t%2", op); } if (op[7]) { ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[7])); output_asm_insn (".long\t%3", op); } } } /* How to allocate a 'struct machine_function'. */ static struct machine_function * s390_init_machine_status () { return ggc_alloc_cleared (sizeof (struct machine_function)); } #include "gt-s390.h"