/* $OpenBSD: subr_pool.c,v 1.236 2022/08/14 01:58:28 jsg Exp $ */ /* $NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $ */ /*- * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace * Simulation Facility, NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Pool resource management utility. * * Memory is allocated in pages which are split into pieces according to * the pool item size. Each page is kept on one of three lists in the * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', * for empty, full and partially-full pages respectively. The individual * pool items are on a linked list headed by `ph_items' in each page * header. The memory for building the page list is either taken from * the allocated pages themselves (for small pool items) or taken from * an internal pool of page headers (`phpool'). */ /* List of all pools */ SIMPLEQ_HEAD(,pool) pool_head = SIMPLEQ_HEAD_INITIALIZER(pool_head); /* * Every pool gets a unique serial number assigned to it. If this counter * wraps, we're screwed, but we shouldn't create so many pools anyway. */ unsigned int pool_serial; unsigned int pool_count; /* Lock the previous variables making up the global pool state */ struct rwlock pool_lock = RWLOCK_INITIALIZER("pools"); /* Private pool for page header structures */ struct pool phpool; struct pool_lock_ops { void (*pl_init)(struct pool *, union pool_lock *, const struct lock_type *); void (*pl_enter)(union pool_lock *); int (*pl_enter_try)(union pool_lock *); void (*pl_leave)(union pool_lock *); void (*pl_assert_locked)(union pool_lock *); void (*pl_assert_unlocked)(union pool_lock *); int (*pl_sleep)(void *, union pool_lock *, int, const char *); }; static const struct pool_lock_ops pool_lock_ops_mtx; static const struct pool_lock_ops pool_lock_ops_rw; #ifdef WITNESS #define pl_init(pp, pl) do { \ static const struct lock_type __lock_type = { .lt_name = #pl }; \ (pp)->pr_lock_ops->pl_init(pp, pl, &__lock_type); \ } while (0) #else /* WITNESS */ #define pl_init(pp, pl) (pp)->pr_lock_ops->pl_init(pp, pl, NULL) #endif /* WITNESS */ static inline void pl_enter(struct pool *pp, union pool_lock *pl) { pp->pr_lock_ops->pl_enter(pl); } static inline int pl_enter_try(struct pool *pp, union pool_lock *pl) { return pp->pr_lock_ops->pl_enter_try(pl); } static inline void pl_leave(struct pool *pp, union pool_lock *pl) { pp->pr_lock_ops->pl_leave(pl); } static inline void pl_assert_locked(struct pool *pp, union pool_lock *pl) { pp->pr_lock_ops->pl_assert_locked(pl); } static inline void pl_assert_unlocked(struct pool *pp, union pool_lock *pl) { pp->pr_lock_ops->pl_assert_unlocked(pl); } static inline int pl_sleep(struct pool *pp, void *ident, union pool_lock *lock, int priority, const char *wmesg) { return pp->pr_lock_ops->pl_sleep(ident, lock, priority, wmesg); } struct pool_item { u_long pi_magic; XSIMPLEQ_ENTRY(pool_item) pi_list; }; #define POOL_IMAGIC(ph, pi) ((u_long)(pi) ^ (ph)->ph_magic) struct pool_page_header { /* Page headers */ TAILQ_ENTRY(pool_page_header) ph_entry; /* pool page list */ XSIMPLEQ_HEAD(, pool_item) ph_items; /* free items on the page */ RBT_ENTRY(pool_page_header) ph_node; /* off-page page headers */ unsigned int ph_nmissing; /* # of chunks in use */ caddr_t ph_page; /* this page's address */ caddr_t ph_colored; /* page's colored address */ unsigned long ph_magic; uint64_t ph_timestamp; }; #define POOL_MAGICBIT (1 << 3) /* keep away from perturbed low bits */ #define POOL_PHPOISON(ph) ISSET((ph)->ph_magic, POOL_MAGICBIT) #ifdef MULTIPROCESSOR struct pool_cache_item { struct pool_cache_item *ci_next; /* next item in list */ unsigned long ci_nitems; /* number of items in list */ TAILQ_ENTRY(pool_cache_item) ci_nextl; /* entry in list of lists */ }; /* we store whether the cached item is poisoned in the high bit of nitems */ #define POOL_CACHE_ITEM_NITEMS_MASK 0x7ffffffUL #define POOL_CACHE_ITEM_NITEMS_POISON 0x8000000UL #define POOL_CACHE_ITEM_NITEMS(_ci) \ ((_ci)->ci_nitems & POOL_CACHE_ITEM_NITEMS_MASK) #define POOL_CACHE_ITEM_POISONED(_ci) \ ISSET((_ci)->ci_nitems, POOL_CACHE_ITEM_NITEMS_POISON) struct pool_cache { struct pool_cache_item *pc_actv; /* active list of items */ unsigned long pc_nactv; /* actv head nitems cache */ struct pool_cache_item *pc_prev; /* previous list of items */ uint64_t pc_gen; /* generation number */ uint64_t pc_nget; /* # of successful requests */ uint64_t pc_nfail; /* # of unsuccessful reqs */ uint64_t pc_nput; /* # of releases */ uint64_t pc_nlget; /* # of list requests */ uint64_t pc_nlfail; /* # of fails getting a list */ uint64_t pc_nlput; /* # of list releases */ int pc_nout; }; void *pool_cache_get(struct pool *); void pool_cache_put(struct pool *, void *); void pool_cache_destroy(struct pool *); void pool_cache_gc(struct pool *); #endif void pool_cache_pool_info(struct pool *, struct kinfo_pool *); int pool_cache_info(struct pool *, void *, size_t *); int pool_cache_cpus_info(struct pool *, void *, size_t *); #ifdef POOL_DEBUG int pool_debug = 1; #else int pool_debug = 0; #endif #define POOL_INPGHDR(pp) ((pp)->pr_phoffset != 0) struct pool_page_header * pool_p_alloc(struct pool *, int, int *); void pool_p_insert(struct pool *, struct pool_page_header *); void pool_p_remove(struct pool *, struct pool_page_header *); void pool_p_free(struct pool *, struct pool_page_header *); void pool_update_curpage(struct pool *); void *pool_do_get(struct pool *, int, int *); void pool_do_put(struct pool *, void *); int pool_chk_page(struct pool *, struct pool_page_header *, int); int pool_chk(struct pool *); void pool_get_done(struct pool *, void *, void *); void pool_runqueue(struct pool *, int); void *pool_allocator_alloc(struct pool *, int, int *); void pool_allocator_free(struct pool *, void *); /* * The default pool allocator. */ void *pool_page_alloc(struct pool *, int, int *); void pool_page_free(struct pool *, void *); /* * safe for interrupts; this is the default allocator */ struct pool_allocator pool_allocator_single = { pool_page_alloc, pool_page_free, POOL_ALLOC_SIZE(PAGE_SIZE, POOL_ALLOC_ALIGNED) }; void *pool_multi_alloc(struct pool *, int, int *); void pool_multi_free(struct pool *, void *); struct pool_allocator pool_allocator_multi = { pool_multi_alloc, pool_multi_free, POOL_ALLOC_SIZES(PAGE_SIZE, (1UL << 31), POOL_ALLOC_ALIGNED) }; void *pool_multi_alloc_ni(struct pool *, int, int *); void pool_multi_free_ni(struct pool *, void *); struct pool_allocator pool_allocator_multi_ni = { pool_multi_alloc_ni, pool_multi_free_ni, POOL_ALLOC_SIZES(PAGE_SIZE, (1UL << 31), POOL_ALLOC_ALIGNED) }; #ifdef DDB void pool_print_pagelist(struct pool_pagelist *, int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))); void pool_print1(struct pool *, const char *, int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))); #endif /* stale page garbage collectors */ void pool_gc_sched(void *); struct timeout pool_gc_tick = TIMEOUT_INITIALIZER(pool_gc_sched, NULL); void pool_gc_pages(void *); struct task pool_gc_task = TASK_INITIALIZER(pool_gc_pages, NULL); #define POOL_WAIT_FREE SEC_TO_NSEC(1) #define POOL_WAIT_GC SEC_TO_NSEC(8) RBT_PROTOTYPE(phtree, pool_page_header, ph_node, phtree_compare); static inline int phtree_compare(const struct pool_page_header *a, const struct pool_page_header *b) { vaddr_t va = (vaddr_t)a->ph_page; vaddr_t vb = (vaddr_t)b->ph_page; /* the compares in this order are important for the NFIND to work */ if (vb < va) return (-1); if (vb > va) return (1); return (0); } RBT_GENERATE(phtree, pool_page_header, ph_node, phtree_compare); /* * Return the pool page header based on page address. */ static inline struct pool_page_header * pr_find_pagehead(struct pool *pp, void *v) { struct pool_page_header *ph, key; if (POOL_INPGHDR(pp)) { caddr_t page; page = (caddr_t)((vaddr_t)v & pp->pr_pgmask); return ((struct pool_page_header *)(page + pp->pr_phoffset)); } key.ph_page = v; ph = RBT_NFIND(phtree, &pp->pr_phtree, &key); if (ph == NULL) panic("%s: %s: page header missing", __func__, pp->pr_wchan); KASSERT(ph->ph_page <= (caddr_t)v); if (ph->ph_page + pp->pr_pgsize <= (caddr_t)v) panic("%s: %s: incorrect page", __func__, pp->pr_wchan); return (ph); } /* * Initialize the given pool resource structure. * * We export this routine to allow other kernel parts to declare * static pools that must be initialized before malloc() is available. */ void pool_init(struct pool *pp, size_t size, u_int align, int ipl, int flags, const char *wchan, struct pool_allocator *palloc) { int off = 0, space; unsigned int pgsize = PAGE_SIZE, items; size_t pa_pagesz; #ifdef DIAGNOSTIC struct pool *iter; #endif if (align == 0) align = ALIGN(1); if (size < sizeof(struct pool_item)) size = sizeof(struct pool_item); size = roundup(size, align); while (size * 8 > pgsize) pgsize <<= 1; if (palloc == NULL) { if (pgsize > PAGE_SIZE) { palloc = ISSET(flags, PR_WAITOK) ? &pool_allocator_multi_ni : &pool_allocator_multi; } else palloc = &pool_allocator_single; pa_pagesz = palloc->pa_pagesz; } else { size_t pgsizes; pa_pagesz = palloc->pa_pagesz; if (pa_pagesz == 0) pa_pagesz = POOL_ALLOC_DEFAULT; pgsizes = pa_pagesz & ~POOL_ALLOC_ALIGNED; /* make sure the allocator can fit at least one item */ if (size > pgsizes) { panic("%s: pool %s item size 0x%zx > " "allocator %p sizes 0x%zx", __func__, wchan, size, palloc, pgsizes); } /* shrink pgsize until it fits into the range */ while (!ISSET(pgsizes, pgsize)) pgsize >>= 1; } KASSERT(ISSET(pa_pagesz, pgsize)); items = pgsize / size; /* * Decide whether to put the page header off page to avoid * wasting too large a part of the page. Off-page page headers * go into an RB tree, so we can match a returned item with * its header based on the page address. */ if (ISSET(pa_pagesz, POOL_ALLOC_ALIGNED)) { if (pgsize - (size * items) > sizeof(struct pool_page_header)) { off = pgsize - sizeof(struct pool_page_header); } else if (sizeof(struct pool_page_header) * 2 >= size) { off = pgsize - sizeof(struct pool_page_header); items = off / size; } } KASSERT(items > 0); /* * Initialize the pool structure. */ memset(pp, 0, sizeof(*pp)); if (ISSET(flags, PR_RWLOCK)) { KASSERT(flags & PR_WAITOK); pp->pr_lock_ops = &pool_lock_ops_rw; } else pp->pr_lock_ops = &pool_lock_ops_mtx; TAILQ_INIT(&pp->pr_emptypages); TAILQ_INIT(&pp->pr_fullpages); TAILQ_INIT(&pp->pr_partpages); pp->pr_curpage = NULL; pp->pr_npages = 0; pp->pr_minitems = 0; pp->pr_minpages = 0; pp->pr_maxpages = 8; pp->pr_size = size; pp->pr_pgsize = pgsize; pp->pr_pgmask = ~0UL ^ (pgsize - 1); pp->pr_phoffset = off; pp->pr_itemsperpage = items; pp->pr_wchan = wchan; pp->pr_alloc = palloc; pp->pr_nitems = 0; pp->pr_nout = 0; pp->pr_hardlimit = UINT_MAX; pp->pr_hardlimit_warning = NULL; pp->pr_hardlimit_ratecap.tv_sec = 0; pp->pr_hardlimit_ratecap.tv_usec = 0; pp->pr_hardlimit_warning_last.tv_sec = 0; pp->pr_hardlimit_warning_last.tv_usec = 0; RBT_INIT(phtree, &pp->pr_phtree); /* * Use the space between the chunks and the page header * for cache coloring. */ space = POOL_INPGHDR(pp) ? pp->pr_phoffset : pp->pr_pgsize; space -= pp->pr_itemsperpage * pp->pr_size; pp->pr_align = align; pp->pr_maxcolors = (space / align) + 1; pp->pr_nget = 0; pp->pr_nfail = 0; pp->pr_nput = 0; pp->pr_npagealloc = 0; pp->pr_npagefree = 0; pp->pr_hiwat = 0; pp->pr_nidle = 0; pp->pr_ipl = ipl; pp->pr_flags = flags; pl_init(pp, &pp->pr_lock); pl_init(pp, &pp->pr_requests_lock); TAILQ_INIT(&pp->pr_requests); if (phpool.pr_size == 0) { pool_init(&phpool, sizeof(struct pool_page_header), 0, IPL_HIGH, 0, "phpool", NULL); /* make sure phpool won't "recurse" */ KASSERT(POOL_INPGHDR(&phpool)); } /* pglistalloc/constraint parameters */ pp->pr_crange = &kp_dirty; /* Insert this into the list of all pools. */ rw_enter_write(&pool_lock); #ifdef DIAGNOSTIC SIMPLEQ_FOREACH(iter, &pool_head, pr_poollist) { if (iter == pp) panic("%s: pool %s already on list", __func__, wchan); } #endif pp->pr_serial = ++pool_serial; if (pool_serial == 0) panic("%s: too much uptime", __func__); SIMPLEQ_INSERT_HEAD(&pool_head, pp, pr_poollist); pool_count++; rw_exit_write(&pool_lock); } /* * Decommission a pool resource. */ void pool_destroy(struct pool *pp) { struct pool_page_header *ph; struct pool *prev, *iter; #ifdef MULTIPROCESSOR if (pp->pr_cache != NULL) pool_cache_destroy(pp); #endif #ifdef DIAGNOSTIC if (pp->pr_nout != 0) panic("%s: pool busy: still out: %u", __func__, pp->pr_nout); #endif /* Remove from global pool list */ rw_enter_write(&pool_lock); pool_count--; if (pp == SIMPLEQ_FIRST(&pool_head)) SIMPLEQ_REMOVE_HEAD(&pool_head, pr_poollist); else { prev = SIMPLEQ_FIRST(&pool_head); SIMPLEQ_FOREACH(iter, &pool_head, pr_poollist) { if (iter == pp) { SIMPLEQ_REMOVE_AFTER(&pool_head, prev, pr_poollist); break; } prev = iter; } } rw_exit_write(&pool_lock); /* Remove all pages */ while ((ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL) { pl_enter(pp, &pp->pr_lock); pool_p_remove(pp, ph); pl_leave(pp, &pp->pr_lock); pool_p_free(pp, ph); } KASSERT(TAILQ_EMPTY(&pp->pr_fullpages)); KASSERT(TAILQ_EMPTY(&pp->pr_partpages)); } void pool_request_init(struct pool_request *pr, void (*handler)(struct pool *, void *, void *), void *cookie) { pr->pr_handler = handler; pr->pr_cookie = cookie; pr->pr_item = NULL; } void pool_request(struct pool *pp, struct pool_request *pr) { pl_enter(pp, &pp->pr_requests_lock); TAILQ_INSERT_TAIL(&pp->pr_requests, pr, pr_entry); pool_runqueue(pp, PR_NOWAIT); pl_leave(pp, &pp->pr_requests_lock); } struct pool_get_memory { union pool_lock lock; void * volatile v; }; /* * Grab an item from the pool. */ void * pool_get(struct pool *pp, int flags) { void *v = NULL; int slowdown = 0; KASSERT(flags & (PR_WAITOK | PR_NOWAIT)); if (pp->pr_flags & PR_RWLOCK) KASSERT(flags & PR_WAITOK); #ifdef MULTIPROCESSOR if (pp->pr_cache != NULL) { v = pool_cache_get(pp); if (v != NULL) goto good; } #endif pl_enter(pp, &pp->pr_lock); if (pp->pr_nout >= pp->pr_hardlimit) { if (ISSET(flags, PR_NOWAIT|PR_LIMITFAIL)) goto fail; } else if ((v = pool_do_get(pp, flags, &slowdown)) == NULL) { if (ISSET(flags, PR_NOWAIT)) goto fail; } pl_leave(pp, &pp->pr_lock); if ((slowdown || pool_debug == 2) && ISSET(flags, PR_WAITOK)) yield(); if (v == NULL) { struct pool_get_memory mem = { .v = NULL }; struct pool_request pr; #ifdef DIAGNOSTIC if (ISSET(flags, PR_WAITOK) && curproc == &proc0) panic("%s: cannot sleep for memory during boot", __func__); #endif pl_init(pp, &mem.lock); pool_request_init(&pr, pool_get_done, &mem); pool_request(pp, &pr); pl_enter(pp, &mem.lock); while (mem.v == NULL) pl_sleep(pp, &mem, &mem.lock, PSWP, pp->pr_wchan); pl_leave(pp, &mem.lock); v = mem.v; } #ifdef MULTIPROCESSOR good: #endif if (ISSET(flags, PR_ZERO)) memset(v, 0, pp->pr_size); TRACEPOINT(uvm, pool_get, pp, v, flags); return (v); fail: pp->pr_nfail++; pl_leave(pp, &pp->pr_lock); return (NULL); } void pool_get_done(struct pool *pp, void *xmem, void *v) { struct pool_get_memory *mem = xmem; pl_enter(pp, &mem->lock); mem->v = v; pl_leave(pp, &mem->lock); wakeup_one(mem); } void pool_runqueue(struct pool *pp, int flags) { struct pool_requests prl = TAILQ_HEAD_INITIALIZER(prl); struct pool_request *pr; pl_assert_unlocked(pp, &pp->pr_lock); pl_assert_locked(pp, &pp->pr_requests_lock); if (pp->pr_requesting++) return; do { pp->pr_requesting = 1; TAILQ_CONCAT(&prl, &pp->pr_requests, pr_entry); if (TAILQ_EMPTY(&prl)) continue; pl_leave(pp, &pp->pr_requests_lock); pl_enter(pp, &pp->pr_lock); pr = TAILQ_FIRST(&prl); while (pr != NULL) { int slowdown = 0; if (pp->pr_nout >= pp->pr_hardlimit) break; pr->pr_item = pool_do_get(pp, flags, &slowdown); if (pr->pr_item == NULL) /* || slowdown ? */ break; pr = TAILQ_NEXT(pr, pr_entry); } pl_leave(pp, &pp->pr_lock); while ((pr = TAILQ_FIRST(&prl)) != NULL && pr->pr_item != NULL) { TAILQ_REMOVE(&prl, pr, pr_entry); (*pr->pr_handler)(pp, pr->pr_cookie, pr->pr_item); } pl_enter(pp, &pp->pr_requests_lock); } while (--pp->pr_requesting); TAILQ_CONCAT(&pp->pr_requests, &prl, pr_entry); } void * pool_do_get(struct pool *pp, int flags, int *slowdown) { struct pool_item *pi; struct pool_page_header *ph; pl_assert_locked(pp, &pp->pr_lock); splassert(pp->pr_ipl); /* * Account for this item now to avoid races if we need to give up * pr_lock to allocate a page. */ pp->pr_nout++; if (pp->pr_curpage == NULL) { pl_leave(pp, &pp->pr_lock); ph = pool_p_alloc(pp, flags, slowdown); pl_enter(pp, &pp->pr_lock); if (ph == NULL) { pp->pr_nout--; return (NULL); } pool_p_insert(pp, ph); } ph = pp->pr_curpage; pi = XSIMPLEQ_FIRST(&ph->ph_items); if (__predict_false(pi == NULL)) panic("%s: %s: page empty", __func__, pp->pr_wchan); if (__predict_false(pi->pi_magic != POOL_IMAGIC(ph, pi))) { panic("%s: %s free list modified: " "page %p; item addr %p; offset 0x%x=0x%lx != 0x%lx", __func__, pp->pr_wchan, ph->ph_page, pi, 0, pi->pi_magic, POOL_IMAGIC(ph, pi)); } XSIMPLEQ_REMOVE_HEAD(&ph->ph_items, pi_list); #ifdef DIAGNOSTIC if (pool_debug && POOL_PHPOISON(ph)) { size_t pidx; uint32_t pval; if (poison_check(pi + 1, pp->pr_size - sizeof(*pi), &pidx, &pval)) { int *ip = (int *)(pi + 1); panic("%s: %s free list modified: " "page %p; item addr %p; offset 0x%zx=0x%x", __func__, pp->pr_wchan, ph->ph_page, pi, (pidx * sizeof(int)) + sizeof(*pi), ip[pidx]); } } #endif /* DIAGNOSTIC */ if (ph->ph_nmissing++ == 0) { /* * This page was previously empty. Move it to the list of * partially-full pages. This page is already curpage. */ TAILQ_REMOVE(&pp->pr_emptypages, ph, ph_entry); TAILQ_INSERT_TAIL(&pp->pr_partpages, ph, ph_entry); pp->pr_nidle--; } if (ph->ph_nmissing == pp->pr_itemsperpage) { /* * This page is now full. Move it to the full list * and select a new current page. */ TAILQ_REMOVE(&pp->pr_partpages, ph, ph_entry); TAILQ_INSERT_TAIL(&pp->pr_fullpages, ph, ph_entry); pool_update_curpage(pp); } pp->pr_nget++; return (pi); } /* * Return resource to the pool. */ void pool_put(struct pool *pp, void *v) { struct pool_page_header *ph, *freeph = NULL; #ifdef DIAGNOSTIC if (v == NULL) panic("%s: NULL item", __func__); #endif TRACEPOINT(uvm, pool_put, pp, v); #ifdef MULTIPROCESSOR if (pp->pr_cache != NULL && TAILQ_EMPTY(&pp->pr_requests)) { pool_cache_put(pp, v); return; } #endif pl_enter(pp, &pp->pr_lock); pool_do_put(pp, v); pp->pr_nout--; pp->pr_nput++; /* is it time to free a page? */ if (pp->pr_nidle > pp->pr_maxpages && (ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL && getnsecuptime() - ph->ph_timestamp > POOL_WAIT_FREE) { freeph = ph; pool_p_remove(pp, freeph); } pl_leave(pp, &pp->pr_lock); if (freeph != NULL) pool_p_free(pp, freeph); pool_wakeup(pp); } void pool_wakeup(struct pool *pp) { if (!TAILQ_EMPTY(&pp->pr_requests)) { pl_enter(pp, &pp->pr_requests_lock); pool_runqueue(pp, PR_NOWAIT); pl_leave(pp, &pp->pr_requests_lock); } } void pool_do_put(struct pool *pp, void *v) { struct pool_item *pi = v; struct pool_page_header *ph; splassert(pp->pr_ipl); ph = pr_find_pagehead(pp, v); #ifdef DIAGNOSTIC if (pool_debug) { struct pool_item *qi; XSIMPLEQ_FOREACH(qi, &ph->ph_items, pi_list) { if (pi == qi) { panic("%s: %s: double pool_put: %p", __func__, pp->pr_wchan, pi); } } } #endif /* DIAGNOSTIC */ pi->pi_magic = POOL_IMAGIC(ph, pi); XSIMPLEQ_INSERT_HEAD(&ph->ph_items, pi, pi_list); #ifdef DIAGNOSTIC if (POOL_PHPOISON(ph)) poison_mem(pi + 1, pp->pr_size - sizeof(*pi)); #endif /* DIAGNOSTIC */ if (ph->ph_nmissing-- == pp->pr_itemsperpage) { /* * The page was previously completely full, move it to the * partially-full list. */ TAILQ_REMOVE(&pp->pr_fullpages, ph, ph_entry); TAILQ_INSERT_TAIL(&pp->pr_partpages, ph, ph_entry); } if (ph->ph_nmissing == 0) { /* * The page is now empty, so move it to the empty page list. */ pp->pr_nidle++; ph->ph_timestamp = getnsecuptime(); TAILQ_REMOVE(&pp->pr_partpages, ph, ph_entry); TAILQ_INSERT_TAIL(&pp->pr_emptypages, ph, ph_entry); pool_update_curpage(pp); } } /* * Add N items to the pool. */ int pool_prime(struct pool *pp, int n) { struct pool_pagelist pl = TAILQ_HEAD_INITIALIZER(pl); struct pool_page_header *ph; int newpages; newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; while (newpages-- > 0) { int slowdown = 0; ph = pool_p_alloc(pp, PR_NOWAIT, &slowdown); if (ph == NULL) /* or slowdown? */ break; TAILQ_INSERT_TAIL(&pl, ph, ph_entry); } pl_enter(pp, &pp->pr_lock); while ((ph = TAILQ_FIRST(&pl)) != NULL) { TAILQ_REMOVE(&pl, ph, ph_entry); pool_p_insert(pp, ph); } pl_leave(pp, &pp->pr_lock); return (0); } struct pool_page_header * pool_p_alloc(struct pool *pp, int flags, int *slowdown) { struct pool_page_header *ph; struct pool_item *pi; caddr_t addr; unsigned int order; int o; int n; pl_assert_unlocked(pp, &pp->pr_lock); KASSERT(pp->pr_size >= sizeof(*pi)); addr = pool_allocator_alloc(pp, flags, slowdown); if (addr == NULL) return (NULL); if (POOL_INPGHDR(pp)) ph = (struct pool_page_header *)(addr + pp->pr_phoffset); else { ph = pool_get(&phpool, flags); if (ph == NULL) { pool_allocator_free(pp, addr); return (NULL); } } XSIMPLEQ_INIT(&ph->ph_items); ph->ph_page = addr; addr += pp->pr_align * (pp->pr_npagealloc % pp->pr_maxcolors); ph->ph_colored = addr; ph->ph_nmissing = 0; arc4random_buf(&ph->ph_magic, sizeof(ph->ph_magic)); #ifdef DIAGNOSTIC /* use a bit in ph_magic to record if we poison page items */ if (pool_debug) SET(ph->ph_magic, POOL_MAGICBIT); else CLR(ph->ph_magic, POOL_MAGICBIT); #endif /* DIAGNOSTIC */ n = pp->pr_itemsperpage; o = 32; while (n--) { pi = (struct pool_item *)addr; pi->pi_magic = POOL_IMAGIC(ph, pi); if (o == 32) { order = arc4random(); o = 0; } if (ISSET(order, 1U << o++)) XSIMPLEQ_INSERT_TAIL(&ph->ph_items, pi, pi_list); else XSIMPLEQ_INSERT_HEAD(&ph->ph_items, pi, pi_list); #ifdef DIAGNOSTIC if (POOL_PHPOISON(ph)) poison_mem(pi + 1, pp->pr_size - sizeof(*pi)); #endif /* DIAGNOSTIC */ addr += pp->pr_size; } return (ph); } void pool_p_free(struct pool *pp, struct pool_page_header *ph) { struct pool_item *pi; pl_assert_unlocked(pp, &pp->pr_lock); KASSERT(ph->ph_nmissing == 0); XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) { if (__predict_false(pi->pi_magic != POOL_IMAGIC(ph, pi))) { panic("%s: %s free list modified: " "page %p; item addr %p; offset 0x%x=0x%lx", __func__, pp->pr_wchan, ph->ph_page, pi, 0, pi->pi_magic); } #ifdef DIAGNOSTIC if (POOL_PHPOISON(ph)) { size_t pidx; uint32_t pval; if (poison_check(pi + 1, pp->pr_size - sizeof(*pi), &pidx, &pval)) { int *ip = (int *)(pi + 1); panic("%s: %s free list modified: " "page %p; item addr %p; offset 0x%zx=0x%x", __func__, pp->pr_wchan, ph->ph_page, pi, pidx * sizeof(int), ip[pidx]); } } #endif } pool_allocator_free(pp, ph->ph_page); if (!POOL_INPGHDR(pp)) pool_put(&phpool, ph); } void pool_p_insert(struct pool *pp, struct pool_page_header *ph) { pl_assert_locked(pp, &pp->pr_lock); /* If the pool was depleted, point at the new page */ if (pp->pr_curpage == NULL) pp->pr_curpage = ph; TAILQ_INSERT_TAIL(&pp->pr_emptypages, ph, ph_entry); if (!POOL_INPGHDR(pp)) RBT_INSERT(phtree, &pp->pr_phtree, ph); pp->pr_nitems += pp->pr_itemsperpage; pp->pr_nidle++; pp->pr_npagealloc++; if (++pp->pr_npages > pp->pr_hiwat) pp->pr_hiwat = pp->pr_npages; } void pool_p_remove(struct pool *pp, struct pool_page_header *ph) { pl_assert_locked(pp, &pp->pr_lock); pp->pr_npagefree++; pp->pr_npages--; pp->pr_nidle--; pp->pr_nitems -= pp->pr_itemsperpage; if (!POOL_INPGHDR(pp)) RBT_REMOVE(phtree, &pp->pr_phtree, ph); TAILQ_REMOVE(&pp->pr_emptypages, ph, ph_entry); pool_update_curpage(pp); } void pool_update_curpage(struct pool *pp) { pp->pr_curpage = TAILQ_LAST(&pp->pr_partpages, pool_pagelist); if (pp->pr_curpage == NULL) { pp->pr_curpage = TAILQ_LAST(&pp->pr_emptypages, pool_pagelist); } } void pool_setlowat(struct pool *pp, int n) { int prime = 0; pl_enter(pp, &pp->pr_lock); pp->pr_minitems = n; pp->pr_minpages = (n == 0) ? 0 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; if (pp->pr_nitems < n) prime = n - pp->pr_nitems; pl_leave(pp, &pp->pr_lock); if (prime > 0) pool_prime(pp, prime); } void pool_sethiwat(struct pool *pp, int n) { pp->pr_maxpages = (n == 0) ? 0 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; } int pool_sethardlimit(struct pool *pp, u_int n, const char *warnmsg, int ratecap) { int error = 0; if (n < pp->pr_nout) { error = EINVAL; goto done; } pp->pr_hardlimit = n; pp->pr_hardlimit_warning = warnmsg; pp->pr_hardlimit_ratecap.tv_sec = ratecap; pp->pr_hardlimit_warning_last.tv_sec = 0; pp->pr_hardlimit_warning_last.tv_usec = 0; done: return (error); } void pool_set_constraints(struct pool *pp, const struct kmem_pa_mode *mode) { pp->pr_crange = mode; } /* * Release all complete pages that have not been used recently. * * Returns non-zero if any pages have been reclaimed. */ int pool_reclaim(struct pool *pp) { struct pool_page_header *ph, *phnext; struct pool_pagelist pl = TAILQ_HEAD_INITIALIZER(pl); pl_enter(pp, &pp->pr_lock); for (ph = TAILQ_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { phnext = TAILQ_NEXT(ph, ph_entry); /* Check our minimum page claim */ if (pp->pr_npages <= pp->pr_minpages) break; /* * If freeing this page would put us below * the low water mark, stop now. */ if ((pp->pr_nitems - pp->pr_itemsperpage) < pp->pr_minitems) break; pool_p_remove(pp, ph); TAILQ_INSERT_TAIL(&pl, ph, ph_entry); } pl_leave(pp, &pp->pr_lock); if (TAILQ_EMPTY(&pl)) return (0); while ((ph = TAILQ_FIRST(&pl)) != NULL) { TAILQ_REMOVE(&pl, ph, ph_entry); pool_p_free(pp, ph); } return (1); } /* * Release all complete pages that have not been used recently * from all pools. */ void pool_reclaim_all(void) { struct pool *pp; rw_enter_read(&pool_lock); SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) pool_reclaim(pp); rw_exit_read(&pool_lock); } #ifdef DDB #include #include /* * Diagnostic helpers. */ void pool_printit(struct pool *pp, const char *modif, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) { pool_print1(pp, modif, pr); } void pool_print_pagelist(struct pool_pagelist *pl, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) { struct pool_page_header *ph; struct pool_item *pi; TAILQ_FOREACH(ph, pl, ph_entry) { (*pr)("\t\tpage %p, color %p, nmissing %d\n", ph->ph_page, ph->ph_colored, ph->ph_nmissing); XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) { if (pi->pi_magic != POOL_IMAGIC(ph, pi)) { (*pr)("\t\t\titem %p, magic 0x%lx\n", pi, pi->pi_magic); } } } } void pool_print1(struct pool *pp, const char *modif, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) { struct pool_page_header *ph; int print_pagelist = 0; char c; while ((c = *modif++) != '\0') { if (c == 'p') print_pagelist = 1; modif++; } (*pr)("POOL %s: size %u maxcolors %u\n", pp->pr_wchan, pp->pr_size, pp->pr_maxcolors); (*pr)("\talloc %p\n", pp->pr_alloc); (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", pp->pr_nget, pp->pr_nfail, pp->pr_nput); (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); if (print_pagelist == 0) return; if ((ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL) (*pr)("\n\tempty page list:\n"); pool_print_pagelist(&pp->pr_emptypages, pr); if ((ph = TAILQ_FIRST(&pp->pr_fullpages)) != NULL) (*pr)("\n\tfull page list:\n"); pool_print_pagelist(&pp->pr_fullpages, pr); if ((ph = TAILQ_FIRST(&pp->pr_partpages)) != NULL) (*pr)("\n\tpartial-page list:\n"); pool_print_pagelist(&pp->pr_partpages, pr); if (pp->pr_curpage == NULL) (*pr)("\tno current page\n"); else (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); } void db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif) { struct pool *pp; char maxp[16]; int ovflw; char mode; mode = modif[0]; if (mode != '\0' && mode != 'a') { db_printf("usage: show all pools [/a]\n"); return; } if (mode == '\0') db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n", "Name", "Size", "Requests", "Fail", "Releases", "Pgreq", "Pgrel", "Npage", "Hiwat", "Minpg", "Maxpg", "Idle"); else db_printf("%-12s %18s %18s\n", "Name", "Address", "Allocator"); SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) { if (mode == 'a') { db_printf("%-12s %18p %18p\n", pp->pr_wchan, pp, pp->pr_alloc); continue; } if (!pp->pr_nget) continue; if (pp->pr_maxpages == UINT_MAX) snprintf(maxp, sizeof maxp, "inf"); else snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages); #define PRWORD(ovflw, fmt, width, fixed, val) do { \ (ovflw) += db_printf((fmt), \ (width) - (fixed) - (ovflw) > 0 ? \ (width) - (fixed) - (ovflw) : 0, \ (val)) - (width); \ if ((ovflw) < 0) \ (ovflw) = 0; \ } while (/* CONSTCOND */0) ovflw = 0; PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan); PRWORD(ovflw, " %*u", 4, 1, pp->pr_size); PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget); PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail); PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput); PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc); PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree); PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages); PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat); PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages); PRWORD(ovflw, " %*s", 6, 1, maxp); PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle); pool_chk(pp); } } #endif /* DDB */ #if defined(POOL_DEBUG) || defined(DDB) int pool_chk_page(struct pool *pp, struct pool_page_header *ph, int expected) { struct pool_item *pi; caddr_t page; int n; const char *label = pp->pr_wchan; page = (caddr_t)((u_long)ph & pp->pr_pgmask); if (page != ph->ph_page && POOL_INPGHDR(pp)) { printf("%s: ", label); printf("pool(%p:%s): page inconsistency: page %p; " "at page head addr %p (p %p)\n", pp, pp->pr_wchan, ph->ph_page, ph, page); return 1; } for (pi = XSIMPLEQ_FIRST(&ph->ph_items), n = 0; pi != NULL; pi = XSIMPLEQ_NEXT(&ph->ph_items, pi, pi_list), n++) { if ((caddr_t)pi < ph->ph_page || (caddr_t)pi >= ph->ph_page + pp->pr_pgsize) { printf("%s: ", label); printf("pool(%p:%s): page inconsistency: page %p;" " item ordinal %d; addr %p\n", pp, pp->pr_wchan, ph->ph_page, n, pi); return (1); } if (pi->pi_magic != POOL_IMAGIC(ph, pi)) { printf("%s: ", label); printf("pool(%p:%s): free list modified: " "page %p; item ordinal %d; addr %p " "(p %p); offset 0x%x=0x%lx\n", pp, pp->pr_wchan, ph->ph_page, n, pi, page, 0, pi->pi_magic); } #ifdef DIAGNOSTIC if (POOL_PHPOISON(ph)) { size_t pidx; uint32_t pval; if (poison_check(pi + 1, pp->pr_size - sizeof(*pi), &pidx, &pval)) { int *ip = (int *)(pi + 1); printf("pool(%s): free list modified: " "page %p; item ordinal %d; addr %p " "(p %p); offset 0x%zx=0x%x\n", pp->pr_wchan, ph->ph_page, n, pi, page, pidx * sizeof(int), ip[pidx]); } } #endif /* DIAGNOSTIC */ } if (n + ph->ph_nmissing != pp->pr_itemsperpage) { printf("pool(%p:%s): page inconsistency: page %p;" " %d on list, %d missing, %d items per page\n", pp, pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing, pp->pr_itemsperpage); return 1; } if (expected >= 0 && n != expected) { printf("pool(%p:%s): page inconsistency: page %p;" " %d on list, %d missing, %d expected\n", pp, pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing, expected); return 1; } return 0; } int pool_chk(struct pool *pp) { struct pool_page_header *ph; int r = 0; TAILQ_FOREACH(ph, &pp->pr_emptypages, ph_entry) r += pool_chk_page(pp, ph, pp->pr_itemsperpage); TAILQ_FOREACH(ph, &pp->pr_fullpages, ph_entry) r += pool_chk_page(pp, ph, 0); TAILQ_FOREACH(ph, &pp->pr_partpages, ph_entry) r += pool_chk_page(pp, ph, -1); return (r); } #endif /* defined(POOL_DEBUG) || defined(DDB) */ #ifdef DDB void pool_walk(struct pool *pp, int full, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))), void (*func)(void *, int, int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))) { struct pool_page_header *ph; struct pool_item *pi; caddr_t cp; int n; TAILQ_FOREACH(ph, &pp->pr_fullpages, ph_entry) { cp = ph->ph_colored; n = ph->ph_nmissing; while (n--) { func(cp, full, pr); cp += pp->pr_size; } } TAILQ_FOREACH(ph, &pp->pr_partpages, ph_entry) { cp = ph->ph_colored; n = ph->ph_nmissing; do { XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) { if (cp == (caddr_t)pi) break; } if (cp != (caddr_t)pi) { func(cp, full, pr); n--; } cp += pp->pr_size; } while (n > 0); } } #endif /* * We have three different sysctls. * kern.pool.npools - the number of pools. * kern.pool.pool. - the pool struct for the pool#. * kern.pool.name. - the name for pool#. */ int sysctl_dopool(int *name, u_int namelen, char *oldp, size_t *oldlenp) { struct kinfo_pool pi; struct pool *pp; int rv = ENOENT; switch (name[0]) { case KERN_POOL_NPOOLS: if (namelen != 1) return (ENOTDIR); return (sysctl_rdint(oldp, oldlenp, NULL, pool_count)); case KERN_POOL_NAME: case KERN_POOL_POOL: case KERN_POOL_CACHE: case KERN_POOL_CACHE_CPUS: break; default: return (EOPNOTSUPP); } if (namelen != 2) return (ENOTDIR); rw_enter_read(&pool_lock); SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) { if (name[1] == pp->pr_serial) break; } if (pp == NULL) goto done; switch (name[0]) { case KERN_POOL_NAME: rv = sysctl_rdstring(oldp, oldlenp, NULL, pp->pr_wchan); break; case KERN_POOL_POOL: memset(&pi, 0, sizeof(pi)); pl_enter(pp, &pp->pr_lock); pi.pr_size = pp->pr_size; pi.pr_pgsize = pp->pr_pgsize; pi.pr_itemsperpage = pp->pr_itemsperpage; pi.pr_npages = pp->pr_npages; pi.pr_minpages = pp->pr_minpages; pi.pr_maxpages = pp->pr_maxpages; pi.pr_hardlimit = pp->pr_hardlimit; pi.pr_nout = pp->pr_nout; pi.pr_nitems = pp->pr_nitems; pi.pr_nget = pp->pr_nget; pi.pr_nput = pp->pr_nput; pi.pr_nfail = pp->pr_nfail; pi.pr_npagealloc = pp->pr_npagealloc; pi.pr_npagefree = pp->pr_npagefree; pi.pr_hiwat = pp->pr_hiwat; pi.pr_nidle = pp->pr_nidle; pl_leave(pp, &pp->pr_lock); pool_cache_pool_info(pp, &pi); rv = sysctl_rdstruct(oldp, oldlenp, NULL, &pi, sizeof(pi)); break; case KERN_POOL_CACHE: rv = pool_cache_info(pp, oldp, oldlenp); break; case KERN_POOL_CACHE_CPUS: rv = pool_cache_cpus_info(pp, oldp, oldlenp); break; } done: rw_exit_read(&pool_lock); return (rv); } void pool_gc_sched(void *null) { task_add(systqmp, &pool_gc_task); } void pool_gc_pages(void *null) { struct pool *pp; struct pool_page_header *ph, *freeph; int s; rw_enter_read(&pool_lock); s = splvm(); /* XXX go to splvm until all pools _setipl properly */ SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) { #ifdef MULTIPROCESSOR if (pp->pr_cache != NULL) pool_cache_gc(pp); #endif if (pp->pr_nidle <= pp->pr_minpages || /* guess */ !pl_enter_try(pp, &pp->pr_lock)) /* try */ continue; /* is it time to free a page? */ if (pp->pr_nidle > pp->pr_minpages && (ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL && getnsecuptime() - ph->ph_timestamp > POOL_WAIT_GC) { freeph = ph; pool_p_remove(pp, freeph); } else freeph = NULL; pl_leave(pp, &pp->pr_lock); if (freeph != NULL) pool_p_free(pp, freeph); } splx(s); rw_exit_read(&pool_lock); timeout_add_sec(&pool_gc_tick, 1); } /* * Pool backend allocators. */ void * pool_allocator_alloc(struct pool *pp, int flags, int *slowdown) { void *v; v = (*pp->pr_alloc->pa_alloc)(pp, flags, slowdown); #ifdef DIAGNOSTIC if (v != NULL && POOL_INPGHDR(pp)) { vaddr_t addr = (vaddr_t)v; if ((addr & pp->pr_pgmask) != addr) { panic("%s: %s page address %p isn't aligned to %u", __func__, pp->pr_wchan, v, pp->pr_pgsize); } } #endif return (v); } void pool_allocator_free(struct pool *pp, void *v) { struct pool_allocator *pa = pp->pr_alloc; (*pa->pa_free)(pp, v); } void * pool_page_alloc(struct pool *pp, int flags, int *slowdown) { struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; kd.kd_waitok = ISSET(flags, PR_WAITOK); kd.kd_slowdown = slowdown; return (km_alloc(pp->pr_pgsize, &kv_page, pp->pr_crange, &kd)); } void pool_page_free(struct pool *pp, void *v) { km_free(v, pp->pr_pgsize, &kv_page, pp->pr_crange); } void * pool_multi_alloc(struct pool *pp, int flags, int *slowdown) { struct kmem_va_mode kv = kv_intrsafe; struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; void *v; int s; if (POOL_INPGHDR(pp)) kv.kv_align = pp->pr_pgsize; kd.kd_waitok = ISSET(flags, PR_WAITOK); kd.kd_slowdown = slowdown; s = splvm(); v = km_alloc(pp->pr_pgsize, &kv, pp->pr_crange, &kd); splx(s); return (v); } void pool_multi_free(struct pool *pp, void *v) { struct kmem_va_mode kv = kv_intrsafe; int s; if (POOL_INPGHDR(pp)) kv.kv_align = pp->pr_pgsize; s = splvm(); km_free(v, pp->pr_pgsize, &kv, pp->pr_crange); splx(s); } void * pool_multi_alloc_ni(struct pool *pp, int flags, int *slowdown) { struct kmem_va_mode kv = kv_any; struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; void *v; if (POOL_INPGHDR(pp)) kv.kv_align = pp->pr_pgsize; kd.kd_waitok = ISSET(flags, PR_WAITOK); kd.kd_slowdown = slowdown; KERNEL_LOCK(); v = km_alloc(pp->pr_pgsize, &kv, pp->pr_crange, &kd); KERNEL_UNLOCK(); return (v); } void pool_multi_free_ni(struct pool *pp, void *v) { struct kmem_va_mode kv = kv_any; if (POOL_INPGHDR(pp)) kv.kv_align = pp->pr_pgsize; KERNEL_LOCK(); km_free(v, pp->pr_pgsize, &kv, pp->pr_crange); KERNEL_UNLOCK(); } #ifdef MULTIPROCESSOR struct pool pool_caches; /* per cpu cache entries */ void pool_cache_init(struct pool *pp) { struct cpumem *cm; struct pool_cache *pc; struct cpumem_iter i; if (pool_caches.pr_size == 0) { pool_init(&pool_caches, sizeof(struct pool_cache), CACHELINESIZE, IPL_NONE, PR_WAITOK | PR_RWLOCK, "plcache", NULL); } /* must be able to use the pool items as cache list items */ KASSERT(pp->pr_size >= sizeof(struct pool_cache_item)); cm = cpumem_get(&pool_caches); pl_init(pp, &pp->pr_cache_lock); arc4random_buf(pp->pr_cache_magic, sizeof(pp->pr_cache_magic)); TAILQ_INIT(&pp->pr_cache_lists); pp->pr_cache_nitems = 0; pp->pr_cache_timestamp = getnsecuptime(); pp->pr_cache_items = 8; pp->pr_cache_contention = 0; pp->pr_cache_ngc = 0; CPUMEM_FOREACH(pc, &i, cm) { pc->pc_actv = NULL; pc->pc_nactv = 0; pc->pc_prev = NULL; pc->pc_nget = 0; pc->pc_nfail = 0; pc->pc_nput = 0; pc->pc_nlget = 0; pc->pc_nlfail = 0; pc->pc_nlput = 0; pc->pc_nout = 0; } membar_producer(); pp->pr_cache = cm; } static inline void pool_cache_item_magic(struct pool *pp, struct pool_cache_item *ci) { unsigned long *entry = (unsigned long *)&ci->ci_nextl; entry[0] = pp->pr_cache_magic[0] ^ (u_long)ci; entry[1] = pp->pr_cache_magic[1] ^ (u_long)ci->ci_next; } static inline void pool_cache_item_magic_check(struct pool *pp, struct pool_cache_item *ci) { unsigned long *entry; unsigned long val; entry = (unsigned long *)&ci->ci_nextl; val = pp->pr_cache_magic[0] ^ (u_long)ci; if (*entry != val) goto fail; entry++; val = pp->pr_cache_magic[1] ^ (u_long)ci->ci_next; if (*entry != val) goto fail; return; fail: panic("%s: %s cpu free list modified: item addr %p+%zu 0x%lx!=0x%lx", __func__, pp->pr_wchan, ci, (caddr_t)entry - (caddr_t)ci, *entry, val); } static inline void pool_list_enter(struct pool *pp) { if (pl_enter_try(pp, &pp->pr_cache_lock) == 0) { pl_enter(pp, &pp->pr_cache_lock); pp->pr_cache_contention++; } } static inline void pool_list_leave(struct pool *pp) { pl_leave(pp, &pp->pr_cache_lock); } static inline struct pool_cache_item * pool_cache_list_alloc(struct pool *pp, struct pool_cache *pc) { struct pool_cache_item *pl; pool_list_enter(pp); pl = TAILQ_FIRST(&pp->pr_cache_lists); if (pl != NULL) { TAILQ_REMOVE(&pp->pr_cache_lists, pl, ci_nextl); pp->pr_cache_nitems -= POOL_CACHE_ITEM_NITEMS(pl); pool_cache_item_magic(pp, pl); pc->pc_nlget++; } else pc->pc_nlfail++; /* fold this cpus nout into the global while we have the lock */ pp->pr_cache_nout += pc->pc_nout; pc->pc_nout = 0; pool_list_leave(pp); return (pl); } static inline void pool_cache_list_free(struct pool *pp, struct pool_cache *pc, struct pool_cache_item *ci) { pool_list_enter(pp); if (TAILQ_EMPTY(&pp->pr_cache_lists)) pp->pr_cache_timestamp = getnsecuptime(); pp->pr_cache_nitems += POOL_CACHE_ITEM_NITEMS(ci); TAILQ_INSERT_TAIL(&pp->pr_cache_lists, ci, ci_nextl); pc->pc_nlput++; /* fold this cpus nout into the global while we have the lock */ pp->pr_cache_nout += pc->pc_nout; pc->pc_nout = 0; pool_list_leave(pp); } static inline struct pool_cache * pool_cache_enter(struct pool *pp, int *s) { struct pool_cache *pc; pc = cpumem_enter(pp->pr_cache); *s = splraise(pp->pr_ipl); pc->pc_gen++; return (pc); } static inline void pool_cache_leave(struct pool *pp, struct pool_cache *pc, int s) { pc->pc_gen++; splx(s); cpumem_leave(pp->pr_cache, pc); } void * pool_cache_get(struct pool *pp) { struct pool_cache *pc; struct pool_cache_item *ci; int s; pc = pool_cache_enter(pp, &s); if (pc->pc_actv != NULL) { ci = pc->pc_actv; } else if (pc->pc_prev != NULL) { ci = pc->pc_prev; pc->pc_prev = NULL; } else if ((ci = pool_cache_list_alloc(pp, pc)) == NULL) { pc->pc_nfail++; goto done; } pool_cache_item_magic_check(pp, ci); #ifdef DIAGNOSTIC if (pool_debug && POOL_CACHE_ITEM_POISONED(ci)) { size_t pidx; uint32_t pval; if (poison_check(ci + 1, pp->pr_size - sizeof(*ci), &pidx, &pval)) { int *ip = (int *)(ci + 1); ip += pidx; panic("%s: %s cpu free list modified: " "item addr %p+%zu 0x%x!=0x%x", __func__, pp->pr_wchan, ci, (caddr_t)ip - (caddr_t)ci, *ip, pval); } } #endif pc->pc_actv = ci->ci_next; pc->pc_nactv = POOL_CACHE_ITEM_NITEMS(ci) - 1; pc->pc_nget++; pc->pc_nout++; done: pool_cache_leave(pp, pc, s); return (ci); } void pool_cache_put(struct pool *pp, void *v) { struct pool_cache *pc; struct pool_cache_item *ci = v; unsigned long nitems; int s; #ifdef DIAGNOSTIC int poison = pool_debug && pp->pr_size > sizeof(*ci); if (poison) poison_mem(ci + 1, pp->pr_size - sizeof(*ci)); #endif pc = pool_cache_enter(pp, &s); nitems = pc->pc_nactv; if (nitems >= pp->pr_cache_items) { if (pc->pc_prev != NULL) pool_cache_list_free(pp, pc, pc->pc_prev); pc->pc_prev = pc->pc_actv; pc->pc_actv = NULL; pc->pc_nactv = 0; nitems = 0; } ci->ci_next = pc->pc_actv; ci->ci_nitems = ++nitems; #ifdef DIAGNOSTIC ci->ci_nitems |= poison ? POOL_CACHE_ITEM_NITEMS_POISON : 0; #endif pool_cache_item_magic(pp, ci); pc->pc_actv = ci; pc->pc_nactv = nitems; pc->pc_nput++; pc->pc_nout--; pool_cache_leave(pp, pc, s); } struct pool_cache_item * pool_cache_list_put(struct pool *pp, struct pool_cache_item *pl) { struct pool_cache_item *rpl, *next; if (pl == NULL) return (NULL); rpl = TAILQ_NEXT(pl, ci_nextl); pl_enter(pp, &pp->pr_lock); do { next = pl->ci_next; pool_do_put(pp, pl); pl = next; } while (pl != NULL); pl_leave(pp, &pp->pr_lock); return (rpl); } void pool_cache_destroy(struct pool *pp) { struct pool_cache *pc; struct pool_cache_item *pl; struct cpumem_iter i; struct cpumem *cm; rw_enter_write(&pool_lock); /* serialise with the gc */ cm = pp->pr_cache; pp->pr_cache = NULL; /* make pool_put avoid the cache */ rw_exit_write(&pool_lock); CPUMEM_FOREACH(pc, &i, cm) { pool_cache_list_put(pp, pc->pc_actv); pool_cache_list_put(pp, pc->pc_prev); } cpumem_put(&pool_caches, cm); pl = TAILQ_FIRST(&pp->pr_cache_lists); while (pl != NULL) pl = pool_cache_list_put(pp, pl); } void pool_cache_gc(struct pool *pp) { unsigned int contention, delta; if (getnsecuptime() - pp->pr_cache_timestamp > POOL_WAIT_GC && !TAILQ_EMPTY(&pp->pr_cache_lists) && pl_enter_try(pp, &pp->pr_cache_lock)) { struct pool_cache_item *pl = NULL; pl = TAILQ_FIRST(&pp->pr_cache_lists); if (pl != NULL) { TAILQ_REMOVE(&pp->pr_cache_lists, pl, ci_nextl); pp->pr_cache_nitems -= POOL_CACHE_ITEM_NITEMS(pl); pp->pr_cache_timestamp = getnsecuptime(); pp->pr_cache_ngc++; } pl_leave(pp, &pp->pr_cache_lock); pool_cache_list_put(pp, pl); } /* * if there's a lot of contention on the pr_cache_mtx then consider * growing the length of the list to reduce the need to access the * global pool. */ contention = pp->pr_cache_contention; delta = contention - pp->pr_cache_contention_prev; if (delta > 8 /* magic */) { if ((ncpusfound * 8 * 2) <= pp->pr_cache_nitems) pp->pr_cache_items += 8; } else if (delta == 0) { if (pp->pr_cache_items > 8) pp->pr_cache_items--; } pp->pr_cache_contention_prev = contention; } void pool_cache_pool_info(struct pool *pp, struct kinfo_pool *pi) { struct pool_cache *pc; struct cpumem_iter i; if (pp->pr_cache == NULL) return; /* loop through the caches twice to collect stats */ /* once without the lock so we can yield while reading nget/nput */ CPUMEM_FOREACH(pc, &i, pp->pr_cache) { uint64_t gen, nget, nput; do { while ((gen = pc->pc_gen) & 1) yield(); nget = pc->pc_nget; nput = pc->pc_nput; } while (gen != pc->pc_gen); pi->pr_nget += nget; pi->pr_nput += nput; } /* and once with the mtx so we can get consistent nout values */ pl_enter(pp, &pp->pr_cache_lock); CPUMEM_FOREACH(pc, &i, pp->pr_cache) pi->pr_nout += pc->pc_nout; pi->pr_nout += pp->pr_cache_nout; pl_leave(pp, &pp->pr_cache_lock); } int pool_cache_info(struct pool *pp, void *oldp, size_t *oldlenp) { struct kinfo_pool_cache kpc; if (pp->pr_cache == NULL) return (EOPNOTSUPP); memset(&kpc, 0, sizeof(kpc)); /* don't leak padding */ pl_enter(pp, &pp->pr_cache_lock); kpc.pr_ngc = pp->pr_cache_ngc; kpc.pr_len = pp->pr_cache_items; kpc.pr_nitems = pp->pr_cache_nitems; kpc.pr_contention = pp->pr_cache_contention; pl_leave(pp, &pp->pr_cache_lock); return (sysctl_rdstruct(oldp, oldlenp, NULL, &kpc, sizeof(kpc))); } int pool_cache_cpus_info(struct pool *pp, void *oldp, size_t *oldlenp) { struct pool_cache *pc; struct kinfo_pool_cache_cpu *kpcc, *info; unsigned int cpu = 0; struct cpumem_iter i; int error = 0; size_t len; if (pp->pr_cache == NULL) return (EOPNOTSUPP); if (*oldlenp % sizeof(*kpcc)) return (EINVAL); kpcc = mallocarray(ncpusfound, sizeof(*kpcc), M_TEMP, M_WAITOK|M_CANFAIL|M_ZERO); if (kpcc == NULL) return (EIO); len = ncpusfound * sizeof(*kpcc); CPUMEM_FOREACH(pc, &i, pp->pr_cache) { uint64_t gen; if (cpu >= ncpusfound) { error = EIO; goto err; } info = &kpcc[cpu]; info->pr_cpu = cpu; do { while ((gen = pc->pc_gen) & 1) yield(); info->pr_nget = pc->pc_nget; info->pr_nfail = pc->pc_nfail; info->pr_nput = pc->pc_nput; info->pr_nlget = pc->pc_nlget; info->pr_nlfail = pc->pc_nlfail; info->pr_nlput = pc->pc_nlput; } while (gen != pc->pc_gen); cpu++; } error = sysctl_rdstruct(oldp, oldlenp, NULL, kpcc, len); err: free(kpcc, M_TEMP, len); return (error); } #else /* MULTIPROCESSOR */ void pool_cache_init(struct pool *pp) { /* nop */ } void pool_cache_pool_info(struct pool *pp, struct kinfo_pool *pi) { /* nop */ } int pool_cache_info(struct pool *pp, void *oldp, size_t *oldlenp) { return (EOPNOTSUPP); } int pool_cache_cpus_info(struct pool *pp, void *oldp, size_t *oldlenp) { return (EOPNOTSUPP); } #endif /* MULTIPROCESSOR */ void pool_lock_mtx_init(struct pool *pp, union pool_lock *lock, const struct lock_type *type) { _mtx_init_flags(&lock->prl_mtx, pp->pr_ipl, pp->pr_wchan, 0, type); } void pool_lock_mtx_enter(union pool_lock *lock) { mtx_enter(&lock->prl_mtx); } int pool_lock_mtx_enter_try(union pool_lock *lock) { return (mtx_enter_try(&lock->prl_mtx)); } void pool_lock_mtx_leave(union pool_lock *lock) { mtx_leave(&lock->prl_mtx); } void pool_lock_mtx_assert_locked(union pool_lock *lock) { MUTEX_ASSERT_LOCKED(&lock->prl_mtx); } void pool_lock_mtx_assert_unlocked(union pool_lock *lock) { MUTEX_ASSERT_UNLOCKED(&lock->prl_mtx); } int pool_lock_mtx_sleep(void *ident, union pool_lock *lock, int priority, const char *wmesg) { return msleep_nsec(ident, &lock->prl_mtx, priority, wmesg, INFSLP); } static const struct pool_lock_ops pool_lock_ops_mtx = { pool_lock_mtx_init, pool_lock_mtx_enter, pool_lock_mtx_enter_try, pool_lock_mtx_leave, pool_lock_mtx_assert_locked, pool_lock_mtx_assert_unlocked, pool_lock_mtx_sleep, }; void pool_lock_rw_init(struct pool *pp, union pool_lock *lock, const struct lock_type *type) { _rw_init_flags(&lock->prl_rwlock, pp->pr_wchan, 0, type); } void pool_lock_rw_enter(union pool_lock *lock) { rw_enter_write(&lock->prl_rwlock); } int pool_lock_rw_enter_try(union pool_lock *lock) { return (rw_enter(&lock->prl_rwlock, RW_WRITE | RW_NOSLEEP) == 0); } void pool_lock_rw_leave(union pool_lock *lock) { rw_exit_write(&lock->prl_rwlock); } void pool_lock_rw_assert_locked(union pool_lock *lock) { rw_assert_wrlock(&lock->prl_rwlock); } void pool_lock_rw_assert_unlocked(union pool_lock *lock) { KASSERT(rw_status(&lock->prl_rwlock) != RW_WRITE); } int pool_lock_rw_sleep(void *ident, union pool_lock *lock, int priority, const char *wmesg) { return rwsleep_nsec(ident, &lock->prl_rwlock, priority, wmesg, INFSLP); } static const struct pool_lock_ops pool_lock_ops_rw = { pool_lock_rw_init, pool_lock_rw_enter, pool_lock_rw_enter_try, pool_lock_rw_leave, pool_lock_rw_assert_locked, pool_lock_rw_assert_unlocked, pool_lock_rw_sleep, };