/* * Copyright (c) 1986, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Computer Consoles Inc. * * %sccs.include.redist.c% */ #if defined(SYSLIBC_SCCS) && !defined(lint) .asciz "@(#)divf.s 8.1 (Berkeley) 06/04/93" #endif /* SYSLIBC_SCCS and not lint */ #include #include "DEFS.h" #define HIDDEN 23 /* here we count from 0 not from 1 as in fp.h */ XENTRY(divf, R2|R3|R4|R5|R6|R7|R8|R9) clrl r1 clrl r3 # r3 - sign: 0 for positive,1 for negative. movl 4(fp),r0 jgeq 1f movl $1,r3 1: movl 12(fp),r2 jgeq 2f bbc $0,r3,1f # seconed operand is negative. clrl r3 # if first was negative, make result positive. jmp 2f 1: movl $1,r3 # if first was positive, make result negative. 2: andl2 $EXPMASK,r0 # compute first 'pure'exponent. jeql is_res1 shrl $EXPSHIFT,r0,r0 subl2 $BIAS,r0 andl2 $EXPMASK,r2 # compute seconed 'pure'exponent. jeql is_res2 shrl $EXPSHIFT,r2,r2 subl2 $BIAS,r2 subl3 r2,r0,r2 # subtruct the exponents. addl2 $BIAS,r2 jleq underf # normalization can make the exp. smaller. # # We have the sign in r3,the exponent in r2,now is the time to # perform the division... # # fetch dividend. (r0) andl3 $(0!(EXPMASK | SIGNBIT)),4(fp),r0 orl2 $(0!CLEARHID),r0 clrl r1 # fetch divisor : (r6) andl3 $(0!(EXPMASK | SIGNBIT)),12(fp),r6 orl2 $(0!CLEARHID),r6 shll $2,r6,r6 # make the divisor bigger so we will not # get overflow at the divission. ediv r6,r0,r0,r7 # quo to r0, rem to r7 subl2 $6,r2 # to compensate for: normalization (-24), # ediv (+32), shifting r6 (-2). over: callf $4,fnorm # we can use fnorm because we have data # at r1 as well.(sfnorm takes care only # of r0). sign: 1: bbc $0,r3,done orl2 $SIGNBIT,r0 done: ret is_res1: bbc $31,4(fp),retz callf $4,sfpresop ret is_res2: bbc $31,12(fp),z_div callf $4,sfpresop ret retz: clrl r0 ret underf: callf $4,sfpunder ret z_div: callf $4,sfpzdiv ret