/*- * Copyright (c) 1989, 1992 The Regents of the University of California. * All rights reserved. * * This code is derived from software developed by the Computer Systems * Engineering group at Lawrence Berkeley Laboratory under DARPA contract * BG 91-66 and contributed to Berkeley. * * %sccs.include.redist.c% */ #if defined(LIBC_SCCS) && !defined(lint) static char sccsid[] = "@(#)kvm_hp300.c 5.29 (Berkeley) 07/10/92"; #endif /* LIBC_SCCS and not lint */ /* * Hp300 machine depedent routines for kvm. Hopefully, the forthcoming * vm code will one day obsolete this module. */ #include #include #include #include #include #include #include #include #include #include #include #include "kvm_private.h" #if defined(hp300) #include #endif #if defined(luna68k) #include #endif #ifndef btop #define btop(x) (((unsigned)(x)) >> PGSHIFT) /* XXX */ #define ptob(x) ((caddr_t)((x) << PGSHIFT)) /* XXX */ #endif struct vmstate { u_long lowram; int mmutype; struct ste *Sysseg; }; #define KREAD(kd, addr, p)\ (kvm_read(kd, addr, (char *)(p), sizeof(*(p))) != sizeof(*(p))) void _kvm_freevtop(kd) kvm_t *kd; { if (kd->vmst != 0) free(kd->vmst); } int _kvm_initvtop(kd) kvm_t *kd; { struct vmstate *vm; struct nlist nlist[4]; vm = (struct vmstate *)_kvm_malloc(kd, sizeof(*vm)); if (vm == 0) return (-1); kd->vmst = vm; nlist[0].n_name = "_lowram"; nlist[1].n_name = "_mmutype"; nlist[2].n_name = "_Sysseg"; nlist[3].n_name = 0; if (kvm_nlist(kd, nlist) != 0) { _kvm_err(kd, kd->program, "bad namelist"); return (-1); } vm->Sysseg = 0; if (KREAD(kd, (u_long)nlist[0].n_value, &vm->lowram)) { _kvm_err(kd, kd->program, "cannot read lowram"); return (-1); } if (KREAD(kd, (u_long)nlist[1].n_value, &vm->mmutype)) { _kvm_err(kd, kd->program, "cannot read mmutype"); return (-1); } if (KREAD(kd, (u_long)nlist[2].n_value, &vm->Sysseg)) { _kvm_err(kd, kd->program, "cannot read segment table"); return (-1); } return (0); } static int _kvm_vatop(kd, sta, va, pa) kvm_t *kd; struct ste *sta; u_long va; u_long *pa; { register struct vmstate *vm; register u_long lowram; register u_long addr; int p, ste, pte; int offset; if (ISALIVE(kd)) { _kvm_err(kd, 0, "vatop called in live kernel!"); return((off_t)0); } vm = kd->vmst; offset = va & PGOFSET; /* * If we are initializing (kernel segment table pointer not yet set) * then return pa == va to avoid infinite recursion. */ if (vm->Sysseg == 0) { *pa = va; return (NBPG - offset); } lowram = vm->lowram; if (vm->mmutype == -2) { struct ste *sta2; addr = (u_long)&sta[va >> SG4_SHIFT1]; /* * Can't use KREAD to read kernel segment table entries. * Fortunately it is 1-to-1 mapped so we don't have to. */ if (sta == vm->Sysseg) { if (lseek(kd->pmfd, (off_t)addr, 0) == -1 || read(kd->pmfd, (char *)&ste, sizeof(ste)) < 0) goto invalid; } else if (KREAD(kd, addr, &ste)) goto invalid; if ((ste & SG_V) == 0) { _kvm_err(kd, 0, "invalid level 1 descriptor (%x)", ste); return((off_t)0); } sta2 = (struct ste *)(ste & SG4_ADDR1); addr = (u_long)&sta2[(va & SG4_MASK2) >> SG4_SHIFT2]; /* * Address from level 1 STE is a physical address, * so don't use kvm_read. */ if (lseek(kd->pmfd, (off_t)(addr - lowram), 0) == -1 || read(kd->pmfd, (char *)&ste, sizeof(ste)) < 0) goto invalid; if ((ste & SG_V) == 0) { _kvm_err(kd, 0, "invalid level 2 descriptor (%x)", ste); return((off_t)0); } sta2 = (struct ste *)(ste & SG4_ADDR2); addr = (u_long)&sta2[(va & SG4_MASK3) >> SG4_SHIFT3]; } else { addr = (u_long)&sta[va >> SEGSHIFT]; /* * Can't use KREAD to read kernel segment table entries. * Fortunately it is 1-to-1 mapped so we don't have to. */ if (sta == vm->Sysseg) { if (lseek(kd->pmfd, (off_t)addr, 0) == -1 || read(kd->pmfd, (char *)&ste, sizeof(ste)) < 0) goto invalid; } else if (KREAD(kd, addr, &ste)) goto invalid; if ((ste & SG_V) == 0) { _kvm_err(kd, 0, "invalid segment (%x)", ste); return((off_t)0); } p = btop(va & SG_PMASK); addr = (ste & SG_FRAME) + (p * sizeof(struct pte)); } /* * Address from STE is a physical address so don't use kvm_read. */ if (lseek(kd->pmfd, (off_t)(addr - lowram), 0) == -1 || read(kd->pmfd, (char *)&pte, sizeof(pte)) < 0) goto invalid; addr = pte & PG_FRAME; if (pte == PG_NV) { _kvm_err(kd, 0, "page not valid"); return (0); } *pa = addr - lowram + offset; return (NBPG - offset); invalid: _kvm_err(kd, 0, "invalid address (%x)", va); return (0); } int _kvm_kvatop(kd, va, pa) kvm_t *kd; u_long va; u_long *pa; { return (_kvm_vatop(kd, (u_long)kd->vmst->Sysseg, va, pa)); } /* * Translate a user virtual address to a physical address. */ int _kvm_uvatop(kd, p, va, pa) kvm_t *kd; const struct proc *p; u_long va; u_long *pa; { register struct vmspace *vms = p->p_vmspace; int kva; /* * If this is a live kernel we just look it up in the kernel * virtually allocated flat 4mb page table (i.e. let the kernel * do the table walk). In this way, we avoid needing to know * the MMU type. */ if (ISALIVE(kd)) { struct pte *ptab; int pte, offset; kva = (int)&vms->vm_pmap.pm_ptab; if (KREAD(kd, kva, &ptab)) { _kvm_err(kd, 0, "invalid address (%x)", va); return (0); } kva = (int)&ptab[btop(va)]; if (KREAD(kd, kva, &pte) || (pte & PG_V) == 0) { _kvm_err(kd, 0, "invalid address (%x)", va); return (0); } offset = va & PGOFSET; *pa = (pte & PG_FRAME) | offset; return (NBPG - offset); } /* * Otherwise, we just walk the table ourself. */ kva = (int)&vms->vm_pmap.pm_stab; if (KREAD(kd, kva, &kva)) { _kvm_err(kd, 0, "invalid address (%x)", va); return (0); } return (_kvm_vatop(kd, kva, va, pa)); }