/*- * Copyright (c) 1989 The Regents of the University of California. * All rights reserved. * * %sccs.include.redist.c% */ #if defined(LIBC_SCCS) && !defined(lint) static char sccsid[] = "@(#)kvm_proc.c 5.23 (Berkeley) 04/03/92"; #endif /* LIBC_SCCS and not lint */ /* * Proc traversal interface for kvm. ps and w are (probably) the exclusive * users of this code, so we've factored it out into a separate module. * Thus, we keep this grunge out of the other kvm applications (i.e., * most other applications are interested only in open/close/read/nlist). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm_private.h" static char * kvm_readswap(kd, p, va, cnt) kvm_t *kd; const struct proc *p; u_long va; u_long *cnt; { register int ix; register u_long addr, head; register u_long offset, pagestart, sbstart, pgoff; register off_t seekpoint; struct vm_map_entry vme; struct vm_object vmo; struct pager_struct pager; struct swpager swap; struct swblock swb; static char page[NBPG]; head = (u_long)&p->p_vmspace->vm_map.header; /* * Look through the address map for the memory object * that corresponds to the given virtual address. * The header just has the entire valid range. */ addr = head; while (1) { if (kvm_read(kd, addr, (char *)&vme, sizeof(vme)) != sizeof(vme)) return (0); if (va >= vme.start && va <= vme.end && vme.object.vm_object != 0) break; addr = (u_long)vme.next; if (addr == 0 || addr == head) return (0); } /* * We found the right object -- follow shadow links. */ offset = va - vme.start + vme.offset; addr = (u_long)vme.object.vm_object; while (1) { if (kvm_read(kd, addr, (char *)&vmo, sizeof(vmo)) != sizeof(vmo)) return (0); addr = (u_long)vmo.shadow; if (addr == 0) break; offset += vmo.shadow_offset; } if (vmo.pager == 0) return (0); offset += vmo.paging_offset; /* * Read in the pager info and make sure it's a swap device. */ addr = (u_long)vmo.pager; if (kvm_read(kd, addr, (char *)&pager, sizeof(pager)) != sizeof(pager) || pager.pg_type != PG_SWAP) return (0); /* * Read in the swap_pager private data, and compute the * swap offset. */ addr = (u_long)pager.pg_data; if (kvm_read(kd, addr, (char *)&swap, sizeof(swap)) != sizeof(swap)) return (0); ix = offset / dbtob(swap.sw_bsize); if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) return (0); addr = (u_long)&swap.sw_blocks[ix]; if (kvm_read(kd, addr, (char *)&swb, sizeof(swb)) != sizeof(swb)) return (0); sbstart = (offset / dbtob(swap.sw_bsize)) * dbtob(swap.sw_bsize); sbstart /= NBPG; pagestart = offset / NBPG; pgoff = pagestart - sbstart; if (swb.swb_block == 0 || (swb.swb_mask & (1 << pgoff)) == 0) return (0); seekpoint = dbtob(swb.swb_block) + ctob(pgoff); errno = 0; if (lseek(kd->swfd, seekpoint, 0) == -1 && errno != 0) return (0); if (read(kd->swfd, page, sizeof(page)) != sizeof(page)) return (0); offset %= NBPG; *cnt = NBPG - offset; return (&page[offset]); } #define KREAD(kd, addr, obj) \ (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) /* * Read proc's from memory file into buffer bp, which has space to hold * at most maxcnt procs. */ static int kvm_proclist(kd, what, arg, p, bp, maxcnt) kvm_t *kd; int what, arg; struct proc *p; struct kinfo_proc *bp; int maxcnt; { register int cnt = 0; struct eproc eproc; struct pgrp pgrp; struct session sess; struct tty tty; struct proc proc; for (; cnt < maxcnt && p != 0; p = proc.p_nxt) { if (KREAD(kd, (u_long)p, &proc)) { _kvm_err(kd, kd->program, "can't read proc at %x", p); return (-1); } if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, &eproc.e_ucred); switch(ki_op(what)) { case KINFO_PROC_PID: if (proc.p_pid != (pid_t)arg) continue; break; case KINFO_PROC_UID: if (eproc.e_ucred.cr_uid != (uid_t)arg) continue; break; case KINFO_PROC_RUID: if (eproc.e_pcred.p_ruid != (uid_t)arg) continue; break; } /* * We're going to add another proc to the set. If this * will overflow the buffer, assume the reason is because * nprocs (or the proc list) is corrupt and declare an error. */ if (cnt >= maxcnt) { _kvm_err(kd, kd->program, "nprocs corrupt"); return (-1); } /* * gather eproc */ eproc.e_paddr = p; if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { _kvm_err(kd, kd->program, "can't read pgrp at %x", proc.p_pgrp); return (-1); } eproc.e_sess = pgrp.pg_session; eproc.e_pgid = pgrp.pg_id; eproc.e_jobc = pgrp.pg_jobc; if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { _kvm_err(kd, kd->program, "can't read session at %x", pgrp.pg_session); return (-1); } if ((proc.p_flag & SCTTY) && sess.s_ttyp != NULL) { if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { _kvm_err(kd, kd->program, "can't read tty at %x", sess.s_ttyp); return (-1); } eproc.e_tdev = tty.t_dev; eproc.e_tsess = tty.t_session; if (tty.t_pgrp != NULL) { if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { _kvm_err(kd, kd->program, "can't read tpgrp at &x", tty.t_pgrp); return (-1); } eproc.e_tpgid = pgrp.pg_id; } else eproc.e_tpgid = -1; } else eproc.e_tdev = NODEV; eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; if (sess.s_leader == p) eproc.e_flag |= EPROC_SLEADER; if (proc.p_wmesg) (void)kvm_read(kd, (u_long)proc.p_wmesg, eproc.e_wmesg, WMESGLEN); #ifdef sparc (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, (char *)&eproc.e_vm.vm_rssize, sizeof(eproc.e_vm.vm_rssize)); (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, (char *)&eproc.e_vm.vm_tsize, 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */ #else (void)kvm_read(kd, (u_long)proc.p_vmspace, (char *)&eproc.e_vm, sizeof(eproc.e_vm)); #endif eproc.e_xsize = eproc.e_xrssize = 0; eproc.e_xccount = eproc.e_xswrss = 0; switch (ki_op(what)) { case KINFO_PROC_PGRP: if (eproc.e_pgid != (pid_t)arg) continue; break; case KINFO_PROC_TTY: if ((proc.p_flag&SCTTY) == 0 || eproc.e_tdev != (dev_t)arg) continue; break; } bcopy((char *)&proc, (char *)&bp->kp_proc, sizeof(proc)); bcopy((char *)&eproc, (char *)&bp->kp_eproc, sizeof(eproc)); ++bp; ++cnt; } return (cnt); } /* * Build proc info array by reading in proc list from a crash dump. * Return number of procs read. maxcnt is the max we will read. */ static int kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) kvm_t *kd; int what, arg; u_long a_allproc; u_long a_zombproc; int maxcnt; { register struct kinfo_proc *bp = kd->procbase; register int acnt, zcnt; struct proc *p; if (KREAD(kd, a_allproc, &p)) { _kvm_err(kd, kd->program, "cannot read allproc"); return (-1); } acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); if (acnt < 0) return (acnt); if (KREAD(kd, a_zombproc, &p)) { _kvm_err(kd, kd->program, "cannot read zombproc"); return (-1); } zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); if (zcnt < 0) zcnt = 0; return (acnt + zcnt); } struct kinfo_proc * kvm_getprocs(kd, op, arg, cnt) kvm_t *kd; int op, arg; int *cnt; { int size, st, nprocs; if (kd->procbase != 0) { free((void *)kd->procbase); /* * Clear this pointer in case this call fails. Otherwise, * kvm_close() will free it again. */ kd->procbase = 0; } if (ISALIVE(kd)) { size = 0; st = getkerninfo(op, NULL, &size, arg); if (st < 0) { _kvm_syserr(kd, kd->program, "kvm_getprocs"); return (0); } kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, st); if (kd->procbase == 0) return (0); size = st; st = getkerninfo(op, kd->procbase, &size, arg); if (st < 0) { _kvm_syserr(kd, kd->program, "kvm_getprocs"); return (0); } if (size % sizeof(struct kinfo_proc) != 0) { _kvm_err(kd, kd->program, "proc size mismatch (%d total, %d chunks)", size, sizeof(struct kinfo_proc)); return (0); } nprocs = size / sizeof(struct kinfo_proc); } else { struct nlist nl[4], *p; nl[0].n_name = "_nprocs"; nl[1].n_name = "_allproc"; nl[2].n_name = "_zombproc"; nl[3].n_name = 0; if (kvm_nlist(kd, nl) != 0) { for (p = nl; p->n_type != 0; ++p) ; _kvm_err(kd, kd->program, "%s: no such symbol", p->n_name); return (0); } if (KREAD(kd, nl[0].n_value, &nprocs)) { _kvm_err(kd, kd->program, "can't read nprocs"); return (0); } size = nprocs * sizeof(struct kinfo_proc); kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); if (kd->procbase == 0) return (0); nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, nl[2].n_value, nprocs); #ifdef notdef size = nprocs * sizeof(struct kinfo_proc); (void)realloc(kd->procbase, size); #endif } *cnt = nprocs; return (kd->procbase); } void _kvm_freeprocs(kd) kvm_t *kd; { if (kd->procbase) { free(kd->procbase); kd->procbase = 0; } } static void * _kvm_realloc(kd, p, n) kvm_t *kd; void *p; int n; { void *np = (void *)realloc(p, n); if (np == 0) _kvm_err(kd, kd->program, "out of memory"); return (np); } #ifndef MAX #define MAX(a, b) ((a) > (b) ? (a) : (b)) #endif /* * Read in an argument vector from the user address space of process p. * addr if the user-space base address of narg null-terminated contiguous * strings. This is used to read in both the command arguments and * environment strings. Read at most maxcnt characters of strings. */ static char ** kvm_argv(kd, p, addr, narg, maxcnt) kvm_t *kd; struct proc *p; register u_long addr; register int narg; register int maxcnt; { register char *cp; register int len, cc; register char **argv; /* * Check that there aren't an unreasonable number of agruments, * and that the address is in user space. */ if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) return (0); if (kd->argv == 0) { /* * Try to avoid reallocs. */ kd->argc = MAX(narg + 1, 32); kd->argv = (char **)_kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); if (kd->argv == 0) return (0); } else if (narg + 1 > kd->argc) { kd->argc = MAX(2 * kd->argc, narg + 1); kd->argv = (char **)_kvm_realloc(kd, kd->argv); if (kd->argv == 0) return (0); } if (kd->argspc == 0) { kd->argspc = (char *)_kvm_malloc(kd, NBPG); if (kd->argspc == 0) return (0); kd->arglen = NBPG; } cp = kd->argspc; argv = kd->argv; *argv = cp; len = 0; /* * Loop over pages, filling in the argument vector. */ while (addr < VM_MAXUSER_ADDRESS) { cc = NBPG - (addr & PGOFSET); if (maxcnt > 0 && cc > maxcnt - len) cc = maxcnt - len;; if (len + cc > kd->arglen) { register int off; register char **pp; register char *op = kd->argspc; kd->arglen *= 2; kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, kd->arglen); if (kd->argspc == 0) return (0); cp = &kd->argspc[len]; /* * Adjust argv pointers in case realloc moved * the string space. */ off = kd->argspc - op; for (pp = kd->argv; pp < argv; ++pp) *pp += off; } if (kvm_uread(kd, p, addr, cp, cc) != cc) /* XXX */ return (0); len += cc; addr += cc; if (maxcnt == 0 && len > 16 * NBPG) /* sanity */ return (0); while (--cc >= 0) { if (*cp++ == 0) { if (--narg <= 0) { *++argv = 0; return (kd->argv); } else *++argv = cp; } } if (maxcnt > 0 && len >= maxcnt) { /* * We're stopping prematurely. Terminate the * argv and current string. */ *++argv = 0; *cp = 0; return (kd->argv); } } } static void ps_str_a(p, addr, n) struct ps_strings *p; u_long *addr; int *n; { *addr = (u_long)p->ps_argvstr; *n = p->ps_nargvstr; } static void ps_str_e(p, addr, n) struct ps_strings *p; u_long *addr; int *n; { *addr = (u_long)p->ps_envstr; *n = p->ps_nenvstr; } /* * Determine if the proc indicated by p is still active. * This test is not 100% foolproof in theory, but chances of * being wrong are very low. */ static int proc_verify(kd, kernp, p) kvm_t *kd; u_long kernp; const struct proc *p; { struct proc kernproc; /* * Just read in the whole proc. It's not that big relative * to the cost of the read system call. */ if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) != sizeof(kernproc)) return (0); return (p->p_pid == kernproc.p_pid && (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); } static char ** kvm_doargv(kd, kp, nchr, info) kvm_t *kd; const struct kinfo_proc *kp; int nchr; int (*info)(struct ps_strings*, u_long *, int *); { register const struct proc *p = &kp->kp_proc; register char **ap; u_long addr; int cnt; struct ps_strings arginfo; /* * Pointers are stored at the top of the user stack. */ if (p->p_stat == SZOMB || kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo, sizeof(arginfo)) != sizeof(arginfo)) return (0); (*info)(&arginfo, &addr, &cnt); ap = kvm_argv(kd, p, addr, cnt, nchr); /* * For live kernels, make sure this process didn't go away. */ if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) ap = 0; return (ap); } /* * Get the command args. This code is now machine independent. */ char ** kvm_getargv(kd, kp, nchr) kvm_t *kd; const struct kinfo_proc *kp; int nchr; { return (kvm_doargv(kd, kp, nchr, ps_str_a)); } char ** kvm_getenvv(kd, kp, nchr) kvm_t *kd; const struct kinfo_proc *kp; int nchr; { return (kvm_doargv(kd, kp, nchr, ps_str_e)); } /* * Read from user space. The user context is given by p. */ ssize_t kvm_uread(kd, p, uva, buf, len) kvm_t *kd; register struct proc *p; register u_long uva; register char *buf; register size_t len; { register char *cp; cp = buf; while (len > 0) { u_long pa; register int cc; cc = _kvm_uvatop(kd, p, uva, &pa); if (cc > 0) { if (cc > len) cc = len; errno = 0; if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) { _kvm_err(kd, 0, "invalid address (%x)", uva); break; } cc = read(kd->pmfd, cp, cc); if (cc < 0) { _kvm_syserr(kd, 0, _PATH_MEM); break; } else if (cc < len) { _kvm_err(kd, kd->program, "short read"); break; } } else if (ISALIVE(kd)) { /* try swap */ register char *dp; int cnt; dp = kvm_readswap(kd, p, uva, &cnt); if (dp == 0) { _kvm_err(kd, 0, "invalid address (%x)", uva); return (0); } cc = MIN(cnt, len); bcopy(dp, cp, cc); } else break; cp += cc; uva += cc; len -= cc; } return (ssize_t)(cp - buf); }