/* * Copyright (c) 1987 Regents of the University of California. * All rights reserved. * * %sccs.include.redist.c% * * All recipients should regard themselves as participants in an ongoing * research project and hence should feel obligated to report their * experiences (good or bad) with these elementary function codes, using * the sendbug(8) program, to the authors. */ .data .align 2 _sccsid: .asciz "@(#)support.s 5.5 (ucb.elefunt) 06/01/90" /* * copysign(x,y), * logb(x), * scalb(x,N), * finite(x), * drem(x,y), * Coded in vax assembly language by K. C. Ng 4/9/85. * Re-coded in tahoe assembly language by Z. Alex Liu 7/13/87. */ /* * double copysign(x,y) * double x,y; */ .globl _copysign .text .align 2 _copysign: .word 0x0004 # save r2 movl 8(fp),r1 movl 4(fp),r0 # r0:r1 = x andl3 $0x7f800000,r0,r2 # r2 = biased exponent of x beql 1f # if 0 or reserved op then return x andl3 $0x80000000,12(fp),r2 # r2 = sign bit of y at bit-31 andl2 $0x7fffffff,r0 # replace x by |x| orl2 r2,r0 # copy the sign bit of y to x 1: ret /* * double logb(x) * double x; */ .globl _logb .text .align 2 _logb: .word 0x0000 # save nothing andl3 $0x7f800000,4(fp),r0 # r0[b23:b30] = biased exponent of x beql 1f shrl $23,r0,r0 # r0[b0:b7] = biased exponent of x subl2 $129,r0 # r0 = unbiased exponent of x cvld r0 # acc = unbiased exponent of x (double) std r0 # r0 = unbiased exponent of x (double) ret 1: movl 8(fp),r1 # 8(fp) must be moved first movl 4(fp),r0 # r0:r1 = x (zero or reserved op) blss 2f # simply return if reserved op movl $0xfe000000,r1 movl $0xcfffffff,r0 # -2147483647.0 2: ret /* * long finite(x) * double x; */ .globl _finite .text .align 2 _finite: .word 0x0000 # save nothing andl3 $0xff800000,4(fp),r0 # r0 = sign of x & its biased exponent cmpl r0,$0x80000000 # is x a reserved op? beql 1f # if so, return FALSE (0) movl $1,r0 # else return TRUE (1) ret 1: clrl r0 ret /* * double scalb(x,N) * double x; int N; */ .globl _scalb .set ERANGE,34 .text .align 2 _scalb: .word 0x000c # save r2-r3 movl 8(fp),r1 movl 4(fp),r0 # r0:r1 = x (-128 <= Ex <= 126) andl3 $0x7f800000,r0,r3 # r3[b23:b30] = biased exponent of x beql 1f # is x a 0 or a reserved operand? movl 12(fp),r2 # r2 = N cmpl r2,$0xff # if N >= 255 bgeq 2f # then the result must overflow cmpl r2,$-0xff # if N <= -255 bleq 3f # then the result must underflow shrl $23,r3,r3 # r3[b0:b7] = biased exponent of x addl2 r2,r3 # r3 = biased exponent of the result bleq 3f # if <= 0 then the result underflows cmpl r3,$0x100 # if >= 256 then the result overflows bgeq 2f shll $23,r3,r3 # r3[b23:b30] = biased exponent of res. andl2 $0x807fffff,r0 orl2 r3,r0 # r0:r1 = x*2^N 1: ret 2: pushl $ERANGE # if the result would overflow callf $8,_infnan # and _infnan returns andl3 $0x80000000,4(fp),r2 # get the sign of input arg orl2 r2,r0 # re-attach the sign to r0:r1 ret 3: clrl r1 # if the result would underflow clrl r0 # then return 0 ret /* * double drem(x,y) * double x,y; * Returns x-n*y where n=[x/y] rounded (to even in the half way case). */ .globl _drem .set EDOM,33 .text .align 2 _drem: .word 0x1ffc # save r2-r12 movl 16(fp),r3 movl 12(fp),r2 # r2:r3 = y movl 8(fp),r1 movl 4(fp),r0 # r0:r1 = x andl3 $0xff800000,r0,r4 cmpl r4,$0x80000000 # is x a reserved operand? beql 1f # if yes then propagate x and return andl3 $0xff800000,r2,r4 cmpl r4,$0x80000000 # is y a reserved operand? bneq 2f movl r3,r1 movl r2,r0 # if yes then propagate y and return 1: ret 2: tstl r4 # is y a 0? bneq 3f pushl $EDOM # if so then generate reserved op fault callf $8,_infnan ret 3: andl2 $0x7fffffff,r2 # r2:r3 = y <- |y| clrl r12 # r12 = nx := 0 cmpl r2,$0x1c800000 # Ey ? 57 bgtr 4f # if Ey > 57 goto 4 addl2 $0x1c800000,r2 # scale up y by 2**57 movl $0x1c800000,r12 # r12[b23:b30] = nx = 57 4: pushl r12 # pushed onto stack: nf := nx andl3 $0x80000000,r0,-(sp) # pushed onto stack: sign of x andl2 $0x7fffffff,r0 # r0:r1 = x <- |x| movl r3,r11 # r10:r11 = y1 = y w/ last 27 bits 0 andl3 $0xf8000000,r10,r11 # clear last 27 bits of y1 Loop: cmpd2 r0,r2 # x ? y bleq 6f # if x <= y goto 6 /* # begin argument reduction */ movl r3,r5 movl r2,r4 # r4:r5 = t = y movl r11,r7 movl r10,r6 # r6:r7 = t1 = y1 andl3 $0x7f800000,r0,r8 # r8[b23:b30] = Ex:biased exponent of x andl3 $0x7f800000,r2,r9 # r9[b23:b30] = Ey:biased exponent of y subl2 r9,r8 # r8[b23:b30] = Ex-Ey subl2 $0x0c800000,r8 # r8[b23:b30] = k = Ex-Ey-25 blss 5f # if k < 0 goto 5 addl2 r8,r4 # t += k addl2 r8,r6 # t1 += k, scale up t and t1 5: ldd r0 # acc = x divd r4 # acc = x/t cvdl r8 # r8 = n = [x/t] truncated cvld r8 # acc = dble(n) std r8 # r8:r9 = dble(n) ldd r4 # acc = t subd r6 # acc = t-t1 muld r8 # acc = n*(t-t1) std r4 # r4:r5 = n*(t-t1) ldd r6 # acc = t1 muld r8 # acc = n*t1 subd r0 # acc = n*t1-x negd # acc = x-n*t1 subd r4 # acc = (x-n*t1)-n*(t-t1) std r0 # r0:r1 = (x-n*t1)-n*(t-t1) brb Loop 6: movl r12,r6 # r6 = nx beql 7f # if nx == 0 goto 7 addl2 r6,r0 # x <- x*2**57:scale x up by nx clrl r12 # clear nx brb Loop 7: movl r3,r5 movl r2,r4 # r4:r5 = y subl2 $0x800000,r4 # r4:r5 = y/2 cmpd2 r0,r4 # x ? y/2 blss 9f # if x < y/2 goto 9 bgtr 8f # if x > y/2 goto 8 ldd r8 # acc = dble(n) cvdl r8 # r8 = ifix(dble(n)) bbc $0,r8,9f # if the last bit is zero, goto 9 8: ldd r0 # acc = x subd r2 # acc = x-y std r0 # r0:r1 = x-y 9: xorl2 (sp)+,r0 # x^sign (exclusive or) movl (sp)+,r6 # r6 = nf andl3 $0x7f800000,r0,r8 # r8 = biased exponent of x andl2 $0x807fffff,r0 # r0 = x w/ exponent zapped subl2 r6,r8 # r8 = Ex-nf bgtr 0f # if Ex-nf > 0 goto 0 clrl r8 # clear r8 clrl r0 clrl r1 # x underflows to zero 0: orl2 r8,r0 # put r8 into x's exponent field ret