/* * Copyright (c) 1982, 1990 The Regents of the University of California. * All rights reserved. * * %sccs.include.redist.c% * * @(#)if_le.c 7.10 (Berkeley) 03/20/92 */ #include "le.h" #if NLE > 0 #include "bpfilter.h" /* * AMD 7990 LANCE * * This driver will generate and accept tailer encapsulated packets even * though it buys us nothing. The motivation was to avoid incompatibilities * with VAXen, SUNs, and others that handle and benefit from them. * This reasoning is dubious. */ #include "sys/param.h" #include "sys/proc.h" #include "sys/systm.h" #include "sys/mbuf.h" #include "sys/buf.h" #include "sys/protosw.h" #include "sys/socket.h" #include "sys/syslog.h" #include "sys/ioctl.h" #include "sys/errno.h" #include "net/if.h" #include "net/netisr.h" #include "net/route.h" #ifdef INET #include "netinet/in.h" #include "netinet/in_systm.h" #include "netinet/in_var.h" #include "netinet/ip.h" #include "netinet/if_ether.h" #endif #ifdef NS #include "netns/ns.h" #include "netns/ns_if.h" #endif #ifdef ISO extern char all_es_snpa[], all_is_snpa[], all_l1is_snpa[], all_l2is_snpa[]; #endif #include "../include/cpu.h" #include "../hp300/isr.h" #include "../include/mtpr.h" #include "device.h" #include "if_lereg.h" #if NBPFILTER > 0 #include "../net/bpf.h" #include "../net/bpfdesc.h" char hprmp_multi[] = { 9, 0, 9, 0, 0, 4}; #endif /* offsets for: ID, REGS, MEM, NVRAM */ int lestd[] = { 0, 0x4000, 0x8000, 0xC008 }; int leattach(); struct driver ledriver = { leattach, "le", }; struct isr le_isr[NLE]; int ledebug = 0; /* console error messages */ int leintr(), leinit(), leioctl(), lestart(), ether_output(); struct mbuf *m_devget(); extern struct ifnet loif; /* * Ethernet software status per interface. * * Each interface is referenced by a network interface structure, * le_if, which the routing code uses to locate the interface. * This structure contains the output queue for the interface, its address, ... */ struct le_softc { struct arpcom sc_ac; /* common Ethernet structures */ #define sc_if sc_ac.ac_if /* network-visible interface */ #define sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */ struct lereg0 *sc_r0; /* DIO registers */ struct lereg1 *sc_r1; /* LANCE registers */ struct lereg2 *sc_r2; /* dual-port RAM */ int sc_rmd; /* predicted next rmd to process */ int sc_runt; int sc_jab; int sc_merr; int sc_babl; int sc_cerr; int sc_miss; int sc_xint; int sc_xown; int sc_uflo; int sc_rxlen; int sc_rxoff; int sc_txoff; int sc_busy; short sc_iflags; caddr_t sc_bpf; int sc_tmd; /* predicted next tmd to process */ int sc_txcnt; /* transmissions in progress */ int sc_txbad; int sc_txbusy; } le_softc[NLE]; /* access LANCE registers */ #define LERDWR(cntl, src, dst) \ do { \ (dst) = (src); \ } while (((cntl)->ler0_status & LE_ACK) == 0); /* * Interface exists: make available by filling in network interface * record. System will initialize the interface when it is ready * to accept packets. */ leattach(hd) struct hp_device *hd; { register struct lereg0 *ler0; register struct lereg2 *ler2; struct lereg2 *lemem = 0; struct le_softc *le = &le_softc[hd->hp_unit]; struct ifnet *ifp = &le->sc_if; char *cp; int i; ler0 = le->sc_r0 = (struct lereg0 *)(lestd[0] + (int)hd->hp_addr); le->sc_r1 = (struct lereg1 *)(lestd[1] + (int)hd->hp_addr); ler2 = le->sc_r2 = (struct lereg2 *)(lestd[2] + (int)hd->hp_addr); if (ler0->ler0_id != LEID) return(0); le_isr[hd->hp_unit].isr_intr = leintr; hd->hp_ipl = le_isr[hd->hp_unit].isr_ipl = LE_IPL(ler0->ler0_status); le_isr[hd->hp_unit].isr_arg = hd->hp_unit; ler0->ler0_id = 0xFF; DELAY(100); /* * Read the ethernet address off the board, one nibble at a time. */ cp = (char *)(lestd[3] + (int)hd->hp_addr); for (i = 0; i < sizeof(le->sc_addr); i++) { le->sc_addr[i] = (*++cp & 0xF) << 4; cp++; le->sc_addr[i] |= *++cp & 0xF; cp++; } printf("le%d: hardware address %s\n", hd->hp_unit, ether_sprintf(le->sc_addr)); /* * Setup for transmit/receive */ ler2->ler2_mode = LE_MODE; #if defined(ISO) || NBPFILTER > 0 ler2->ler2_ladrf0 = 0xffffffff; ler2->ler2_ladrf1 = 0xffffffff; #else ler2->ler2_ladrf0 = 0; ler2->ler2_ladrf1 = 0; #endif ler2->ler2_rlen = LE_RLEN; ler2->ler2_rdra = (int)lemem->ler2_rmd; ler2->ler2_tlen = LE_TLEN; ler2->ler2_tdra = (int)lemem->ler2_tmd; isrlink(&le_isr[hd->hp_unit]); ler0->ler0_status = LE_IE; ifp->if_unit = hd->hp_unit; ifp->if_name = "le"; ifp->if_mtu = ETHERMTU; ifp->if_init = leinit; ifp->if_ioctl = leioctl; ifp->if_output = ether_output; ifp->if_start = lestart; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX; #if NBPFILTER > 0 bpfattach(&le->sc_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif if_attach(ifp); return (1); } ledrinit(ler2, le) register struct lereg2 *ler2; register struct le_softc *le; { register struct lereg2 *lemem = 0; register int i; ler2->ler2_padr[0] = le->sc_addr[1]; ler2->ler2_padr[1] = le->sc_addr[0]; ler2->ler2_padr[2] = le->sc_addr[3]; ler2->ler2_padr[3] = le->sc_addr[2]; ler2->ler2_padr[4] = le->sc_addr[5]; ler2->ler2_padr[5] = le->sc_addr[4]; for (i = 0; i < LERBUF; i++) { ler2->ler2_rmd[i].rmd0 = (int)lemem->ler2_rbuf[i]; ler2->ler2_rmd[i].rmd1 = LE_OWN; ler2->ler2_rmd[i].rmd2 = -LEMTU; ler2->ler2_rmd[i].rmd3 = 0; } for (i = 0; i < LETBUF; i++) { ler2->ler2_tmd[i].tmd0 = (int)lemem->ler2_tbuf[i]; ler2->ler2_tmd[i].tmd1 = 0; ler2->ler2_tmd[i].tmd2 = 0; ler2->ler2_tmd[i].tmd3 = 0; } } lereset(unit) register int unit; { register struct le_softc *le = &le_softc[unit]; register struct lereg0 *ler0 = le->sc_r0; register struct lereg1 *ler1 = le->sc_r1; register struct lereg2 *lemem = 0; register int timo = 100000; register int stat; #ifdef lint stat = unit; #endif #if NBPFILTER > 0 if (le->sc_if.if_flags & IFF_PROMISC) /* set the promiscuous bit */ le->sc_r2->ler2_mode = LE_MODE|0x8000; else le->sc_r2->ler2_mode = LE_MODE; #endif LERDWR(ler0, LE_CSR0, ler1->ler1_rap); LERDWR(ler0, LE_STOP, ler1->ler1_rdp); ledrinit(le->sc_r2, le); le->sc_txcnt = le->sc_tmd = le->sc_rmd = 0; LERDWR(ler0, LE_CSR1, ler1->ler1_rap); LERDWR(ler0, (int)&lemem->ler2_mode, ler1->ler1_rdp); LERDWR(ler0, LE_CSR2, ler1->ler1_rap); LERDWR(ler0, 0, ler1->ler1_rdp); LERDWR(ler0, LE_CSR0, ler1->ler1_rap); LERDWR(ler0, LE_INIT, ler1->ler1_rdp); do { if (--timo == 0) { printf("le%d: init timeout, stat = 0x%x\n", unit, stat); break; } LERDWR(ler0, ler1->ler1_rdp, stat); } while ((stat & LE_IDON) == 0); LERDWR(ler0, LE_STOP, ler1->ler1_rdp); LERDWR(ler0, LE_CSR3, ler1->ler1_rap); LERDWR(ler0, LE_BSWP, ler1->ler1_rdp); LERDWR(ler0, LE_CSR0, ler1->ler1_rap); LERDWR(ler0, LE_STRT | LE_INEA, ler1->ler1_rdp); le->sc_if.if_flags &= ~IFF_OACTIVE; } /* * Initialization of interface */ leinit(unit) int unit; { register struct ifnet *ifp = &le_softc[unit].sc_if; register struct ifaddr *ifa; int s; /* not yet, if address still unknown */ for (ifa = ifp->if_addrlist;; ifa = ifa->ifa_next) if (ifa == 0) return; else if (ifa->ifa_addr && ifa->ifa_addr->sa_family != AF_LINK) break; if ((ifp->if_flags & IFF_RUNNING) == 0) { s = splimp(); ifp->if_flags |= IFF_RUNNING; lereset(unit); (void) lestart(ifp); splx(s); } } /* * Start output on interface. Get another datagram to send * off of the interface queue, and copy it to the interface * before starting the output. */ lestart(ifp) struct ifnet *ifp; { register struct le_softc *le = &le_softc[ifp->if_unit]; register struct letmd *tmd; register struct mbuf *m; int len; again: if ((le->sc_if.if_flags & IFF_RUNNING) == 0) return (0); IF_DEQUEUE(&le->sc_if.if_snd, m); if (m == 0) return (0); tmd = le->sc_r2->ler2_tmd + le->sc_tmd; if (tmd->tmd1 & LE_OWN) return (le->sc_txbusy++, 0); len = leput(le->sc_r2->ler2_tbuf[le->sc_tmd], m); #if NBPFILTER > 0 /* * If bpf is listening on this interface, let it * see the packet before we commit it to the wire. */ if (le->sc_bpf) bpf_tap(le->sc_bpf, le->sc_r2->ler2_tbuf[le->sc_tmd], len); #endif tmd->tmd3 = 0; tmd->tmd2 = -len; if (++le->sc_tmd >= LETBUF) le->sc_tmd = 0; if (++le->sc_txcnt >= LETBUF) { le->sc_txcnt = LETBUF; le->sc_if.if_flags |= IFF_OACTIVE; tmd->tmd1 = LE_OWN | LE_STP | LE_ENP; } else { tmd->tmd1 = LE_OWN | LE_STP | LE_ENP; goto again; } return (0); } leintr(unit) register int unit; { register struct le_softc *le = &le_softc[unit]; register struct lereg0 *ler0 = le->sc_r0; register struct lereg1 *ler1; register int stat; if ((ler0->ler0_status & LE_IR) == 0) return(0); if (ler0->ler0_status & LE_JAB) { le->sc_jab++; lereset(unit); return(1); } ler1 = le->sc_r1; LERDWR(ler0, ler1->ler1_rdp, stat); if (stat & LE_SERR) { leerror(unit, stat); if (stat & LE_MERR) { le->sc_merr++; lereset(unit); return(1); } if (stat & LE_BABL) le->sc_babl++; if (stat & LE_CERR) le->sc_cerr++; if (stat & LE_MISS) le->sc_miss++; LERDWR(ler0, LE_BABL|LE_CERR|LE_MISS|LE_INEA, ler1->ler1_rdp); } if ((stat & LE_RXON) == 0) { le->sc_rxoff++; lereset(unit); return(1); } if ((stat & LE_TXON) == 0) { le->sc_txoff++; lereset(unit); return(1); } if (stat & LE_RINT) { /* interrupt is cleared in lerint */ lerint(unit); } if (stat & LE_TINT) { LERDWR(ler0, LE_TINT|LE_INEA, ler1->ler1_rdp); lexint(unit); } return(1); } /* * Ethernet interface transmitter interrupt. * Start another output if more data to send. */ lexint(unit) register int unit; { register struct le_softc *le = &le_softc[unit]; register struct letmd *tmd; int i, loopcount = 0; if (le->sc_txcnt == 0) { le->sc_xint++; return; } again: if ((i = le->sc_tmd - le->sc_txcnt) < 0) i += LETBUF; tmd = le->sc_r2->ler2_tmd + i; if (tmd->tmd1 & LE_OWN) { if (loopcount) goto out; le->sc_xown++; return; } if (tmd->tmd1 & LE_ERR) { err: lexerror(unit); le->sc_if.if_oerrors++; if (tmd->tmd3 & (LE_TBUFF|LE_UFLO)) { le->sc_uflo++; lereset(unit); } else if (tmd->tmd3 & LE_LCOL) le->sc_if.if_collisions++; else if (tmd->tmd3 & LE_RTRY) le->sc_if.if_collisions += 16; } else if (tmd->tmd3 & LE_TBUFF) /* XXX documentation says BUFF not included in ERR */ goto err; else if (tmd->tmd1 & LE_ONE) le->sc_if.if_collisions++; else if (tmd->tmd1 & LE_MORE) /* what is the real number? */ le->sc_if.if_collisions += 2; else le->sc_if.if_opackets++; loopcount++; if (--le->sc_txcnt > 0) goto again; if (le->sc_txcnt < 0) { le->sc_txbad++; le->sc_txcnt = 0; } out: le->sc_if.if_flags &= ~IFF_OACTIVE; (void) lestart(&le->sc_if); } #define LENEXTRMP \ if (++bix == LERBUF) bix = 0, rmd = le->sc_r2->ler2_rmd; else ++rmd /* * Ethernet interface receiver interrupt. * If input error just drop packet. * Decapsulate packet based on type and pass to type specific * higher-level input routine. */ lerint(unit) int unit; { register struct le_softc *le = &le_softc[unit]; register int bix = le->sc_rmd; register struct lermd *rmd = &le->sc_r2->ler2_rmd[bix]; /* * Out of sync with hardware, should never happen? */ if (rmd->rmd1 & LE_OWN) { LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp); return; } /* * Process all buffers with valid data */ while ((rmd->rmd1 & LE_OWN) == 0) { int len = rmd->rmd3; /* Clear interrupt to avoid race condition */ LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp); if (rmd->rmd1 & LE_ERR) { le->sc_rmd = bix; lererror(unit, "bad packet"); le->sc_if.if_ierrors++; } else if ((rmd->rmd1 & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP)) { /* * Find the end of the packet so we can see how long * it was. We still throw it away. */ do { LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp); rmd->rmd3 = 0; rmd->rmd1 = LE_OWN; LENEXTRMP; } while (!(rmd->rmd1 & (LE_OWN|LE_ERR|LE_STP|LE_ENP))); le->sc_rmd = bix; lererror(unit, "chained buffer"); le->sc_rxlen++; /* * If search terminated without successful completion * we reset the hardware (conservative). */ if ((rmd->rmd1 & (LE_OWN|LE_ERR|LE_STP|LE_ENP)) != LE_ENP) { lereset(unit); return; } } else leread(unit, le->sc_r2->ler2_rbuf[bix], len); rmd->rmd3 = 0; rmd->rmd1 = LE_OWN; LENEXTRMP; } le->sc_rmd = bix; } leread(unit, buf, len) int unit; char *buf; int len; { register struct le_softc *le = &le_softc[unit]; register struct ether_header *et; struct mbuf *m; int off, resid; le->sc_if.if_ipackets++; et = (struct ether_header *)buf; et->ether_type = ntohs((u_short)et->ether_type); /* adjust input length to account for header and CRC */ len = len - sizeof(struct ether_header) - 4; #define ledataaddr(et, off, type) ((type)(((caddr_t)((et)+1)+(off)))) if (et->ether_type >= ETHERTYPE_TRAIL && et->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { off = (et->ether_type - ETHERTYPE_TRAIL) * 512; if (off >= ETHERMTU) return; /* sanity */ et->ether_type = ntohs(*ledataaddr(et, off, u_short *)); resid = ntohs(*(ledataaddr(et, off+2, u_short *))); if (off + resid > len) return; /* sanity */ len = off + resid; } else off = 0; if (len <= 0) { if (ledebug) log(LOG_WARNING, "le%d: ierror(runt packet): from %s: len=%d\n", unit, ether_sprintf(et->ether_shost), len); le->sc_runt++; le->sc_if.if_ierrors++; return; } #if NBPFILTER > 0 /* * Check if there's a bpf filter listening on this interface. * If so, hand off the raw packet to bpf, which must deal with * trailers in its own way. */ if (le->sc_bpf) bpf_tap(le->sc_bpf, buf, len + sizeof(struct ether_header)); #endif #if defined(ISO) || NBPFILTER > 0 /* * Note that the interface cannot be in promiscuous mode if * there are no bpf listeners. If we are in promiscuous * mode, we have to check if this packet is really ours. * However, there may be appropriate multicate addresses involved */ #define NOT_TO(p) (bcmp(et->ether_dhost, p, sizeof(et->ether_dhost)) != 0) if (et->ether_dhost[0] & 1) { if (NOT_TO(etherbroadcastaddr) && NOT_TO(hprmp_multi) #ifdef ISO && NOT_TO(all_es_snpa) && NOT_TO(all_is_snpa) && NOT_TO(all_l1is_snpa) && NOT_TO(all_l2is_snpa) #endif ) return; } else if ((le->sc_if.if_flags & IFF_PROMISC) && NOT_TO(le->sc_addr)) return; #endif /* * Pull packet off interface. Off is nonzero if packet * has trailing header; m_devget will then force this header * information to be at the front, but we still have to drop * the type and length which are at the front of any trailer data. */ m = m_devget((char *)(et + 1), len, off, &le->sc_if, 0); if (m == 0) return; ether_input(&le->sc_if, et, m); } /* * Routine to copy from mbuf chain to transmit * buffer in board local memory. */ leput(lebuf, m) register char *lebuf; register struct mbuf *m; { register struct mbuf *mp; register int len, tlen = 0; for (mp = m; mp; mp = mp->m_next) { len = mp->m_len; if (len == 0) continue; tlen += len; bcopy(mtod(mp, char *), lebuf, len); lebuf += len; } m_freem(m); if (tlen < LEMINSIZE) { bzero(lebuf, LEMINSIZE - tlen); tlen = LEMINSIZE; } return(tlen); } /* * Process an ioctl request. */ leioctl(ifp, cmd, data) register struct ifnet *ifp; int cmd; caddr_t data; { register struct ifaddr *ifa = (struct ifaddr *)data; struct le_softc *le = &le_softc[ifp->if_unit]; struct lereg1 *ler1 = le->sc_r1; int s = splimp(), error = 0; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: leinit(ifp->if_unit); /* before arpwhohas */ ((struct arpcom *)ifp)->ac_ipaddr = IA_SIN(ifa)->sin_addr; arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr); break; #endif #ifdef NS case AF_NS: { register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)(le->sc_addr); else { /* * The manual says we can't change the address * while the receiver is armed, * so reset everything */ ifp->if_flags &= ~IFF_RUNNING; LERDWR(le->sc_r0, LE_STOP, ler1->ler1_rdp); bcopy((caddr_t)ina->x_host.c_host, (caddr_t)le->sc_addr, sizeof(le->sc_addr)); } leinit(ifp->if_unit); /* does le_setaddr() */ break; } #endif default: leinit(ifp->if_unit); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) { LERDWR(le->sc_r0, LE_STOP, ler1->ler1_rdp); ifp->if_flags &= ~IFF_RUNNING; } else if (ifp->if_flags & IFF_UP && (ifp->if_flags & IFF_RUNNING) == 0) leinit(ifp->if_unit); /* * If the state of the promiscuous bit changes, the interface * must be reset to effect the change. */ if (((ifp->if_flags ^ le->sc_iflags) & IFF_PROMISC) && (ifp->if_flags & IFF_RUNNING)) { le->sc_iflags = ifp->if_flags; lereset(ifp->if_unit); lestart(ifp); } break; default: error = EINVAL; } splx(s); return (error); } leerror(unit, stat) int unit; int stat; { if (!ledebug) return; /* * Not all transceivers implement heartbeat * so we only log CERR once. */ if ((stat & LE_CERR) && le_softc[unit].sc_cerr) return; log(LOG_WARNING, "le%d: error: stat=%b\n", unit, stat, "\20\20ERR\17BABL\16CERR\15MISS\14MERR\13RINT\12TINT\11IDON\10INTR\07INEA\06RXON\05TXON\04TDMD\03STOP\02STRT\01INIT"); } lererror(unit, msg) int unit; char *msg; { register struct le_softc *le = &le_softc[unit]; register struct lermd *rmd; int len; if (!ledebug) return; rmd = &le->sc_r2->ler2_rmd[le->sc_rmd]; len = rmd->rmd3; log(LOG_WARNING, "le%d: ierror(%s): from %s: buf=%d, len=%d, rmd1=%b\n", unit, msg, len > 11 ? ether_sprintf((u_char *)&le->sc_r2->ler2_rbuf[le->sc_rmd][6]) : "unknown", le->sc_rmd, len, rmd->rmd1, "\20\20OWN\17ERR\16FRAM\15OFLO\14CRC\13RBUF\12STP\11ENP"); } lexerror(unit) int unit; { register struct le_softc *le = &le_softc[unit]; register struct letmd *tmd; int len; if (!ledebug) return; tmd = le->sc_r2->ler2_tmd; len = -tmd->tmd2; log(LOG_WARNING, "le%d: oerror: to %s: buf=%d, len=%d, tmd1=%b, tmd3=%b\n", unit, len > 5 ? ether_sprintf((u_char *)&le->sc_r2->ler2_tbuf[0][0]) : "unknown", 0, len, tmd->tmd1, "\20\20OWN\17ERR\16RES\15MORE\14ONE\13DEF\12STP\11ENP", tmd->tmd3, "\20\20BUFF\17UFLO\16RES\15LCOL\14LCAR\13RTRY"); } #endif