/* * Copyright (c) 1988 University of Utah. * Copyright (c) 1982, 1986, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * %sccs.include.redist.c% * * from: Utah $Hdr: vmparam.h 1.16 91/01/18$ * * @(#)vmparam.h 7.4 (Berkeley) 06/05/92 */ /* * Machine dependent constants for HP300 */ /* * USRTEXT is the start of the user text/data space, while USRSTACK * is the top (end) of the user stack. LOWPAGES and HIGHPAGES are * the number of pages from the beginning of the P0 region to the * beginning of the text and from the beginning of the P1 region to the * beginning of the stack respectively. * * NOTE: the ONLY reason that HIGHPAGES is 0x100 instead of UPAGES (3) * is for HPUX compatibility. Why?? Because HPUX's debuggers * have the user's stack hard-wired at FFF00000 for post-mortems, * and we must be compatible... */ #define USRTEXT 0 #define USRSTACK (-HIGHPAGES*NBPG) /* Start of user stack */ #define BTOPUSRSTACK (0x100000-HIGHPAGES) /* btop(USRSTACK) */ #define P1PAGES 0x100000 #define LOWPAGES 0 #define HIGHPAGES (0x100000/NBPG) /* * Virtual memory related constants, all in bytes */ #ifndef MAXTSIZ #define MAXTSIZ (6*1024*1024) /* max text size */ #endif #ifndef DFLDSIZ #define DFLDSIZ (8*1024*1024) /* initial data size limit */ #endif #ifndef MAXDSIZ #define MAXDSIZ (16*1024*1024) /* max data size */ #endif #ifndef DFLSSIZ #define DFLSSIZ (512*1024) /* initial stack size limit */ #endif #ifndef MAXSSIZ #define MAXSSIZ MAXDSIZ /* max stack size */ #endif /* * Default sizes of swap allocation chunks (see dmap.h). * The actual values may be changed in vminit() based on MAXDSIZ. * With MAXDSIZ of 16Mb and NDMAP of 38, dmmax will be 1024. * DMMIN should be at least ctod(1) so that vtod() works. * vminit() insures this. */ #define DMMIN 32 /* smallest swap allocation */ #define DMMAX 4096 /* largest potential swap allocation */ /* * Sizes of the system and user portions of the system page table. */ /* SYSPTSIZE IS SILLY; IT SHOULD BE COMPUTED AT BOOT TIME */ #define SYSPTSIZE (2 * NPTEPG) /* 8mb */ #define USRPTSIZE (1 * NPTEPG) /* 4mb */ /* * PTEs for mapping user space into the kernel for phyio operations. * One page is enough to handle 4Mb of simultaneous raw IO operations. */ #ifndef USRIOSIZE #define USRIOSIZE (1 * NPTEPG) /* 4mb */ #endif /* * PTEs for system V style shared memory. * This is basically slop for kmempt which we actually allocate (malloc) from. */ #ifndef SHMMAXPGS #define SHMMAXPGS 1024 /* 4mb */ #endif /* * External IO space map size. * By default we make it large enough to map up to 3 DIO-II devices and * the complete DIO space. For a 320-only configuration (which has no * DIO-II) you could define a considerably smaller region. */ #ifndef EIOMAPSIZE #define EIOMAPSIZE 3584 /* 14mb */ #endif /* * Boundary at which to place first MAPMEM segment if not explicitly * specified. Should be a power of two. This allows some slop for * the data segment to grow underneath the first mapped segment. */ #define MMSEG 0x200000 /* * The size of the clock loop. */ #define LOOPPAGES (maxfree - firstfree) /* * The time for a process to be blocked before being very swappable. * This is a number of seconds which the system takes as being a non-trivial * amount of real time. You probably shouldn't change this; * it is used in subtle ways (fractions and multiples of it are, that is, like * half of a ``long time'', almost a long time, etc.) * It is related to human patience and other factors which don't really * change over time. */ #define MAXSLP 20 /* * A swapped in process is given a small amount of core without being bothered * by the page replacement algorithm. Basically this says that if you are * swapped in you deserve some resources. We protect the last SAFERSS * pages against paging and will just swap you out rather than paging you. * Note that each process has at least UPAGES+CLSIZE pages which are not * paged anyways (this is currently 8+2=10 pages or 5k bytes), so this * number just means a swapped in process is given around 25k bytes. * Just for fun: current memory prices are 4600$ a megabyte on VAX (4/22/81), * so we loan each swapped in process memory worth 100$, or just admit * that we don't consider it worthwhile and swap it out to disk which costs * $30/mb or about $0.75. */ #define SAFERSS 4 /* nominal ``small'' resident set size protected against replacement */ /* * DISKRPM is used to estimate the number of paging i/o operations * which one can expect from a single disk controller. */ #define DISKRPM 60 /* * Klustering constants. Klustering is the gathering * of pages together for pagein/pageout, while clustering * is the treatment of hardware page size as though it were * larger than it really is. * * KLMAX gives maximum cluster size in CLSIZE page (cluster-page) * units. Note that ctod(KLMAX*CLSIZE) must be <= DMMIN in dmap.h. * ctob(KLMAX) should also be less than MAXPHYS (in vm_swp.c) * unless you like "big push" panics. */ #define KLMAX (4/CLSIZE) #define KLSEQL (2/CLSIZE) /* in klust if vadvise(VA_SEQL) */ #define KLIN (4/CLSIZE) /* default data/stack in klust */ #define KLTXT (4/CLSIZE) /* default text in klust */ #define KLOUT (4/CLSIZE) /* * KLSDIST is the advance or retard of the fifo reclaim for sequential * processes data space. */ #define KLSDIST 3 /* klusters advance/retard for seq. fifo */ /* * Paging thresholds (see vm_sched.c). * Strategy of 1/19/85: * lotsfree is 512k bytes, but at most 1/4 of memory * desfree is 200k bytes, but at most 1/8 of memory * minfree is 64k bytes, but at most 1/2 of desfree */ #define LOTSFREE (512 * 1024) #define LOTSFREEFRACT 4 #define DESFREE (200 * 1024) #define DESFREEFRACT 8 #define MINFREE (64 * 1024) #define MINFREEFRACT 2 /* * There are two clock hands, initially separated by HANDSPREAD bytes * (but at most all of user memory). The amount of time to reclaim * a page once the pageout process examines it increases with this * distance and decreases as the scan rate rises. */ #define HANDSPREAD (2 * 1024 * 1024) /* * The number of times per second to recompute the desired paging rate * and poke the pagedaemon. */ #define RATETOSCHEDPAGING 4 /* * Believed threshold (in megabytes) for which interleaved * swapping area is desirable. */ #define LOTSOFMEM 2 /* * Mach derived constants */ /* user/kernel map constants */ #define VM_MIN_ADDRESS ((vm_offset_t)0) #define VM_MAXUSER_ADDRESS ((vm_offset_t)0xFFF00000) #define VM_MAX_ADDRESS ((vm_offset_t)0xFFF00000) #define VM_MIN_KERNEL_ADDRESS ((vm_offset_t)0) #define VM_MAX_KERNEL_ADDRESS ((vm_offset_t)0xFFFFF000) /* virtual sizes (bytes) for various kernel submaps */ #define VM_MBUF_SIZE (NMBCLUSTERS*MCLBYTES) #define VM_KMEM_SIZE (NKMEMCLUSTERS*CLBYTES) #define VM_PHYS_SIZE (USRIOSIZE*CLBYTES) /* # of kernel PT pages (initial only, can grow dynamically) */ #define VM_KERNEL_PT_PAGES ((vm_size_t)2) /* XXX: SYSPTSIZE */ /* pcb base */ #define pcbb(p) ((u_int)(p)->p_addr)