/* * Copyright (c) 1982, 1986, 1989, 1991 Regents of the University of California. * All rights reserved. * * %sccs.include.redist.c% * * @(#)init_main.c 7.37 (Berkeley) 04/04/91 */ #include "param.h" #include "filedesc.h" #include "kernel.h" #include "mount.h" #include "map.h" #include "proc.h" #include "resourcevar.h" #include "signalvar.h" #include "systm.h" #include "vnode.h" #include "seg.h" #include "conf.h" #include "buf.h" #include "clist.h" #include "malloc.h" #include "protosw.h" #include "reboot.h" #include "user.h" #include "ufs/quota.h" #include "machine/cpu.h" #include "vm/vm.h" /* * Components of process 0; * never freed. */ struct session session0; struct pgrp pgrp0; struct proc proc0; struct pcred cred0; struct filedesc0 filedesc0; struct plimit limit0; struct vmspace vmspace0; struct proc *curproc = &proc0; struct proc *initproc, *pageproc; int cmask = CMASK; extern caddr_t proc0paddr; extern int (*mountroot)(); /* * System startup; initialize the world, create process 0, * mount root filesystem, and fork to create init and pagedaemon. * Most of the hard work is done in the lower-level initialization * routines including startup(), which does memory initialization * and autoconfiguration. */ main(firstaddr) int firstaddr; { register int i; register struct proc *p; register struct filedesc0 *fdp; int s, rval[2]; /* * Initialize curproc before any possible traps/probes * to simplify trap processing. */ p = &proc0; curproc = p; /* * Attempt to find console and initialize * in case of early panic or other messages. */ consinit(); vm_mem_init(); kmeminit(); startup(firstaddr); /* * set up system process 0 (swapper) */ p = &proc0; curproc = p; allproc = p; p->p_prev = &allproc; p->p_pgrp = &pgrp0; pgrphash[0] = &pgrp0; pgrp0.pg_mem = p; pgrp0.pg_session = &session0; session0.s_count = 1; session0.s_leader = p; p->p_flag = SLOAD|SSYS; p->p_stat = SRUN; p->p_nice = NZERO; bcopy("swapper", p->p_comm, sizeof ("swapper")); /* * Setup credentials */ p->p_cred = &cred0; p->p_ucred = crget(); p->p_ucred->cr_ngroups = 1; /* group 0 */ /* * Create the file descriptor table for process 0. */ fdp = &filedesc0; p->p_fd = &fdp->fd_fd; fdp->fd_fd.fd_refcnt = 1; fdp->fd_fd.fd_cmask = cmask; fdp->fd_fd.fd_ofiles = fdp->fd_dfiles; fdp->fd_fd.fd_ofileflags = fdp->fd_dfileflags; fdp->fd_fd.fd_nfiles = NDFILE; /* * Set initial limits */ p->p_limit = &limit0; for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++) limit0.pl_rlimit[i].rlim_cur = limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; limit0.pl_rlimit[RLIMIT_OFILE].rlim_cur = NOFILE; limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = MAXUPRC; limit0.p_refcnt = 1; /* * Allocate a prototype map so we have something to fork */ p->p_vmspace = &vmspace0; vmspace0.vm_refcnt = 1; pmap_pinit(&vmspace0.vm_pmap); vm_map_init(&p->p_vmspace->vm_map, round_page(VM_MIN_ADDRESS), trunc_page(VM_MAX_ADDRESS), TRUE); vmspace0.vm_map.pmap = &vmspace0.vm_pmap; p->p_addr = proc0paddr; /* XXX */ /* * We continue to place resource usage info * and signal actions in the user struct so they're pageable. */ p->p_stats = &((struct user *)p->p_addr)->u_stats; p->p_sigacts = &((struct user *)p->p_addr)->u_sigacts; rqinit(); /* * configure virtual memory system, * set vm rlimits */ vm_init_limits(p); /* * Initialize the file systems. * * Get vnodes for swapdev, argdev, and rootdev. */ vfsinit(); if (bdevvp(swapdev, &swapdev_vp) || bdevvp(argdev, &argdev_vp) || bdevvp(rootdev, &rootvp)) panic("can't setup bdevvp's"); startrtclock(); #if defined(vax) #include "kg.h" #if NKG > 0 startkgclock(); #endif #endif /* * Initialize tables, protocols, and set up well-known inodes. */ mbinit(); cinit(); #ifdef SYSVSHM shminit(); #endif #include "sl.h" #if NSL > 0 slattach(); /* XXX */ #endif #include "loop.h" #if NLOOP > 0 loattach(); /* XXX */ #endif /* * Block reception of incoming packets * until protocols have been initialized. */ s = splimp(); ifinit(); domaininit(); splx(s); #ifdef GPROF kmstartup(); #endif /* kick off timeout driven events by calling first time */ roundrobin(); schedcpu(); enablertclock(); /* enable realtime clock interrupts */ /* * Set up the root file system and vnode. */ if ((*mountroot)()) panic("cannot mount root"); /* * Get vnode for '/'. * Setup rootdir and fdp->fd_fd.fd_cdir to point to it. */ if (VFS_ROOT(rootfs, &rootdir)) panic("cannot find root vnode"); fdp->fd_fd.fd_cdir = rootdir; VREF(fdp->fd_fd.fd_cdir); VOP_UNLOCK(rootdir); fdp->fd_fd.fd_rdir = NULL; swapinit(); /* * Now can look at time, having had a chance * to verify the time from the file system. */ boottime = p->p_stats->p_start = time; /* * make init process */ siginit(p); if (fork(p, (void *) NULL, rval)) panic("fork init"); if (rval[1]) { static char initflags[] = "-sf"; char *ip = initflags + 1; vm_offset_t addr = 0; /* * Now in process 1. Set init flags into icode, * get a minimal address space, copy out "icode", * and return to it to do an exec of init. */ p = curproc; initproc = p; if (boothowto&RB_SINGLE) *ip++ = 's'; #ifdef notyet if (boothowto&RB_FASTBOOT) *ip++ = 'f'; #endif *ip++ = '\0'; if (vm_allocate(&p->p_vmspace->vm_map, &addr, round_page(szicode + sizeof(initflags)), FALSE) != 0 || addr != 0) panic("init: couldn't allocate at zero"); /* need just enough stack to exec from */ addr = trunc_page(VM_MAX_ADDRESS - PAGE_SIZE); if (vm_allocate(&p->p_vmspace->vm_map, &addr, PAGE_SIZE, FALSE) != KERN_SUCCESS) panic("vm_allocate init stack"); p->p_vmspace->vm_maxsaddr = (caddr_t)addr; (void) copyout((caddr_t)icode, (caddr_t)0, (unsigned)szicode); (void) copyout(initflags, (caddr_t)szicode, sizeof(initflags)); return; /* returns to icode */ } /* * Start up pageout daemon (process 2). */ if (fork(p, (void *) NULL, rval)) panic("fork pager"); if (rval[1]) { /* * Now in process 2. */ p = curproc; pageproc = p; p->p_flag |= SLOAD|SSYS; /* XXX */ bcopy("pagedaemon", curproc->p_comm, sizeof ("pagedaemon")); vm_pageout(); /*NOTREACHED*/ } /* * enter scheduling loop */ sched(); } /* MOVE TO vfs_bio.c (bufinit) XXX */ /* * Initialize buffers and hash links for buffers. */ bufinit() { register int i; register struct buf *bp, *dp; register struct bufhd *hp; int base, residual; for (hp = bufhash, i = 0; i < BUFHSZ; i++, hp++) hp->b_forw = hp->b_back = (struct buf *)hp; for (dp = bfreelist; dp < &bfreelist[BQUEUES]; dp++) { dp->b_forw = dp->b_back = dp->av_forw = dp->av_back = dp; dp->b_flags = B_HEAD; } base = bufpages / nbuf; residual = bufpages % nbuf; for (i = 0; i < nbuf; i++) { bp = &buf[i]; bp->b_dev = NODEV; bp->b_bcount = 0; bp->b_rcred = NOCRED; bp->b_wcred = NOCRED; bp->b_dirtyoff = 0; bp->b_dirtyend = 0; bp->b_un.b_addr = buffers + i * MAXBSIZE; if (i < residual) bp->b_bufsize = (base + 1) * CLBYTES; else bp->b_bufsize = base * CLBYTES; binshash(bp, &bfreelist[BQ_AGE]); bp->b_flags = B_BUSY|B_INVAL; brelse(bp); } }