/* * Copyright (c) 1982, 1986, 1990 Regents of the University of California. * All rights reserved. The Berkeley software License Agreement * specifies the terms and conditions for redistribution. * * @(#)kern_synch.c 7.13 (Berkeley) 12/05/90 */ #include "param.h" #include "systm.h" #include "user.h" #include "proc.h" #include "kernel.h" #include "buf.h" #include "machine/psl.h" #include "machine/mtpr.h" /* * Force switch among equal priority processes every 100ms. */ roundrobin() { runrun++; aston(); timeout(roundrobin, (caddr_t)0, hz / 10); } /* * constants for digital decay and forget * 90% of (p_cpu) usage in 5*loadav time * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) * Note that, as ps(1) mentions, this can let percentages * total over 100% (I've seen 137.9% for 3 processes). * * Note that hardclock updates p_cpu and p_cpticks independently. * * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds. * That is, the system wants to compute a value of decay such * that the following for loop: * for (i = 0; i < (5 * loadavg); i++) * p_cpu *= decay; * will compute * p_cpu *= 0.1; * for all values of loadavg: * * Mathematically this loop can be expressed by saying: * decay ** (5 * loadavg) ~= .1 * * The system computes decay as: * decay = (2 * loadavg) / (2 * loadavg + 1) * * We wish to prove that the system's computation of decay * will always fulfill the equation: * decay ** (5 * loadavg) ~= .1 * * If we compute b as: * b = 2 * loadavg * then * decay = b / (b + 1) * * We now need to prove two things: * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) * * Facts: * For x close to zero, exp(x) =~ 1 + x, since * exp(x) = 0! + x**1/1! + x**2/2! + ... . * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. * For x close to zero, ln(1+x) =~ x, since * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). * ln(.1) =~ -2.30 * * Proof of (1): * Solve (factor)**(power) =~ .1 given power (5*loadav): * solving for factor, * ln(factor) =~ (-2.30/5*loadav), or * factor =~ exp(-1/((5/2.30)*loadav) =~ exp(-1/(2*loadav)) = * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED * * Proof of (2): * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): * solving for power, * power*ln(b/(b+1)) =~ -2.30, or * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED * * Actual power values for the implemented algorithm are as follows: * loadav: 1 2 3 4 * power: 5.68 10.32 14.94 19.55 */ /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ #define get_b(loadav) (2 * (loadav)) #define get_pcpu(b, cpu) (((b) * ((cpu) & 0377)) / ((b) + FSCALE)) /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ /* * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). * * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). * * If you dont want to bother with the faster/more-accurate formula, you * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate * (more general) method of calculating the %age of CPU used by a process. */ #define CCPU_SHIFT 11 /* * Recompute process priorities, once a second */ schedcpu() { register fixpt_t b = get_b(averunnable[0]); register struct proc *p; register int s, a; wakeup((caddr_t)&lbolt); for (p = allproc; p != NULL; p = p->p_nxt) { if (p->p_time != 127) p->p_time++; if (p->p_stat==SSLEEP || p->p_stat==SSTOP) if (p->p_slptime != 127) p->p_slptime++; p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; /* * If the process has slept the entire second, * stop recalculating its priority until it wakes up. */ if (p->p_slptime > 1) continue; /* * p_pctcpu is only for ps. */ #if (FSHIFT >= CCPU_SHIFT) p->p_pctcpu += (hz == 100)? ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 100 * (((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT)) / hz; #else p->p_pctcpu += ((FSCALE - ccpu) * (p->p_cpticks * FSCALE / hz)) >> FSHIFT; #endif p->p_cpticks = 0; a = (int) get_pcpu(b, p->p_cpu) + p->p_nice; if (a < 0) a = 0; if (a > 255) a = 255; p->p_cpu = a; (void) setpri(p); s = splhigh(); /* prevent state changes */ if (p->p_pri >= PUSER) { #define PPQ (128 / NQS) if ((p != u.u_procp || noproc) && p->p_stat == SRUN && (p->p_flag & SLOAD) && (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) { remrq(p); p->p_pri = p->p_usrpri; setrq(p); } else p->p_pri = p->p_usrpri; } splx(s); } vmmeter(); if (runin!=0) { runin = 0; wakeup((caddr_t)&runin); } if (bclnlist != NULL) wakeup((caddr_t)&proc[2]); timeout(schedcpu, (caddr_t)0, hz); } /* * Recalculate the priority of a process after it has slept for a while. */ updatepri(p) register struct proc *p; { register int a = p->p_cpu & 0377; register fixpt_t b = get_b(averunnable[0]); p->p_slptime--; /* the first time was done in schedcpu */ while (a && --p->p_slptime) a = (int) get_pcpu(b, a) /* + p->p_nice */; p->p_slptime = 0; if (a < 0) a = 0; if (a > 255) a = 255; p->p_cpu = a; (void) setpri(p); } #define SQSIZE 0100 /* Must be power of 2 */ #define HASH(x) (( (int) x >> 5) & (SQSIZE-1)) struct slpque { struct proc *sq_head; struct proc **sq_tailp; } slpque[SQSIZE]; /* * During autoconfiguration or after a panic, a sleep will simply * lower the priority briefly to allow interrupts, then return. * The priority to be used (safepri) is machine-dependent, thus this * value is initialized and maintained in the machine-dependent layers. * This priority will typically be 0, or the lowest priority * that is safe for use on the interrupt stack; it can be made * higher to block network software interrupts after panics. */ int safepri; /* * General sleep call. * Suspends current process until a wakeup is made on chan. * The process will then be made runnable with priority pri. * Sleeps at most timo/hz seconds (0 means no timeout). * If pri includes PCATCH flag, signals are checked * before and after sleeping, else signals are not checked. * Returns 0 if awakened, EWOULDBLOCK if the timeout expires. * If PCATCH is set and a signal needs to be delivered, * ERESTART is returned if the current system call should be restarted * if possible, and EINTR is returned if the system call should * be interrupted by the signal (return EINTR). */ tsleep(chan, pri, wmesg, timo) caddr_t chan; int pri; char *wmesg; int timo; { register struct proc *rp; register struct slpque *qp; register s; int sig, catch = pri & PCATCH; extern int cold; int endtsleep(); rp = u.u_procp; s = splhigh(); if (cold || panicstr) { /* * After a panic, or during autoconfiguration, * just give interrupts a chance, then just return; * don't run any other procs or panic below, * in case this is the idle process and already asleep. */ splx(safepri); splx(s); return (0); } #ifdef DIAGNOSTIC if (chan == 0 || rp->p_stat != SRUN || rp->p_rlink) panic("tsleep"); #endif rp->p_wchan = chan; rp->p_wmesg = wmesg; rp->p_slptime = 0; rp->p_pri = pri & PRIMASK; qp = &slpque[HASH(chan)]; if (qp->sq_head == 0) qp->sq_head = rp; else *qp->sq_tailp = rp; *(qp->sq_tailp = &rp->p_link) = 0; if (timo) timeout(endtsleep, (caddr_t)rp, timo); /* * If we stop in CURSIG/issig(), a wakeup or a SIGCONT * (or both) could occur while we were stopped. * A SIGCONT would cause us to be marked as SSLEEP * without resuming us, thus we must be ready for sleep * when CURSIG is called. If the wakeup happens while we're * stopped, rp->p_wchan will be 0 upon return from CURSIG. */ if (catch) { rp->p_flag |= SSINTR; if (sig = CURSIG(rp)) { if (rp->p_wchan) unsleep(rp); rp->p_stat = SRUN; goto resume; } if (rp->p_wchan == 0) { catch = 0; goto resume; } } rp->p_stat = SSLEEP; (void) spl0(); u.u_ru.ru_nvcsw++; swtch(); resume: curpri = rp->p_usrpri; splx(s); rp->p_flag &= ~SSINTR; if (rp->p_flag & STIMO) { rp->p_flag &= ~STIMO; if (catch == 0 || sig == 0) return (EWOULDBLOCK); } else if (timo) untimeout(endtsleep, (caddr_t)rp); if (catch && (sig != 0 || (sig = CURSIG(rp)))) { if (u.u_sigintr & sigmask(sig)) return (EINTR); return (ERESTART); } return (0); } /* * Implement timeout for tsleep. * If process hasn't been awakened (wchan non-zero), * set timeout flag and undo the sleep. If proc * is stopped, just unsleep so it will remain stopped. */ endtsleep(p) register struct proc *p; { int s = splhigh(); if (p->p_wchan) { if (p->p_stat == SSLEEP) setrun(p); else unsleep(p); p->p_flag |= STIMO; } splx(s); } /* * Short-term, non-interruptable sleep. */ sleep(chan, pri) caddr_t chan; int pri; { register struct proc *rp; register struct slpque *qp; register s; extern int cold; #ifdef DIAGNOSTIC if (pri > PZERO) { printf("sleep called with pri %d > PZERO, wchan: %x\n", pri, chan); panic("old sleep"); } #endif rp = u.u_procp; s = splhigh(); if (cold || panicstr) { /* * After a panic, or during autoconfiguration, * just give interrupts a chance, then just return; * don't run any other procs or panic below, * in case this is the idle process and already asleep. */ splx(safepri); splx(s); return; } #ifdef DIAGNOSTIC if (chan==0 || rp->p_stat != SRUN || rp->p_rlink) panic("sleep"); #endif rp->p_wchan = chan; rp->p_wmesg = NULL; rp->p_slptime = 0; rp->p_pri = pri; qp = &slpque[HASH(chan)]; if (qp->sq_head == 0) qp->sq_head = rp; else *qp->sq_tailp = rp; *(qp->sq_tailp = &rp->p_link) = 0; rp->p_stat = SSLEEP; (void) spl0(); u.u_ru.ru_nvcsw++; swtch(); curpri = rp->p_usrpri; splx(s); } /* * Remove a process from its wait queue */ unsleep(p) register struct proc *p; { register struct slpque *qp; register struct proc **hp; int s; s = splhigh(); if (p->p_wchan) { hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head; while (*hp != p) hp = &(*hp)->p_link; *hp = p->p_link; if (qp->sq_tailp == &p->p_link) qp->sq_tailp = hp; p->p_wchan = 0; } splx(s); } /* * Wake up all processes sleeping on chan. */ wakeup(chan) register caddr_t chan; { register struct slpque *qp; register struct proc *p, **q; int s; s = splhigh(); qp = &slpque[HASH(chan)]; restart: for (q = &qp->sq_head; p = *q; ) { #ifdef DIAGNOSTIC if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP) panic("wakeup"); #endif if (p->p_wchan==chan) { p->p_wchan = 0; *q = p->p_link; if (qp->sq_tailp == &p->p_link) qp->sq_tailp = q; if (p->p_stat == SSLEEP) { /* OPTIMIZED INLINE EXPANSION OF setrun(p) */ if (p->p_slptime > 1) updatepri(p); p->p_stat = SRUN; if (p->p_flag & SLOAD) setrq(p); /* * Since curpri is a usrpri, * p->p_pri is always better than curpri. */ runrun++; aston(); if ((p->p_flag&SLOAD) == 0) { if (runout != 0) { runout = 0; wakeup((caddr_t)&runout); } wantin++; } /* END INLINE EXPANSION */ goto restart; } } else q = &p->p_link; } splx(s); } /* * Initialize the (doubly-linked) run queues * to be empty. */ rqinit() { register int i; for (i = 0; i < NQS; i++) qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; } /* * Set the process running; * arrange for it to be swapped in if necessary. */ setrun(p) register struct proc *p; { register int s; s = splhigh(); switch (p->p_stat) { case 0: case SWAIT: case SRUN: case SZOMB: default: panic("setrun"); case SSTOP: case SSLEEP: unsleep(p); /* e.g. when sending signals */ break; case SIDL: break; } p->p_stat = SRUN; if (p->p_flag & SLOAD) setrq(p); splx(s); if (p->p_slptime > 1) updatepri(p); if (p->p_pri < curpri) { runrun++; aston(); } if ((p->p_flag&SLOAD) == 0) { if (runout != 0) { runout = 0; wakeup((caddr_t)&runout); } wantin++; } } /* * Set user priority. * The rescheduling flag (runrun) * is set if the priority is better * than the currently running process. */ setpri(pp) register struct proc *pp; { register int p; p = (pp->p_cpu & 0377)/4; p += PUSER + 2 * pp->p_nice; if (p > 127) p = 127; if (p < curpri) { runrun++; aston(); } pp->p_usrpri = p; return (p); }