/* uipc_socket2.c 4.32 82/12/14 */ #include "../h/param.h" #include "../h/systm.h" #include "../h/dir.h" #include "../h/user.h" #include "../h/proc.h" #include "../h/file.h" #include "../h/inode.h" #include "../h/buf.h" #include "../h/mbuf.h" #include "../h/protosw.h" #include "../h/socket.h" #include "../h/socketvar.h" /* * Primitive routines for operating on sockets and socket buffers */ /* * Procedures to manipulate state flags of socket * and do appropriate wakeups. Normal sequence from the * active (originating) side is that soisconnecting() is * called during processing of connect() call, * resulting in an eventual call to soisconnected() if/when the * connection is established. When the connection is torn down * soisdisconnecting() is called during processing of disconnect() call, * and soisdisconnected() is called when the connection to the peer * is totally severed. The semantics of these routines are such that * connectionless protocols can call soisconnected() and soisdisconnected() * only, bypassing the in-progress calls when setting up a ``connection'' * takes no time. * * From the passive side, a socket is created with SO_ACCEPTCONN * creating two queues of sockets: so_q0 for connections in progress * and so_q for connections already made and awaiting user acceptance. * As a protocol is preparing incoming connections, it creates a socket * structure queued on so_q0 by calling sonewconn(). When the connection * is established, soisconnected() is called, and transfers the * socket structure to so_q, making it available to accept(). * * If a SO_ACCEPTCONN socket is closed with sockets on either * so_q0 or so_q, these sockets are dropped. * * If and when higher level protocols are implemented in * the kernel, the wakeups done here will sometimes * be implemented as software-interrupt process scheduling. */ soisconnecting(so) struct socket *so; { so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTING; wakeup((caddr_t)&so->so_timeo); } soisconnected(so) struct socket *so; { register struct socket *head = so->so_head; if (head) { if (soqremque(so, 0) == 0) panic("soisconnected"); soqinsque(head, so, 1); wakeup((caddr_t)&head->so_timeo); } so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTED; wakeup((caddr_t)&so->so_timeo); sorwakeup(so); sowwakeup(so); } soisdisconnecting(so) struct socket *so; { so->so_state &= ~SS_ISCONNECTING; so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); wakeup((caddr_t)&so->so_timeo); sowwakeup(so); sorwakeup(so); } soisdisconnected(so) struct socket *so; { so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE); wakeup((caddr_t)&so->so_timeo); sowwakeup(so); sorwakeup(so); } /* * When an attempt at a new connection is noted on a socket * which accepts connections, sonewconn is called. If the * connection is possible (subject to space constraints, etc.) * then we allocate a new structure, propoerly linked into the * data structure of the original socket, and return this. */ struct socket * sonewconn(head) register struct socket *head; { register struct socket *so; struct mbuf *m; if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) goto bad; m = m_getclr(M_DONTWAIT, MT_SOCKET); if (m == 0) goto bad; so = mtod(m, struct socket *); so->so_type = head->so_type; so->so_options = head->so_options &~ SO_ACCEPTCONN; so->so_linger = head->so_linger; so->so_state = head->so_state; so->so_proto = head->so_proto; so->so_timeo = head->so_timeo; so->so_pgrp = head->so_pgrp; soqinsque(head, so, 0); if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH, 0, 0, 0)) { (void) soqremque(so, 0); (void) m_free(m); goto bad; } return (so); bad: return ((struct socket *)0); } soqinsque(head, so, q) register struct socket *head, *so; int q; { so->so_head = head; if (q == 0) { head->so_q0len++; so->so_q0 = head->so_q0; head->so_q0 = so; } else { head->so_qlen++; so->so_q = head->so_q; head->so_q = so; } } soqremque(so, q) register struct socket *so; int q; { register struct socket *head, *prev, *next; head = so->so_head; prev = head; for (;;) { next = q ? prev->so_q : prev->so_q0; if (next == so) break; if (next == head) return (0); prev = next; } if (q == 0) { prev->so_q0 = next->so_q0; head->so_q0len--; } else { prev->so_q = next->so_q; head->so_qlen--; } next->so_q0 = next->so_q = 0; next->so_head = 0; return (1); } /* * Socantsendmore indicates that no more data will be sent on the * socket; it would normally be applied to a socket when the user * informs the system that no more data is to be sent, by the protocol * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data * will be received, and will normally be applied to the socket by a * protocol when it detects that the peer will send no more data. * Data queued for reading in the socket may yet be read. */ socantsendmore(so) struct socket *so; { so->so_state |= SS_CANTSENDMORE; sowwakeup(so); } socantrcvmore(so) struct socket *so; { so->so_state |= SS_CANTRCVMORE; sorwakeup(so); } /* * Socket select/wakeup routines. */ /* * Interface routine to select() system * call for sockets. */ soselect(so, rw) register struct socket *so; int rw; { int s = splnet(); switch (rw) { case FREAD: if (soreadable(so)) { splx(s); return (1); } sbselqueue(&so->so_rcv); break; case FWRITE: if (sowriteable(so)) { splx(s); return (1); } sbselqueue(&so->so_snd); break; } splx(s); return (0); } /* * Queue a process for a select on a socket buffer. */ sbselqueue(sb) struct sockbuf *sb; { register struct proc *p; if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait) sb->sb_flags |= SB_COLL; else sb->sb_sel = u.u_procp; } /* * Wait for data to arrive at/drain from a socket buffer. */ sbwait(sb) struct sockbuf *sb; { sb->sb_flags |= SB_WAIT; sleep((caddr_t)&sb->sb_cc, PZERO+1); } /* * Wakeup processes waiting on a socket buffer. */ sbwakeup(sb) struct sockbuf *sb; { if (sb->sb_sel) { selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL); sb->sb_sel = 0; sb->sb_flags &= ~SB_COLL; } if (sb->sb_flags & SB_WAIT) { sb->sb_flags &= ~SB_WAIT; wakeup((caddr_t)&sb->sb_cc); } } /* * Socket buffer (struct sockbuf) utility routines. * * Each socket contains two socket buffers: one for sending data and * one for receiving data. Each buffer contains a queue of mbufs, * information about the number of mbufs and amount of data in the * queue, and other fields allowing select() statements and notification * on data availability to be implemented. * * Before using a new socket structure it is first necessary to reserve * buffer space to the socket, by calling sbreserve. This commits * some of the available buffer space in the system buffer pool for the * socket. The space should be released by calling sbrelease when the * socket is destroyed. * * The routine sbappend() is normally called to append new mbufs * to a socket buffer, after checking that adequate space is available * comparing the function spspace() with the amount of data to be added. * Data is normally removed from a socket buffer in a protocol by * first calling m_copy on the socket buffer mbuf chain and sending this * to a peer, and then removing the data from the socket buffer with * sbdrop when the data is acknowledged by the peer (or immediately * in the case of unreliable protocols.) * * Protocols which do not require connections place both source address * and data information in socket buffer queues. The source addresses * are stored in single mbufs after each data item, and are easily found * as the data items are all marked with end of record markers. The * sbappendaddr() routine stores a datum and associated address in * a socket buffer. Note that, unlike sbappend(), this routine checks * for the caller that there will be enough space to store the data. * It fails if there is not enough space, or if it cannot find * a mbuf to store the address in. * * The higher-level routines sosend and soreceive (in socket.c) * also add data to, and remove data from socket buffers repectively. */ soreserve(so, sndcc, rcvcc) struct socket *so; int sndcc, rcvcc; { if (sbreserve(&so->so_snd, sndcc) == 0) goto bad; if (sbreserve(&so->so_rcv, rcvcc) == 0) goto bad2; return (0); bad2: sbrelease(&so->so_snd); bad: return (ENOBUFS); } /* * Allot mbufs to a sockbuf. */ sbreserve(sb, cc) struct sockbuf *sb; { /* someday maybe this routine will fail... */ sb->sb_hiwat = cc; sb->sb_mbmax = cc*2; return (1); } /* * Free mbufs held by a socket, and reserved mbuf space. */ sbrelease(sb) struct sockbuf *sb; { sbflush(sb); sb->sb_hiwat = sb->sb_mbmax = 0; } /* * Routines to add (at the end) and remove (from the beginning) * data from a mbuf queue. */ /* * Append mbuf queue m to sockbuf sb. */ sbappend(sb, m) register struct mbuf *m; register struct sockbuf *sb; { register struct mbuf *n; SBCHECK(sb, "sbappend begin"); #ifdef notdef { struct mbuf *p; printf("sba: "); for (p = sb->sb_mb; p; p = p->m_next) printf("%x:(%x,%d) ",p,p->m_off,p->m_len); printf("+= "); for (p = m; p; p = p->m_next) printf("%x:(%x,%d) ",p,p->m_off,p->m_len); printf("\n"); } #endif n = sb->sb_mb; if (n) while (n->m_next) n = n->m_next; while (m) { if (m->m_len == 0 && (int)m->m_act == 0) { m = m_free(m); continue; } if (n && n->m_off <= MMAXOFF && m->m_off <= MMAXOFF && (int)n->m_act == 0 && (int)m->m_act == 0 && (n->m_off + n->m_len + m->m_len) <= MMAXOFF) { bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, (unsigned)m->m_len); n->m_len += m->m_len; sb->sb_cc += m->m_len; m = m_free(m); continue; } sballoc(sb, m); if (n == 0) sb->sb_mb = m; else n->m_next = m; n = m; m = m->m_next; n->m_next = 0; } #ifdef notdef { struct mbuf *p; printf("res: "); for (p = sb->sb_mb; p; p = p->m_next) printf("%x:(%x,%d) ",p,p->m_off,p->m_len); printf("+= "); for (p = m; p; p = p->m_next) printf("%x:(%x,%d) ",p,p->m_off,p->m_len); printf("\n"); } #endif SBCHECK(sb, "sbappend end"); } /* * Append data and address. * Return 0 if no space in sockbuf or if * can't get mbuf to stuff address in. */ sbappendaddr(sb, asa, m0) struct sockbuf *sb; struct sockaddr *asa; struct mbuf *m0; { struct sockaddr *msa; register struct mbuf *m; register int len = sizeof (struct sockaddr); SBCHECK(sb, "sbappendaddr begin"); m = m0; if (m == 0) panic("sbappendaddr"); for (;;) { len += m->m_len; if (m->m_next == 0) { m->m_act = (struct mbuf *)1; break; } m = m->m_next; } if (len > sbspace(sb)) return (0); m = m_get(M_DONTWAIT, MT_SONAME); if (m == 0) return (0); m->m_len = sizeof (struct sockaddr); msa = mtod(m, struct sockaddr *); *msa = *asa; m->m_act = (struct mbuf *)1; sbappend(sb, m); sbappend(sb, m0); SBCHECK(sb, "sbappendaddr end"); return (1); } SBCHECK(sb, str) struct sockbuf *sb; char *str; { register int cnt = sb->sb_cc; register int mbcnt = sb->sb_mbcnt; register struct mbuf *m; for (m = sb->sb_mb; m; m = m->m_next) { cnt -= m->m_len; mbcnt -= MSIZE; if (m->m_off > MMAXOFF) mbcnt -= CLBYTES; } if (cnt || mbcnt) { printf("cnt %d mbcnt %d\n", cnt, mbcnt); panic(str); } } /* * Free all mbufs on a sockbuf mbuf chain. * Check that resource allocations return to 0. */ sbflush(sb) struct sockbuf *sb; { if (sb->sb_flags & SB_LOCK) panic("sbflush"); if (sb->sb_cc) sbdrop(sb, sb->sb_cc); if (sb->sb_cc || sb->sb_mbcnt || sb->sb_mb) panic("sbflush 2"); } /* * Drop data from (the front of) a sockbuf chain. */ sbdrop(sb, len) register struct sockbuf *sb; register int len; { register struct mbuf *m = sb->sb_mb, *mn; while (len > 0) { if (m == 0) panic("sbdrop"); if (m->m_len > len) { m->m_len -= len; m->m_off += len; sb->sb_cc -= len; break; } len -= m->m_len; sbfree(sb, m); MFREE(m, mn); m = mn; } sb->sb_mb = m; }