/* * Copyright (c) 1982, 1986, 1989 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms are permitted * provided that the above copyright notice and this paragraph are * duplicated in all such forms and that any documentation, * advertising materials, and other materials related to such * distribution and use acknowledge that the software was developed * by the University of California, Berkeley. The name of the * University may not be used to endorse or promote products derived * from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * @(#)vfs_bio.c 7.8 (Berkeley) 08/15/89 */ #include "param.h" #include "user.h" #include "buf.h" #include "vnode.h" #include "trace.h" /* * Read in (if necessary) the block and return a buffer pointer. */ bread(vp, blkno, size, bpp) struct vnode *vp; daddr_t blkno; int size; struct buf **bpp; { register struct buf *bp; if (size == 0) panic("bread: size 0"); *bpp = bp = getblk(vp, blkno, size); if (bp->b_flags&(B_DONE|B_DELWRI)) { trace(TR_BREADHIT, pack(vp->v_mount->m_fsid[0], size), blkno); return (0); } bp->b_flags |= B_READ; if (bp->b_bcount > bp->b_bufsize) panic("bread"); VOP_STRATEGY(bp); trace(TR_BREADMISS, pack(vp->v_mount->m_fsid[0], size), blkno); u.u_ru.ru_inblock++; /* pay for read */ return (biowait(bp)); } /* * Read in the block, like bread, but also start I/O on the * read-ahead block (which is not allocated to the caller) */ breada(vp, blkno, size, rablkno, rabsize, bpp) struct vnode *vp; daddr_t blkno; int size; daddr_t rablkno; int rabsize; struct buf **bpp; { register struct buf *bp, *rabp; bp = NULL; /* * If the block isn't in core, then allocate * a buffer and initiate i/o (getblk checks * for a cache hit). */ if (!incore(vp, blkno)) { *bpp = bp = getblk(vp, blkno, size); if ((bp->b_flags&(B_DONE|B_DELWRI)) == 0) { bp->b_flags |= B_READ; if (bp->b_bcount > bp->b_bufsize) panic("breada"); VOP_STRATEGY(bp); trace(TR_BREADMISS, pack(vp->v_mount->m_fsid[0], size), blkno); u.u_ru.ru_inblock++; /* pay for read */ } else trace(TR_BREADHIT, pack(vp->v_mount->m_fsid[0], size), blkno); } /* * If there's a read-ahead block, start i/o * on it also (as above). */ if (rablkno && !incore(vp, rablkno)) { rabp = getblk(vp, rablkno, rabsize); if (rabp->b_flags & (B_DONE|B_DELWRI)) { brelse(rabp); trace(TR_BREADHITRA, pack(vp->v_mount->m_fsid[0], rabsize), blkno); } else { rabp->b_flags |= B_READ|B_ASYNC; if (rabp->b_bcount > rabp->b_bufsize) panic("breadrabp"); VOP_STRATEGY(rabp); trace(TR_BREADMISSRA, pack(vp->v_mount->m_fsid[0], rabsize), rablock); u.u_ru.ru_inblock++; /* pay in advance */ } } /* * If block was in core, let bread get it. * If block wasn't in core, then the read was started * above, and just wait for it. */ if (bp == NULL) return (bread(vp, blkno, size, bpp)); return (biowait(bp)); } /* * Write the buffer, waiting for completion. * Then release the buffer. */ bwrite(bp) register struct buf *bp; { register int flag; int error; flag = bp->b_flags; bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI); if ((flag&B_DELWRI) == 0) u.u_ru.ru_oublock++; /* noone paid yet */ trace(TR_BWRITE, pack(bp->b_vp->v_mount->m_fsid[0], bp->b_bcount), bp->b_blkno); if (bp->b_bcount > bp->b_bufsize) panic("bwrite"); VOP_STRATEGY(bp); /* * If the write was synchronous, then await i/o completion. * If the write was "delayed", then we put the buffer on * the q of blocks awaiting i/o completion status. */ if ((flag&B_ASYNC) == 0) { error = biowait(bp); brelse(bp); } else if (flag & B_DELWRI) { bp->b_flags |= B_AGE; error = 0; } return (error); } /* * Release the buffer, marking it so that if it is grabbed * for another purpose it will be written out before being * given up (e.g. when writing a partial block where it is * assumed that another write for the same block will soon follow). * This can't be done for magtape, since writes must be done * in the same order as requested. */ bdwrite(bp) register struct buf *bp; { if ((bp->b_flags&B_DELWRI) == 0) u.u_ru.ru_oublock++; /* noone paid yet */ #ifdef notdef /* * This does not work for buffers associated with * vnodes that are remote - they have no dev. * Besides, we don't use bio with tapes, so rather * than develop a fix, we just ifdef this out for now. */ if (bdevsw[major(bp->b_dev)].d_flags & B_TAPE) bawrite(bp); else { bp->b_flags |= B_DELWRI | B_DONE; brelse(bp); } #endif bp->b_flags |= B_DELWRI | B_DONE; brelse(bp); } /* * Release the buffer, start I/O on it, but don't wait for completion. */ bawrite(bp) register struct buf *bp; { bp->b_flags |= B_ASYNC; (void) bwrite(bp); } /* * Release the buffer, with no I/O implied. */ brelse(bp) register struct buf *bp; { register struct buf *flist; register s; trace(TR_BRELSE, pack(bp->b_vp->v_mount->m_fsid[0], bp->b_bufsize), bp->b_blkno); /* * If someone's waiting for the buffer, or * is waiting for a buffer wake 'em up. */ if (bp->b_flags&B_WANTED) wakeup((caddr_t)bp); if (bfreelist[0].b_flags&B_WANTED) { bfreelist[0].b_flags &= ~B_WANTED; wakeup((caddr_t)bfreelist); } if (bp->b_flags & B_NOCACHE) { bp->b_flags |= B_INVAL; } if (bp->b_flags&B_ERROR) if (bp->b_flags & B_LOCKED) bp->b_flags &= ~B_ERROR; /* try again later */ else brelvp(bp); /* no assoc */ /* * Stick the buffer back on a free list. */ s = splbio(); if (bp->b_bufsize <= 0) { /* block has no buffer ... put at front of unused buffer list */ flist = &bfreelist[BQ_EMPTY]; binsheadfree(bp, flist); } else if (bp->b_flags & (B_ERROR|B_INVAL)) { /* block has no info ... put at front of most free list */ flist = &bfreelist[BQ_AGE]; binsheadfree(bp, flist); } else { if (bp->b_flags & B_LOCKED) flist = &bfreelist[BQ_LOCKED]; else if (bp->b_flags & B_AGE) flist = &bfreelist[BQ_AGE]; else flist = &bfreelist[BQ_LRU]; binstailfree(bp, flist); } bp->b_flags &= ~(B_WANTED|B_BUSY|B_ASYNC|B_AGE|B_NOCACHE); splx(s); } /* * See if the block is associated with some buffer * (mainly to avoid getting hung up on a wait in breada) */ incore(vp, blkno) struct vnode *vp; daddr_t blkno; { register struct buf *bp; register struct buf *dp; dp = BUFHASH(vp, blkno); for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) if (bp->b_blkno == blkno && bp->b_vp == vp && (bp->b_flags & B_INVAL) == 0) return (1); return (0); } baddr(vp, blkno, size, bpp) struct vnode *vp; daddr_t blkno; int size; struct buf **bpp; { if (incore(vp, blkno)) return (bread(vp, blkno, size, bpp)); *bpp = 0; return (0); } /* * Assign a buffer for the given block. If the appropriate * block is already associated, return it; otherwise search * for the oldest non-busy buffer and reassign it. * * If we find the buffer, but it is dirty (marked DELWRI) and * its size is changing, we must write it out first. When the * buffer is shrinking, the write is done by brealloc to avoid * losing the unwritten data. When the buffer is growing, the * write is done by getblk, so that bread will not read stale * disk data over the modified data in the buffer. * * We use splx here because this routine may be called * on the interrupt stack during a dump, and we don't * want to lower the ipl back to 0. */ struct buf * getblk(vp, blkno, size) register struct vnode *vp; daddr_t blkno; int size; { register struct buf *bp, *dp; int s; if (size > MAXBSIZE) panic("getblk: size too big"); /* * To prevent overflow of 32-bit ints when converting block * numbers to byte offsets, blknos > 2^32 / DEV_BSIZE are set * to the maximum number that can be converted to a byte offset * without overflow. This is historic code; what bug it fixed, * or whether it is still a reasonable thing to do is open to * dispute. mkm 9/85 */ if ((unsigned)blkno >= 1 << (sizeof(int)*NBBY-DEV_BSHIFT)) blkno = 1 << ((sizeof(int)*NBBY-DEV_BSHIFT) + 1); /* * Search the cache for the block. If we hit, but * the buffer is in use for i/o, then we wait until * the i/o has completed. */ dp = BUFHASH(vp, blkno); loop: for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) { if (bp->b_blkno != blkno || bp->b_vp != vp || bp->b_flags&B_INVAL) continue; s = splbio(); if (bp->b_flags&B_BUSY) { bp->b_flags |= B_WANTED; sleep((caddr_t)bp, PRIBIO+1); splx(s); goto loop; } splx(s); notavail(bp); if (bp->b_bcount != size) { if (bp->b_bcount < size && (bp->b_flags&B_DELWRI)) { bp->b_flags &= ~B_ASYNC; (void) bwrite(bp); goto loop; } if (brealloc(bp, size) == 0) goto loop; } if (bp->b_bcount != size && brealloc(bp, size) == 0) goto loop; bp->b_flags |= B_CACHE; return (bp); } bp = getnewbuf(); bfree(bp); bremhash(bp); if (bp->b_vp) brelvp(bp); VREF(vp); bp->b_vp = vp; bp->b_dev = vp->v_rdev; bp->b_blkno = blkno; bp->b_error = 0; bp->b_resid = 0; binshash(bp, dp); if (brealloc(bp, size) == 0) goto loop; return (bp); } /* * get an empty block, * not assigned to any particular device */ struct buf * geteblk(size) int size; { register struct buf *bp, *flist; if (size > MAXBSIZE) panic("geteblk: size too big"); loop: bp = getnewbuf(); bp->b_flags |= B_INVAL; bfree(bp); bremhash(bp); flist = &bfreelist[BQ_AGE]; brelvp(bp); bp->b_error = 0; bp->b_resid = 0; binshash(bp, flist); if (brealloc(bp, size) == 0) goto loop; return (bp); } /* * Allocate space associated with a buffer. * If can't get space, buffer is released */ brealloc(bp, size) register struct buf *bp; int size; { daddr_t start, last; register struct buf *ep; struct buf *dp; int s; /* * First need to make sure that all overlapping previous I/O * is dispatched with. */ if (size == bp->b_bcount) return (1); if (size < bp->b_bcount) { if (bp->b_flags & B_DELWRI) { (void) bwrite(bp); return (0); } if (bp->b_flags & B_LOCKED) panic("brealloc"); return (allocbuf(bp, size)); } bp->b_flags &= ~B_DONE; if (bp->b_vp == (struct vnode *)0) return (allocbuf(bp, size)); trace(TR_BREALLOC, pack(bp->b_vp->v_mount->m_fsid[0], size), bp->b_blkno); /* * Search cache for any buffers that overlap the one that we * are trying to allocate. Overlapping buffers must be marked * invalid, after being written out if they are dirty. (indicated * by B_DELWRI) A disk block must be mapped by at most one buffer * at any point in time. Care must be taken to avoid deadlocking * when two buffer are trying to get the same set of disk blocks. */ start = bp->b_blkno; last = start + btodb(size) - 1; dp = BUFHASH(bp->b_vp, bp->b_blkno); loop: for (ep = dp->b_forw; ep != dp; ep = ep->b_forw) { if (ep == bp || ep->b_vp != bp->b_vp || (ep->b_flags & B_INVAL)) continue; /* look for overlap */ if (ep->b_bcount == 0 || ep->b_blkno > last || ep->b_blkno + btodb(ep->b_bcount) <= start) continue; s = splbio(); if (ep->b_flags&B_BUSY) { ep->b_flags |= B_WANTED; sleep((caddr_t)ep, PRIBIO+1); splx(s); goto loop; } splx(s); notavail(ep); if (ep->b_flags & B_DELWRI) { (void) bwrite(ep); goto loop; } ep->b_flags |= B_INVAL; brelse(ep); } return (allocbuf(bp, size)); } /* * Find a buffer which is available for use. * Select something from a free list. * Preference is to AGE list, then LRU list. */ struct buf * getnewbuf() { register struct buf *bp, *dp; int s; loop: s = splbio(); for (dp = &bfreelist[BQ_AGE]; dp > bfreelist; dp--) if (dp->av_forw != dp) break; if (dp == bfreelist) { /* no free blocks */ dp->b_flags |= B_WANTED; sleep((caddr_t)dp, PRIBIO+1); splx(s); goto loop; } splx(s); bp = dp->av_forw; notavail(bp); if (bp->b_flags & B_DELWRI) { (void) bawrite(bp); goto loop; } trace(TR_BRELSE, pack(bp->b_vp->v_mount->m_fsid[0], bp->b_bufsize), bp->b_blkno); brelvp(bp); bp->b_flags = B_BUSY; return (bp); } /* * Wait for I/O completion on the buffer; return errors * to the user. */ biowait(bp) register struct buf *bp; { int s; s = splbio(); while ((bp->b_flags&B_DONE)==0) sleep((caddr_t)bp, PRIBIO); splx(s); /* * Pick up the device's error number and pass it to the user; * if there is an error but the number is 0 set a generalized code. */ if ((bp->b_flags & B_ERROR) == 0) return (0); if (bp->b_error) return (bp->b_error); return (EIO); } /* * Mark I/O complete on a buffer. * If someone should be called, e.g. the pageout * daemon, do so. Otherwise, wake up anyone * waiting for it. */ biodone(bp) register struct buf *bp; { if (bp->b_flags & B_DONE) panic("dup biodone"); bp->b_flags |= B_DONE; if (bp->b_flags & B_CALL) { bp->b_flags &= ~B_CALL; (*bp->b_iodone)(bp); return; } if (bp->b_flags&B_ASYNC) brelse(bp); else { bp->b_flags &= ~B_WANTED; wakeup((caddr_t)bp); } } /* * Ensure that no part of a specified block is in an incore buffer. #ifdef SECSIZE * "size" is given in device blocks (the units of b_blkno). #endif SECSIZE */ blkflush(vp, blkno, size) struct vnode *vp; daddr_t blkno; long size; { register struct buf *ep; struct buf *dp; daddr_t start, last; int s, error, allerrors = 0; start = blkno; last = start + btodb(size) - 1; dp = BUFHASH(vp, blkno); loop: for (ep = dp->b_forw; ep != dp; ep = ep->b_forw) { if (ep->b_vp != vp || (ep->b_flags & B_INVAL)) continue; /* look for overlap */ if (ep->b_bcount == 0 || ep->b_blkno > last || ep->b_blkno + btodb(ep->b_bcount) <= start) continue; s = splbio(); if (ep->b_flags&B_BUSY) { ep->b_flags |= B_WANTED; sleep((caddr_t)ep, PRIBIO+1); splx(s); goto loop; } if (ep->b_flags & B_DELWRI) { splx(s); notavail(ep); if (error = bwrite(ep)) allerrors = error; goto loop; } splx(s); } return (allerrors); } /* * Make sure all write-behind blocks associated * with vp are flushed out (from sync). */ bflush(dev) dev_t dev; { register struct buf *bp; register struct buf *flist; int s; loop: s = splbio(); for (flist = bfreelist; flist < &bfreelist[BQ_EMPTY]; flist++) for (bp = flist->av_forw; bp != flist; bp = bp->av_forw) { if ((bp->b_flags & B_DELWRI) == 0) continue; if (dev == NODEV || dev == bp->b_dev) { notavail(bp); (void) bawrite(bp); splx(s); goto loop; } } splx(s); } #ifdef unused /* * Invalidate blocks associated with vp which are on the freelist. * Make sure all write-behind blocks associated with vp are flushed out. */ binvalfree(vp) struct vnode *vp; { register struct buf *bp; register struct buf *flist; int s; loop: s = splbio(); for (flist = bfreelist; flist < &bfreelist[BQ_EMPTY]; flist++) for (bp = flist->av_forw; bp != flist; bp = bp->av_forw) { if (vp == (struct vnode *) 0 || vp == bp->b_vp) { if (bp->b_flags & B_DELWRI) { notavail(bp); (void) splx(s); (void) bawrite(bp); } else { bp->b_flags |= B_INVAL; brelvp(bp); (void) splx(s); } goto loop; } } (void) splx(s); } #endif /* unused */ /* * Invalidate in core blocks belonging to closed or umounted filesystem * * We walk through the buffer pool and invalidate any buffers for the * indicated device. Normally this routine is preceeded by a bflush * call, so that on a quiescent filesystem there will be no dirty * buffers when we are done. We return the count of dirty buffers when * we are finished. */ binval(dev) dev_t dev; { register struct buf *bp; register struct bufhd *hp; int dirty = 0; #define dp ((struct buf *)hp) for (hp = bufhash; hp < &bufhash[BUFHSZ]; hp++) { for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) { if (bp->b_dev != dev || (bp->b_flags & B_INVAL)) continue; notavail(bp); if (bp->b_flags & B_DELWRI) { (void) bawrite(bp); dirty++; continue; } bp->b_flags |= B_INVAL; brelvp(bp); brelse(bp); } } return (dirty); } brelvp(bp) struct buf *bp; { struct vnode *vp; if (bp->b_vp == (struct vnode *) 0) return; vp = bp->b_vp; bp->b_vp = (struct vnode *) 0; vrele(vp); }