/* * Copyright (c) University of British Columbia, 1984 * Copyright (C) Computer Science Department IV, * University of Erlangen-Nuremberg, Germany, 1992 * Copyright (c) 1991, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by the * Laboratory for Computation Vision and the Computer Science Department * of the the University of British Columbia and the Computer Science * Department (IV) of the University of Erlangen-Nuremberg, Germany. * * %sccs.include.redist.c% * * @(#)pk_input.c 8.1 (Berkeley) 06/10/93 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pkcb_q pkcb_q = {&pkcb_q, &pkcb_q}; /* * ccittintr() is the generic interrupt handler for HDLC, LLC2, and X.25. This * allows to have kernel running X.25 but no HDLC or LLC2 or both (in case we * employ boards that do all the stuff themselves, e.g. ADAX X.25 or TPS ISDN.) */ void ccittintr () { extern struct ifqueue pkintrq; extern struct ifqueue hdintrq; extern struct ifqueue llcintrq; #ifdef HDLC if (hdintrq.ifq_len) hdintr (); #endif #ifdef LLC if (llcintrq.ifq_len) llcintr (); #endif if (pkintrq.ifq_len) pkintr (); } struct pkcb * pk_newlink (ia, llnext) struct x25_ifaddr *ia; caddr_t llnext; { register struct x25config *xcp = &ia -> ia_xc; register struct pkcb *pkp; register struct pklcd *lcp; register struct protosw *pp; unsigned size; pp = pffindproto (AF_CCITT, (int) xcp -> xc_lproto, 0); if (pp == 0 || pp -> pr_output == 0) { pk_message (0, xcp, "link level protosw error"); return ((struct pkcb *)0); } /* * Allocate a network control block structure */ size = sizeof (struct pkcb); pkp = (struct pkcb *) malloc (size, M_PCB, M_WAITOK); if (pkp == 0) return ((struct pkcb *)0); bzero ((caddr_t) pkp, size); pkp -> pk_lloutput = pp -> pr_output; pkp -> pk_llctlinput = (caddr_t (*)()) pp -> pr_ctlinput; pkp -> pk_xcp = xcp; pkp -> pk_ia = ia; pkp -> pk_state = DTE_WAITING; pkp -> pk_llnext = llnext; insque (pkp, &pkcb_q); /* * set defaults */ if (xcp -> xc_pwsize == 0) xcp -> xc_pwsize = DEFAULT_WINDOW_SIZE; if (xcp -> xc_psize == 0) xcp -> xc_psize = X25_PS128; /* * Allocate logical channel descriptor vector */ (void) pk_resize (pkp); return (pkp); } pk_dellink (pkp) register struct pkcb *pkp; { register int i; register struct protosw *pp; /* * Essentially we have the choice to * (a) go ahead and let the route be deleted and * leave the pkcb associated with that route * as it is, i.e. the connections stay open * (b) do a pk_disconnect() on all channels associated * with the route via the pkcb and then proceed. * * For the time being we stick with (b) */ for (i = 1; i < pkp -> pk_maxlcn; ++i) if (pkp -> pk_chan[i]) pk_disconnect (pkp -> pk_chan[i]); /* * Free the pkcb */ /* * First find the protoswitch to get hold of the link level * protocol to be notified that the packet level entity is * dissolving ... */ pp = pffindproto (AF_CCITT, (int) pkp -> pk_xcp -> xc_lproto, 0); if (pp == 0 || pp -> pr_output == 0) { pk_message (0, pkp -> pk_xcp, "link level protosw error"); return (EPROTONOSUPPORT); } pkp -> pk_refcount--; if (!pkp -> pk_refcount) { struct dll_ctlinfo ctlinfo; remque (pkp); if (pkp -> pk_rt -> rt_llinfo == (caddr_t) pkp) pkp -> pk_rt -> rt_llinfo = (caddr_t) NULL; /* * Tell the link level that the pkcb is dissolving */ if (pp -> pr_ctlinput && pkp -> pk_llnext) { ctlinfo.dlcti_pcb = pkp -> pk_llnext; ctlinfo.dlcti_rt = pkp -> pk_rt; (pp -> pr_ctlinput)(PRC_DISCONNECT_REQUEST, pkp -> pk_xcp, &ctlinfo); } free ((caddr_t) pkp -> pk_chan, M_IFADDR); free ((caddr_t) pkp, M_PCB); } return (0); } pk_resize (pkp) register struct pkcb *pkp; { struct pklcd *dev_lcp = 0; struct x25config *xcp = pkp -> pk_xcp; if (pkp -> pk_chan && (pkp -> pk_maxlcn != xcp -> xc_maxlcn)) { pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION); dev_lcp = pkp -> pk_chan[0]; free ((caddr_t) pkp -> pk_chan, M_IFADDR); pkp -> pk_chan = 0; } if (pkp -> pk_chan == 0) { unsigned size; pkp -> pk_maxlcn = xcp -> xc_maxlcn; size = (pkp -> pk_maxlcn + 1) * sizeof (struct pklcd *); pkp -> pk_chan = (struct pklcd **) malloc (size, M_IFADDR, M_WAITOK); if (pkp -> pk_chan) { bzero ((caddr_t) pkp -> pk_chan, size); /* * Allocate a logical channel descriptor for lcn 0 */ if (dev_lcp == 0 && (dev_lcp = pk_attach ((struct socket *)0)) == 0) return (ENOBUFS); dev_lcp -> lcd_state = READY; dev_lcp -> lcd_pkp = pkp; pkp -> pk_chan[0] = dev_lcp; } else { if (dev_lcp) pk_close (dev_lcp); return (ENOBUFS); } } return 0; } /* * This procedure is called by the link level whenever the link * becomes operational, is reset, or when the link goes down. */ /*VARARGS*/ caddr_t pk_ctlinput (code, src, addr) struct sockaddr *src; caddr_t addr; { register struct pkcb *pkp = (struct pkcb *) addr; switch (code) { case PRC_LINKUP: if (pkp -> pk_state == DTE_WAITING) pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION); break; case PRC_LINKDOWN: pk_restart (pkp, -1); /* Clear all active circuits */ pkp -> pk_state = DTE_WAITING; break; case PRC_LINKRESET: pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION); break; case PRC_CONNECT_INDICATION: { struct rtentry *llrt; if ((llrt = rtalloc1(src, 0)) == 0) return 0; else llrt -> rt_refcnt--; pkp = (((struct npaidbentry *) llrt -> rt_llinfo) -> np_rt) ? (struct pkcb *)(((struct npaidbentry *) llrt -> rt_llinfo) -> np_rt -> rt_llinfo) : (struct pkcb *) 0; if (pkp == (struct pkcb *) 0) return 0; pkp -> pk_llnext = addr; return ((caddr_t) pkp); } case PRC_DISCONNECT_INDICATION: pk_restart (pkp, -1) ; /* Clear all active circuits */ pkp -> pk_state = DTE_WAITING; pkp -> pk_llnext = (caddr_t) 0; } return (0); } struct ifqueue pkintrq; /* * This routine is called if there are semi-smart devices that do HDLC * in hardware and want to queue the packet and call level 3 directly */ pkintr () { register struct mbuf *m; register struct ifaddr *ifa; register struct ifnet *ifp; register int s; for (;;) { s = splimp (); IF_DEQUEUE (&pkintrq, m); splx (s); if (m == 0) break; if (m -> m_len < PKHEADERLN) { printf ("pkintr: packet too short (len=%d)\n", m -> m_len); m_freem (m); continue; } pk_input (m); } } struct mbuf *pk_bad_packet; struct mbuf_cache pk_input_cache = {0 }; /* * X.25 PACKET INPUT * * This procedure is called by a link level procedure whenever * an information frame is received. It decodes the packet and * demultiplexes based on the logical channel number. * * We change the original conventions of the UBC code here -- * since there may be multiple pkcb's for a given interface * of type 802.2 class 2, we retrieve which one it is from * m_pkthdr.rcvif (which has been overwritten by lower layers); * That field is then restored for the benefit of upper layers which * may make use of it, such as CLNP. * */ #define RESTART_DTE_ORIGINATED(xp) (((xp) -> packet_cause == X25_RESTART_DTE_ORIGINATED) || \ ((xp) -> packet_cause >= X25_RESTART_DTE_ORIGINATED2)) pk_input (m) register struct mbuf *m; { register struct x25_packet *xp; register struct pklcd *lcp; register struct socket *so = 0; register struct pkcb *pkp; int ptype, lcn, lcdstate = LISTEN; if (pk_input_cache.mbc_size || pk_input_cache.mbc_oldsize) mbuf_cache (&pk_input_cache, m); if ((m -> m_flags & M_PKTHDR) == 0) panic ("pkintr"); if ((pkp = (struct pkcb *) m -> m_pkthdr.rcvif) == 0) return; xp = mtod (m, struct x25_packet *); ptype = pk_decode (xp); lcn = LCN(xp); lcp = pkp -> pk_chan[lcn]; /* * If the DTE is in Restart state, then it will ignore data, * interrupt, call setup and clearing, flow control and reset * packets. */ if (lcn < 0 || lcn > pkp -> pk_maxlcn) { pk_message (lcn, pkp -> pk_xcp, "illegal lcn"); m_freem (m); return; } pk_trace (pkp -> pk_xcp, m, "P-In"); if (pkp -> pk_state != DTE_READY && ptype != RESTART && ptype != RESTART_CONF) { m_freem (m); return; } if (lcp) { so = lcp -> lcd_so; lcdstate = lcp -> lcd_state; } else { if (ptype == CLEAR) { /* idle line probe (Datapac specific) */ /* send response on lcd 0's output queue */ lcp = pkp -> pk_chan[0]; lcp -> lcd_template = pk_template (lcn, X25_CLEAR_CONFIRM); pk_output (lcp); m_freem (m); return; } if (ptype != CALL) ptype = INVALID_PACKET; } if (lcn == 0 && ptype != RESTART && ptype != RESTART_CONF) { pk_message (0, pkp -> pk_xcp, "illegal ptype (%d, %s) on lcn 0", ptype, pk_name[ptype / MAXSTATES]); if (pk_bad_packet) m_freem (pk_bad_packet); pk_bad_packet = m; return; } m -> m_pkthdr.rcvif = pkp -> pk_ia -> ia_ifp; switch (ptype + lcdstate) { /* * Incoming Call packet received. */ case CALL + LISTEN: pk_incoming_call (pkp, m); break; /* * Call collision: Just throw this "incoming call" away since * the DCE will ignore it anyway. */ case CALL + SENT_CALL: pk_message ((int) lcn, pkp -> pk_xcp, "incoming call collision"); break; /* * Call confirmation packet received. This usually means our * previous connect request is now complete. */ case CALL_ACCEPTED + SENT_CALL: MCHTYPE(m, MT_CONTROL); pk_call_accepted (lcp, m); break; /* * This condition can only happen if the previous state was * SENT_CALL. Just ignore the packet, eventually a clear * confirmation should arrive. */ case CALL_ACCEPTED + SENT_CLEAR: break; /* * Clear packet received. This requires a complete tear down * of the virtual circuit. Free buffers and control blocks. * and send a clear confirmation. */ case CLEAR + READY: case CLEAR + RECEIVED_CALL: case CLEAR + SENT_CALL: case CLEAR + DATA_TRANSFER: lcp -> lcd_state = RECEIVED_CLEAR; lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CLEAR_CONFIRM); pk_output (lcp); pk_clearcause (pkp, xp); if (lcp -> lcd_upper) { MCHTYPE(m, MT_CONTROL); lcp -> lcd_upper (lcp, m); } pk_close (lcp); lcp = 0; break; /* * Clear collision: Treat this clear packet as a confirmation. */ case CLEAR + SENT_CLEAR: pk_close (lcp); break; /* * Clear confirmation received. This usually means the virtual * circuit is now completely removed. */ case CLEAR_CONF + SENT_CLEAR: pk_close (lcp); break; /* * A clear confirmation on an unassigned logical channel - just * ignore it. Note: All other packets on an unassigned channel * results in a clear. */ case CLEAR_CONF + READY: case CLEAR_CONF + LISTEN: break; /* * Data packet received. Pass on to next level. Move the Q and M * bits into the data portion for the next level. */ case DATA + DATA_TRANSFER: if (lcp -> lcd_reset_condition) { ptype = DELETE_PACKET; break; } /* * Process the P(S) flow control information in this Data packet. * Check that the packets arrive in the correct sequence and that * they are within the "lcd_input_window". Input window rotation is * initiated by the receive interface. */ if (PS(xp) != ((lcp -> lcd_rsn + 1) % MODULUS) || PS(xp) == ((lcp -> lcd_input_window + lcp -> lcd_windowsize) % MODULUS)) { m_freem (m); pk_procerror (RESET, lcp, "p(s) flow control error", 1); break; } lcp -> lcd_rsn = PS(xp); if (pk_ack (lcp, PR(xp)) != PACKET_OK) { m_freem (m); break; } m -> m_data += PKHEADERLN; m -> m_len -= PKHEADERLN; m -> m_pkthdr.len -= PKHEADERLN; lcp -> lcd_rxcnt++; if (lcp -> lcd_flags & X25_MBS_HOLD) { register struct mbuf *n = lcp -> lcd_cps; int mbit = MBIT(xp); octet q_and_d_bits; if (n) { n -> m_pkthdr.len += m -> m_pkthdr.len; while (n -> m_next) n = n -> m_next; n -> m_next = m; m = lcp -> lcd_cps; if (lcp -> lcd_cpsmax && n -> m_pkthdr.len > lcp -> lcd_cpsmax) { pk_procerror (RESET, lcp, "C.P.S. overflow", 128); return; } q_and_d_bits = 0xc0 & *(octet *) xp; xp = (struct x25_packet *) (mtod (m, octet *) - PKHEADERLN); *(octet *) xp |= q_and_d_bits; } if (mbit) { lcp -> lcd_cps = m; pk_flowcontrol (lcp, 0, 1); return; } lcp -> lcd_cps = 0; } if (so == 0) break; if (lcp -> lcd_flags & X25_MQBIT) { octet t = (X25GBITS(xp -> bits, q_bit)) ? t = 0x80 : 0; if (MBIT(xp)) t |= 0x40; m -> m_data -= 1; m -> m_len += 1; m -> m_pkthdr.len += 1; *mtod (m, octet *) = t; } /* * Discard Q-BIT packets if the application * doesn't want to be informed of M and Q bit status */ if (X25GBITS(xp -> bits, q_bit) && (lcp -> lcd_flags & X25_MQBIT) == 0) { m_freem (m); /* * NB. This is dangerous: sending a RR here can * cause sequence number errors if a previous data * packet has not yet been passed up to the application * (RR's are normally generated via PRU_RCVD). */ pk_flowcontrol (lcp, 0, 1); } else { sbappendrecord (&so -> so_rcv, m); sorwakeup (so); } break; /* * Interrupt packet received. */ case INTERRUPT + DATA_TRANSFER: if (lcp -> lcd_reset_condition) break; lcp -> lcd_intrdata = xp -> packet_data; lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_INTERRUPT_CONFIRM); pk_output (lcp); m -> m_data += PKHEADERLN; m -> m_len -= PKHEADERLN; m -> m_pkthdr.len -= PKHEADERLN; MCHTYPE(m, MT_OOBDATA); if (so) { if (so -> so_options & SO_OOBINLINE) sbinsertoob (&so -> so_rcv, m); else m_freem (m); sohasoutofband (so); } break; /* * Interrupt confirmation packet received. */ case INTERRUPT_CONF + DATA_TRANSFER: if (lcp -> lcd_reset_condition) break; if (lcp -> lcd_intrconf_pending == TRUE) lcp -> lcd_intrconf_pending = FALSE; else pk_procerror (RESET, lcp, "unexpected packet", 43); break; /* * Receiver ready received. Rotate the output window and output * any data packets waiting transmission. */ case RR + DATA_TRANSFER: if (lcp -> lcd_reset_condition || pk_ack (lcp, PR(xp)) != PACKET_OK) { ptype = DELETE_PACKET; break; } if (lcp -> lcd_rnr_condition == TRUE) lcp -> lcd_rnr_condition = FALSE; pk_output (lcp); break; /* * Receiver Not Ready received. Packets up to the P(R) can be * be sent. Condition is cleared with a RR. */ case RNR + DATA_TRANSFER: if (lcp -> lcd_reset_condition || pk_ack (lcp, PR(xp)) != PACKET_OK) { ptype = DELETE_PACKET; break; } lcp -> lcd_rnr_condition = TRUE; break; /* * Reset packet received. Set state to FLOW_OPEN. The Input and * Output window edges ar set to zero. Both the send and receive * numbers are reset. A confirmation is returned. */ case RESET + DATA_TRANSFER: if (lcp -> lcd_reset_condition) /* Reset collision. Just ignore packet. */ break; pk_resetcause (pkp, xp); lcp -> lcd_window_condition = lcp -> lcd_rnr_condition = lcp -> lcd_intrconf_pending = FALSE; lcp -> lcd_output_window = lcp -> lcd_input_window = lcp -> lcd_last_transmitted_pr = 0; lcp -> lcd_ssn = 0; lcp -> lcd_rsn = MODULUS - 1; lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET_CONFIRM); pk_output (lcp); pk_flush (lcp); if (so == 0) break; wakeup ((caddr_t) & so -> so_timeo); sorwakeup (so); sowwakeup (so); break; /* * Reset confirmation received. */ case RESET_CONF + DATA_TRANSFER: if (lcp -> lcd_reset_condition) { lcp -> lcd_reset_condition = FALSE; pk_output (lcp); } else pk_procerror (RESET, lcp, "unexpected packet", 32); break; case DATA + SENT_CLEAR: ptype = DELETE_PACKET; case RR + SENT_CLEAR: case RNR + SENT_CLEAR: case INTERRUPT + SENT_CLEAR: case INTERRUPT_CONF + SENT_CLEAR: case RESET + SENT_CLEAR: case RESET_CONF + SENT_CLEAR: /* Just ignore p if we have sent a CLEAR already. */ break; /* * Restart sets all the permanent virtual circuits to the "Data * Transfer" stae and all the switched virtual circuits to the * "Ready" state. */ case RESTART + READY: switch (pkp -> pk_state) { case DTE_SENT_RESTART: /* * Restart collision. * If case the restart cause is "DTE originated" we * have a DTE-DTE situation and are trying to resolve * who is going to play DTE/DCE [ISO 8208:4.2-4.5] */ if (RESTART_DTE_ORIGINATED(xp)) { pk_restart (pkp, X25_RESTART_DTE_ORIGINATED); pk_message (0, pkp -> pk_xcp, "RESTART collision"); if ((pkp -> pk_restartcolls++) > MAXRESTARTCOLLISIONS) { pk_message (0, pkp -> pk_xcp, "excessive RESTART collisions"); pkp -> pk_restartcolls = 0; } break; } pkp -> pk_state = DTE_READY; pkp -> pk_dxerole |= DTE_PLAYDTE; pkp -> pk_dxerole &= ~DTE_PLAYDCE; pk_message (0, pkp -> pk_xcp, "Packet level operational"); pk_message (0, pkp -> pk_xcp, "Assuming DTE role"); if (pkp -> pk_dxerole & DTE_CONNECTPENDING) pk_callcomplete (pkp); break; default: pk_restart (pkp, -1); pk_restartcause (pkp, xp); pkp -> pk_chan[0] -> lcd_template = pk_template (0, X25_RESTART_CONFIRM); pk_output (pkp -> pk_chan[0]); pkp -> pk_state = DTE_READY; pkp -> pk_dxerole |= RESTART_DTE_ORIGINATED(xp) ? DTE_PLAYDCE : DTE_PLAYDTE; if (pkp -> pk_dxerole & DTE_PLAYDTE) { pkp -> pk_dxerole &= ~DTE_PLAYDCE; pk_message (0, pkp -> pk_xcp, "Assuming DTE role"); } else { pkp -> pk_dxerole &= ~DTE_PLAYDTE; pk_message (0, pkp -> pk_xcp, "Assuming DCE role"); } if (pkp -> pk_dxerole & DTE_CONNECTPENDING) pk_callcomplete (pkp); } break; /* * Restart confirmation received. All logical channels are set * to READY. */ case RESTART_CONF + READY: switch (pkp -> pk_state) { case DTE_SENT_RESTART: pkp -> pk_state = DTE_READY; pkp -> pk_dxerole |= DTE_PLAYDTE; pkp -> pk_dxerole &= ~DTE_PLAYDCE; pk_message (0, pkp -> pk_xcp, "Packet level operational"); pk_message (0, pkp -> pk_xcp, "Assuming DTE role"); if (pkp -> pk_dxerole & DTE_CONNECTPENDING) pk_callcomplete (pkp); break; default: /* Restart local procedure error. */ pk_restart (pkp, X25_RESTART_LOCAL_PROCEDURE_ERROR); pkp -> pk_state = DTE_SENT_RESTART; pkp -> pk_dxerole &= ~(DTE_PLAYDTE | DTE_PLAYDCE); } break; default: if (lcp) { pk_procerror (CLEAR, lcp, "unknown packet error", 33); pk_message (lcn, pkp -> pk_xcp, "\"%s\" unexpected in \"%s\" state", pk_name[ptype/MAXSTATES], pk_state[lcdstate]); } else pk_message (lcn, pkp -> pk_xcp, "packet arrived on unassigned lcn"); break; } if (so == 0 && lcp && lcp -> lcd_upper && lcdstate == DATA_TRANSFER) { if (ptype != DATA && ptype != INTERRUPT) MCHTYPE(m, MT_CONTROL); lcp -> lcd_upper (lcp, m); } else if (ptype != DATA && ptype != INTERRUPT) m_freem (m); } static prune_dnic (from, to, dnicname, xcp) char *from, *to, *dnicname; register struct x25config *xcp; { register char *cp1 = from, *cp2 = from; if (xcp -> xc_prepnd0 && *cp1 == '0') { from = ++cp1; goto copyrest; } if (xcp -> xc_nodnic) { for (cp1 = dnicname; *cp2 = *cp1++;) cp2++; cp1 = from; } copyrest: for (cp1 = dnicname; *cp2 = *cp1++;) cp2++; } /* static */ pk_simple_bsd (from, to, lower, len) register octet *from, *to; register len, lower; { register int c; while (--len >= 0) { c = *from; if (lower & 0x01) *from++; else c >>= 4; c &= 0x0f; c |= 0x30; *to++ = c; lower++; } *to = 0; } /*static octet * */ pk_from_bcd (a, iscalling, sa, xcp) register struct x25_calladdr *a; register struct sockaddr_x25 *sa; register struct x25config *xcp; { octet buf[MAXADDRLN+1]; octet *cp; unsigned count; bzero ((caddr_t) sa, sizeof (*sa)); sa -> x25_len = sizeof (*sa); sa -> x25_family = AF_CCITT; if (iscalling) { cp = a -> address_field + (X25GBITS(a -> addrlens, called_addrlen) / 2); count = X25GBITS(a -> addrlens, calling_addrlen); pk_simple_bsd (cp, buf, X25GBITS(a -> addrlens, called_addrlen), count); } else { count = X25GBITS(a -> addrlens, called_addrlen); pk_simple_bsd (a -> address_field, buf, 0, count); } if (xcp -> xc_addr.x25_net && (xcp -> xc_nodnic || xcp -> xc_prepnd0)) { octet dnicname[sizeof (long) * NBBY/3 + 2]; sprintf ((char *) dnicname, "%d", xcp -> xc_addr.x25_net); prune_dnic ((char *) buf, sa -> x25_addr, dnicname, xcp); } else bcopy ((caddr_t) buf, (caddr_t) sa -> x25_addr, count + 1); } static save_extra (m0, fp, so) struct mbuf *m0; octet *fp; struct socket *so; { register struct mbuf *m; struct cmsghdr cmsghdr; if (m = m_copy (m, 0, (int)M_COPYALL)) { int off = fp - mtod (m0, octet *); int len = m -> m_pkthdr.len - off + sizeof (cmsghdr); cmsghdr.cmsg_len = len; cmsghdr.cmsg_level = AF_CCITT; cmsghdr.cmsg_type = PK_FACILITIES; m_adj (m, off); M_PREPEND (m, sizeof (cmsghdr), M_DONTWAIT); if (m == 0) return; bcopy ((caddr_t)&cmsghdr, mtod (m, caddr_t), sizeof (cmsghdr)); MCHTYPE(m, MT_CONTROL); sbappendrecord (&so -> so_rcv, m); } } /* * This routine handles incoming call packets. It matches the protocol * field on the Call User Data field (usually the first four bytes) with * sockets awaiting connections. */ pk_incoming_call (pkp, m0) struct mbuf *m0; struct pkcb *pkp; { register struct pklcd *lcp = 0, *l; register struct sockaddr_x25 *sa; register struct x25_calladdr *a; register struct socket *so = 0; struct x25_packet *xp = mtod (m0, struct x25_packet *); struct mbuf *m; struct x25config *xcp = pkp -> pk_xcp; int len = m0 -> m_pkthdr.len; unsigned udlen; char *errstr = "server unavailable"; octet *u, *facp; int lcn = LCN(xp); /* First, copy the data from the incoming call packet to a X25 address descriptor. It is to be regretted that you have to parse the facilities into a sockaddr to determine if reverse charging is being requested */ if ((m = m_get (M_DONTWAIT, MT_SONAME)) == 0) return; sa = mtod (m, struct sockaddr_x25 *); a = (struct x25_calladdr *) &xp -> packet_data; facp = u = (octet *) (a -> address_field + ((X25GBITS(a -> addrlens, called_addrlen) + X25GBITS(a -> addrlens, calling_addrlen) + 1) / 2)); u += *u + 1; udlen = min (16, ((octet *) xp) + len - u); if (udlen < 0) udlen = 0; pk_from_bcd (a, 1, sa, pkp -> pk_xcp); /* get calling address */ pk_parse_facilities (facp, sa); bcopy ((caddr_t) u, sa -> x25_udata, udlen); sa -> x25_udlen = udlen; /* * Now, loop through the listen sockets looking for a match on the * PID. That is the first few octets of the user data field. * This is the closest thing to a port number for X.25 packets. * It does provide a way of multiplexing services at the user level. */ for (l = pk_listenhead; l; l = l -> lcd_listen) { struct sockaddr_x25 *sxp = l -> lcd_ceaddr; if (bcmp (sxp -> x25_udata, u, sxp -> x25_udlen)) continue; if (sxp -> x25_net && sxp -> x25_net != xcp -> xc_addr.x25_net) continue; /* * don't accept incoming calls with the D-Bit on * unless the server agrees */ if (X25GBITS(xp -> bits, d_bit) && !(sxp -> x25_opts.op_flags & X25_DBIT)) { errstr = "incoming D-Bit mismatch"; break; } /* * don't accept incoming collect calls unless * the server sets the reverse charging option. */ if ((sxp -> x25_opts.op_flags & (X25_OLDSOCKADDR|X25_REVERSE_CHARGE)) == 0 && sa -> x25_opts.op_flags & X25_REVERSE_CHARGE) { errstr = "incoming collect call refused"; break; } if (l -> lcd_so) { if (so = sonewconn (l -> lcd_so, SS_ISCONNECTED)) lcp = (struct pklcd *) so -> so_pcb; } else lcp = pk_attach ((struct socket *) 0); if (lcp == 0) { /* * Insufficient space or too many unaccepted * connections. Just throw the call away. */ errstr = "server malfunction"; break; } lcp -> lcd_upper = l -> lcd_upper; lcp -> lcd_upnext = l -> lcd_upnext; lcp -> lcd_lcn = lcn; lcp -> lcd_state = RECEIVED_CALL; sa -> x25_opts.op_flags |= (sxp -> x25_opts.op_flags & ~X25_REVERSE_CHARGE) | l -> lcd_flags; pk_assoc (pkp, lcp, sa); lcp -> lcd_faddr = *sa; lcp -> lcd_laddr.x25_udlen = sxp -> x25_udlen; lcp -> lcd_craddr = &lcp -> lcd_faddr; lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL_ACCEPTED); if (lcp -> lcd_flags & X25_DBIT) { if (X25GBITS(xp -> bits, d_bit)) X25SBITS(mtod (lcp -> lcd_template, struct x25_packet *) -> bits, d_bit, 1); else lcp -> lcd_flags &= ~X25_DBIT; } if (so) { pk_output (lcp); soisconnected (so); if (so -> so_options & SO_OOBINLINE) save_extra (m0, facp, so); } else if (lcp -> lcd_upper) { (*lcp -> lcd_upper) (lcp, m0); } (void) m_free (m); return; } /* * If the call fails for whatever reason, we still need to build a * skeleton LCD in order to be able to properly receive the CLEAR * CONFIRMATION. */ #ifdef WATERLOO /* be explicit */ if (l == 0 && bcmp (sa -> x25_udata, "ean", 3) == 0) pk_message (lcn, pkp -> pk_xcp, "host=%s ean%c: %s", sa -> x25_addr, sa -> x25_udata[3] & 0xff, errstr); else if (l == 0 && bcmp (sa -> x25_udata, "\1\0\0\0", 4) == 0) pk_message (lcn, pkp -> pk_xcp, "host=%s x29d: %s", sa -> x25_addr, errstr); else #endif pk_message (lcn, pkp -> pk_xcp, "host=%s pid=%x %x %x %x: %s", sa -> x25_addr, sa -> x25_udata[0] & 0xff, sa -> x25_udata[1] & 0xff, sa -> x25_udata[2] & 0xff, sa -> x25_udata[3] & 0xff, errstr); if ((lcp = pk_attach ((struct socket *)0)) == 0) { (void) m_free (m); return; } lcp -> lcd_lcn = lcn; lcp -> lcd_state = RECEIVED_CALL; pk_assoc (pkp, lcp, sa); (void) m_free (m); pk_clear (lcp, 0, 1); } pk_call_accepted (lcp, m) struct pklcd *lcp; struct mbuf *m; { register struct x25_calladdr *ap; register octet *fcp; struct x25_packet *xp = mtod (m, struct x25_packet *); int len = m -> m_len; lcp -> lcd_state = DATA_TRANSFER; if (lcp -> lcd_so) soisconnected (lcp -> lcd_so); if ((lcp -> lcd_flags & X25_DBIT) && (X25GBITS(xp -> bits, d_bit) == 0)) lcp -> lcd_flags &= ~X25_DBIT; if (len > 3) { ap = (struct x25_calladdr *) &xp -> packet_data; fcp = (octet *) ap -> address_field + (X25GBITS(ap -> addrlens, calling_addrlen) + X25GBITS(ap -> addrlens, called_addrlen) + 1) / 2; if (fcp + *fcp <= ((octet *) xp) + len) pk_parse_facilities (fcp, lcp -> lcd_ceaddr); } pk_assoc (lcp -> lcd_pkp, lcp, lcp -> lcd_ceaddr); if (lcp -> lcd_so == 0 && lcp -> lcd_upper) lcp -> lcd_upper (lcp, m); } pk_parse_facilities (fcp, sa) register octet *fcp; register struct sockaddr_x25 *sa; { register octet *maxfcp; maxfcp = fcp + *fcp; fcp++; while (fcp < maxfcp) { /* * Ignore national DCE or DTE facilities */ if (*fcp == 0 || *fcp == 0xff) break; switch (*fcp) { case FACILITIES_WINDOWSIZE: sa -> x25_opts.op_wsize = fcp[1]; fcp += 3; break; case FACILITIES_PACKETSIZE: sa -> x25_opts.op_psize = fcp[1]; fcp += 3; break; case FACILITIES_THROUGHPUT: sa -> x25_opts.op_speed = fcp[1]; fcp += 2; break; case FACILITIES_REVERSE_CHARGE: if (fcp[1] & 01) sa -> x25_opts.op_flags |= X25_REVERSE_CHARGE; /* * Datapac specific: for a X.25(1976) DTE, bit 2 * indicates a "hi priority" (eg. international) call. */ if (fcp[1] & 02 && sa -> x25_opts.op_psize == 0) sa -> x25_opts.op_psize = X25_PS128; fcp += 2; break; default: /*printf("unknown facility %x, class=%d\n", *fcp, (*fcp & 0xc0) >> 6);*/ switch ((*fcp & 0xc0) >> 6) { case 0: /* class A */ fcp += 2; break; case 1: fcp += 3; break; case 2: fcp += 4; break; case 3: fcp++; fcp += *fcp; } } } }