/* * Copyright (c) University of British Columbia, 1984 * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Laboratory for Computation Vision and the Computer Science Department * of the University of British Columbia. * * %sccs.include.redist.c% * * @(#)pk_subr.c 7.4 (Berkeley) 05/22/90 */ #include "param.h" #include "systm.h" #include "mbuf.h" #include "socket.h" #include "protosw.h" #include "socketvar.h" #include "errno.h" #include "time.h" #include "kernel.h" #include "../net/if.h" #include "x25.h" #include "pk.h" #include "pk_var.h" #include "x25err.h" int pk_sendspace = 1024 * 2 + 8; int pk_recvspace = 1024 * 2 + 8; struct x25_packet *pk_template (); /* * Attach X.25 protocol to socket, allocate logical channel descripter * and buffer space, and enter LISTEN state if we are to accept * IN-COMMING CALL packets. * */ struct pklcd * pk_attach (so) struct socket *so; { register struct pklcd *lcp; register int error = ENOBUFS; MALLOC(lcp, struct pklcd *, sizeof(*lcp), M_PCB, M_NOWAIT); if (lcp) { bzero((caddr_t)lcp, sizeof(*lcp)); if (so) { error = soreserve (so, pk_sendspace, pk_recvspace); so -> so_snd.sb_mbmax = pk_sendspace; lcp -> lcd_so = so; if (so -> so_options & SO_ACCEPTCONN) lcp -> lcd_state = LISTEN; else lcp -> lcd_state = READY; } } if (so) { so -> so_pcb = (caddr_t) lcp; so -> so_error = error; } return (lcp); } /* * Disconnect X.25 protocol from socket. */ pk_disconnect (lcp) register struct pklcd *lcp; { register struct socket *so = lcp -> lcd_so; register struct pklcd *l, *p; switch (lcp -> lcd_state) { case LISTEN: for (p = 0, l = pk_listenhead; l && l != lcp; p = l, l = l -> lcd_listen); if (p == 0) { if (l != 0) pk_listenhead = l -> lcd_listen; } else if (l != 0) p -> lcd_listen = l -> lcd_listen; pk_close (lcp); break; case READY: pk_acct (lcp); pk_close (lcp); break; case SENT_CLEAR: case RECEIVED_CLEAR: break; default: pk_acct (lcp); if (so) { soisdisconnecting (so); sbflush (&so -> so_rcv); } pk_clear (lcp); } } /* * Close an X.25 Logical Channel. Discard all space held by the * connection and internal descriptors. Wake up any sleepers. */ pk_close (lcp) struct pklcd *lcp; { register struct socket *so = lcp -> lcd_so; pk_freelcd (lcp); if (so == NULL) return; so -> so_pcb = 0; sbflush (&so -> so_snd); sbflush (&so -> so_rcv); soisdisconnected (so); sofree (so); /* gak!!! you can't do that here */ } /* * Create a template to be used to send X.25 packets on a logical * channel. It allocates an mbuf and fills in a skeletal packet * depending on its type. This packet is passed to pk_output where * the remainer of the packet is filled in. */ struct x25_packet * pk_template (lcn, type) int lcn, type; { register struct mbuf *m; register struct x25_packet *xp; MGET (m, M_DONTWAIT, MT_HEADER); if (m == 0) panic ("pk_template"); m -> m_act = 0; /* * Efficiency hack: leave a four byte gap at the beginning * of the packet level header with the hope that this will * be enough room for the link level to insert its header. */ m -> m_data += 4; m -> m_len = PKHEADERLN; xp = mtod (m, struct x25_packet *); *(long *)xp = 0; /* ugly, but fast */ /* xp -> q_bit = 0;*/ xp -> fmt_identifier = 1; /* xp -> lc_group_number = 0;*/ xp -> logical_channel_number = lcn; xp -> packet_type = type; return (xp); } /* * This routine restarts all the virtual circuits. Actually, * the virtual circuits are not "restarted" as such. Instead, * any active switched circuit is simply returned to READY * state. */ pk_restart (pkp, restart_cause) register struct pkcb *pkp; int restart_cause; { register struct x25_packet *xp; register struct pklcd *lcp; register int i; /* Restart all logical channels. */ if (pkp->pk_chan == 0) return; for (i = 1; i <= pkp->pk_maxlcn; ++i) if ((lcp = pkp->pk_chan[i]) != NULL) { if (lcp -> lcd_so) lcp->lcd_so -> so_error = ENETRESET; pk_close (lcp); } if (restart_cause < 0) return; pkp->pk_state = DTE_SENT_RESTART; lcp = pkp->pk_chan[0]; xp = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESTART); (dtom (xp)) -> m_len++; xp -> packet_data = 0; /* DTE only */ pk_output (lcp); } /* * This procedure frees up the Logical Channel Descripter. */ pk_freelcd (lcp) register struct pklcd *lcp; { if (lcp == NULL) return; if (lcp -> lcd_template) m_freem (dtom (lcp -> lcd_template)); if (lcp -> lcd_lcn > 0) lcp -> lcd_pkp -> pk_chan[lcp -> lcd_lcn] = NULL; free((caddr_t)lcp, M_PCB); } /* * Bind a address and protocol value to a socket. The important * part is the protocol value - the first four characters of the * Call User Data field. */ pk_bind (lcp, nam) struct pklcd *lcp; struct mbuf *nam; { register struct pkcb *pkp; register struct mbuf *m; register struct pklcd *pp; register struct sockaddr_x25 *sa; if (nam == NULL) return (EADDRNOTAVAIL); if (lcp -> lcd_ceaddr) /* XXX */ return (EADDRINUSE); if (checksockaddr (nam)) return (EINVAL); sa = mtod (nam, struct sockaddr_x25 *); /* * If the user wishes to accept calls only from a particular * net (net != 0), make sure the net is known */ if (sa -> x25_net) for (pkp = pkcbhead; ; pkp = pkp -> pk_next) { if (pkp == 0) return (ENETUNREACH); if (pkp -> pk_xcp -> xc_net == sa -> x25_net) break; } for (pp = pk_listenhead; pp; pp = pp -> lcd_listen) if (bcmp (pp -> lcd_ceaddr -> x25_udata, sa -> x25_udata, min (pp->lcd_ceaddr->x25_udlen, sa->x25_udlen)) == 0) return (EADDRINUSE); lcp -> lcd_laddr = *sa; lcp -> lcd_ceaddr = &lcp -> lcd_laddr; return (0); } /* * Associate a logical channel descriptor with a network. * Fill in the default network specific parameters and then * set any parameters explicitly specified by the user or * by the remote DTE. */ pk_assoc (pkp, lcp, sa) register struct pkcb *pkp; register struct pklcd *lcp; register struct sockaddr_x25 *sa; { lcp -> lcd_pkp = pkp; lcp -> lcd_packetsize = pkp -> pk_xcp -> xc_psize; lcp -> lcd_windowsize = pkp -> pk_xcp -> xc_pwsize; lcp -> lcd_rsn = MODULUS - 1; pkp -> pk_chan[lcp -> lcd_lcn] = lcp; if (sa -> x25_opts.op_psize) lcp -> lcd_packetsize = sa -> x25_opts.op_psize; else sa -> x25_opts.op_psize = lcp -> lcd_packetsize; if (sa -> x25_opts.op_wsize) lcp -> lcd_windowsize = sa -> x25_opts.op_wsize; else sa -> x25_opts.op_wsize = lcp -> lcd_windowsize; sa -> x25_net = pkp -> pk_xcp -> xc_net; lcp -> lcd_flags = sa -> x25_opts.op_flags; lcp -> lcd_stime = time.tv_sec; } pk_connect (lcp, nam, sa) register struct pklcd *lcp; register struct sockaddr_x25 *sa; struct mbuf *nam; { register struct pkcb *pkp; register struct mbuf *m; register struct ifnet *ifp; if (sa == 0) { if (checksockaddr (nam)) return (EINVAL); sa = mtod (nam, struct sockaddr_x25 *); } if (sa -> x25_addr[0] == '\0') return (EDESTADDRREQ); if (lcp->lcd_pkp == 0) for (pkp = pkcbhead; ; pkp = pkp->pk_next) { if (pkp == 0) return (ENETUNREACH); /* * use first net configured (last in list * headed by pkcbhead) if net is zero */ if (sa -> x25_net == 0 && pkp -> pk_next == 0) break; if (sa -> x25_net == pkp -> pk_xcp -> xc_net) break; } if (pkp -> pk_state != DTE_READY) return (ENETDOWN); if ((lcp -> lcd_lcn = pk_getlcn (pkp)) == 0) return (EMFILE); lcp -> lcd_faddr = *sa; lcp -> lcd_ceaddr = & lcp->lcd_faddr; pk_assoc (pkp, lcp, lcp -> lcd_ceaddr); if (lcp -> so) soisconnecting (lcp -> lcd_so); lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL); pk_callrequest (lcp, lcp -> lcd_ceaddr, pkp -> pk_xcp); return (*pkp -> pk_start)(lcp); } /* * Build the rest of the CALL REQUEST packet. Fill in calling * address, facilities fields and the user data field. */ pk_callrequest (lcp, sa, xcp) struct pklcd *lcp; register struct sockaddr_x25 *sa; register struct x25config *xcp; { register struct x25_calladdr *a; register struct mbuf *m = dtom (lcp -> lcd_template); unsigned posn = 0; octet *cp; char addr[sizeof (xcp -> xc_ntn) * 2]; a = (struct x25_calladdr *) &lcp -> lcd_template -> packet_data; a -> calling_addrlen = xcp -> xc_ntnlen; cp = (octet *) xcp -> xc_ntn; from_bcd (addr, &cp, xcp -> xc_ntnlen); a -> called_addrlen = strlen (sa -> x25_addr); cp = (octet *) a -> address_field; to_bcd (&cp, (int)a -> called_addrlen, sa -> x25_addr, &posn); to_bcd (&cp, (int)a -> calling_addrlen, addr, &posn); if (posn & 0x01) *cp++ &= 0xf0; build_facilities (&cp, sa, (int)xcp -> xc_type); bcopy (sa -> x25_udata, (caddr_t)cp, (unsigned)sa -> x25_udlen); cp += sa -> x25_udlen; m -> m_len += cp - (octet *) a; #ifdef ANDREW printf ("call: "); for (cp = mtod (m, octet *), posn = 0; posn < m->m_len; ++posn) printf ("%x ", *cp++); printf ("\n"); #endif } build_facilities (cp, sa, type) register octet **cp; struct sockaddr_x25 *sa; { register octet *fcp; register int revcharge; fcp = *cp + 1; revcharge = sa -> x25_opts.op_flags & X25_REVERSE_CHARGE ? 1 : 0; /* * This is specific to Datapac X.25(1976) DTEs. International * calls must have the "hi priority" bit on. */ if (type == X25_1976 && sa -> x25_opts.op_psize == X25_PS128) revcharge |= 02; if (revcharge) { *fcp++ = FACILITIES_REVERSE_CHARGE; *fcp++ = revcharge; } switch (type) { case X25_1980: case X25_1984: *fcp++ = FACILITIES_PACKETSIZE; *fcp++ = sa -> x25_opts.op_psize; *fcp++ = sa -> x25_opts.op_psize; *fcp++ = FACILITIES_WINDOWSIZE; *fcp++ = sa -> x25_opts.op_wsize; *fcp++ = sa -> x25_opts.op_wsize; } **cp = fcp - *cp - 1; *cp = fcp; } to_bcd (a, len, x, posn) register octet **a; register char *x; register int len; register unsigned *posn; { while (--len >= 0) if ((*posn)++ & 0x01) *(*a)++ |= *x++ & 0x0F; else **a = *x++ << 4; } /* * This routine gets the first available logical channel number. The * search is from the highest number to lowest number (DTE). */ pk_getlcn (pkp) register struct pkcb *pkp; { register int i; if (pkp->pk_chan == 0) return (0); for (i = pkp -> pk_maxlcn; i > 0; --i) if (pkp -> pk_chan[i] == NULL) break; return (i); } static checksockaddr (m) struct mbuf *m; { register struct sockaddr_x25 *sa = mtod (m, struct sockaddr_x25 *); register char *cp; if (m -> m_len != sizeof (struct sockaddr_x25)) return (1); if (sa -> x25_family != AF_CCITT || sa -> x25_udlen == 0 || sa -> x25_udlen > sizeof (sa -> x25_udata)) return (1); for (cp = sa -> x25_addr; *cp; cp++) { if (*cp < '0' || *cp > '9' || cp >= &sa -> x25_addr[sizeof (sa -> x25_addr) - 1]) return (1); } return (0); } /* * This procedure sends a CLEAR request packet. The lc state is * set to "SENT_CLEAR". */ pk_clear (lcp) struct pklcd *lcp; { register struct x25_packet *xp; xp = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CLEAR); (dtom (xp)) -> m_len++; xp -> packet_data = 0; pk_output (lcp); } /* * This procedure sends a RESET request packet. It re-intializes * virtual circuit. */ static pk_reset (lcp) register struct pklcd *lcp; { register struct x25_packet *xp; register struct socket *so; if (lcp -> lcd_state != DATA_TRANSFER) return; lcp -> lcd_reset_condition = TRUE; /* Reset all the control variables for the channel. */ lcp -> lcd_window_condition = lcp -> lcd_rnr_condition = lcp -> lcd_intrconf_pending = FALSE; lcp -> lcd_rsn = MODULUS - 1; lcp -> lcd_ssn = 0; lcp -> lcd_output_window = lcp -> lcd_input_window = lcp -> lcd_last_transmitted_pr = 0; if (so = lcp -> lcd_so) { so -> so_error = ECONNRESET; sbflush (&so -> so_rcv); sbflush (&so -> so_snd); } xp = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET); (dtom (xp)) -> m_len += 2; xp -> packet_data = 0; pk_output (lcp); } /* * This procedure handles all local protocol procedure errors. */ pk_procerror (error, lcp, errstr) register struct pklcd *lcp; char *errstr; { pk_message (lcp -> lcd_lcn, lcp -> lcd_pkp -> pk_xcp, errstr); switch (error) { case CLEAR: if (lcp->lcd_so) { lcp->lcd_so -> so_error = ECONNABORTED; soisdisconnecting (lcp->lcd_so); } pk_clear (lcp); break; case RESET: pk_reset (lcp); } } /* * This procedure is called during the DATA TRANSFER state to check * and process the P(R) values received in the DATA, RR OR RNR * packets. */ pk_ack (lcp, pr) struct pklcd *lcp; unsigned pr; { register struct socket *so = lcp -> lcd_so; if (lcp -> lcd_output_window == pr) return (PACKET_OK); if (lcp -> lcd_output_window < lcp -> lcd_ssn) { if (pr < lcp -> lcd_output_window || pr > lcp -> lcd_ssn) { pk_procerror (RESET, lcp, "p(r) flow control error"); return (ERROR_PACKET); } } else { if (pr < lcp -> lcd_output_window && pr > lcp -> lcd_ssn) { pk_procerror (RESET, lcp, "p(r) flow control error"); return (ERROR_PACKET); } } lcp -> lcd_output_window = pr; /* Rotate window. */ if (lcp -> lcd_window_condition == TRUE) lcp -> lcd_window_condition = FALSE; if (so && ((so -> so_snd.sb_flags & SB_WAIT) || so -> so_snd.sb_sel)) sowwakeup (so); if (lcp -> lcd_downq.pq_unblock) (*lcp -> lcd_downq.pq_unblock)(lcp); return (PACKET_OK); } /* * This procedure decodes the X.25 level 3 packet returning a * code to be used in switchs or arrays. */ pk_decode (xp) register struct x25_packet *xp; { register int type; if (xp -> fmt_identifier != 1) return (INVALID_PACKET); /* * Make sure that the logical channel group number is 0. * This restriction may be removed at some later date. */ if (xp -> lc_group_number != 0) return (INVALID_PACKET); /* * Test for data packet first. */ if (!(xp -> packet_type & DATA_PACKET_DESIGNATOR)) return (DATA); /* * Test if flow control packet (RR or RNR). */ if (!(xp -> packet_type & RR_OR_RNR_PACKET_DESIGNATOR)) if (!(xp -> packet_type & RR_PACKET_DESIGNATOR)) return (RR); else return (RNR); /* * Determine the rest of the packet types. */ switch (xp -> packet_type) { case X25_CALL: type = CALL; break; case X25_CALL_ACCEPTED: type = CALL_ACCEPTED; break; case X25_CLEAR: type = CLEAR; break; case X25_CLEAR_CONFIRM: type = CLEAR_CONF; break; case X25_INTERRUPT: type = INTERRUPT; break; case X25_INTERRUPT_CONFIRM: type = INTERRUPT_CONF; break; case X25_RESET: type = RESET; break; case X25_RESET_CONFIRM: type = RESET_CONF; break; case X25_RESTART: type = RESTART; break; case X25_RESTART_CONFIRM: type = RESTART_CONF; break; default: type = INVALID_PACKET; } return (type); } /* * A restart packet has been received. Print out the reason * for the restart. */ pk_restartcause (pkp, xp) struct pkcb *pkp; register struct x25_packet *xp; { register struct x25config *xcp = pkp -> pk_xcp; register int lcn = xp -> logical_channel_number; switch (xp -> packet_data) { case X25_RESTART_LOCAL_PROCEDURE_ERROR: pk_message (lcn, xcp, "restart: local procedure error"); break; case X25_RESTART_NETWORK_CONGESTION: pk_message (lcn, xcp, "restart: network congestion"); break; case X25_RESTART_NETWORK_OPERATIONAL: pk_message (lcn, xcp, "restart: network operational"); break; default: pk_message (lcn, xcp, "restart: unknown cause"); } } #define MAXRESETCAUSE 7 int Reset_cause[] = { EXRESET, EXROUT, 0, EXRRPE, 0, EXRLPE, 0, EXRNCG }; /* * A reset packet has arrived. Return the cause to the user. */ pk_resetcause (pkp, xp) struct pkcb *pkp; register struct x25_packet *xp; { register struct pklcd *lcp = pkp->pk_chan[xp -> logical_channel_number]; register int code = xp -> packet_data; if (code > MAXRESETCAUSE) code = 7; /* EXRNCG */ lcp->lcd_so -> so_error = Reset_cause[code]; } #define MAXCLEARCAUSE 25 int Clear_cause[] = { EXCLEAR, EXCBUSY, 0, EXCINV, 0, EXCNCG, 0, 0, 0, EXCOUT, 0, EXCAB, 0, EXCNOB, 0, 0, 0, EXCRPE, 0, EXCLPE, 0, 0, 0, 0, 0, EXCRRC }; /* * A clear packet has arrived. Return the cause to the user. */ pk_clearcause (pkp, xp) struct pkcb *pkp; register struct x25_packet *xp; { register struct pklcd *lcp = pkp->pk_chan[xp -> logical_channel_number]; register int code = xp -> packet_data; if (code > MAXCLEARCAUSE) code = 5; /* EXRNCG */ lcp->lcd_so -> so_error = Clear_cause[code]; } char * format_ntn (xcp) register struct x25config *xcp; { register int i; register char *src, *dest; static char ntn[12]; src = xcp->xc_ntn; dest = ntn; for (i = 0; i < xcp->xc_ntnlen / 2; i++) { *dest++ = ((*src & 0xf0) >> 4) + '0'; *dest++ = (*src++ & 0xf) + '0'; } if (xcp->xc_ntnlen & 01) dest[-1] = 0; else *dest = 0; return (ntn); } /* VARARGS1 */ pk_message (lcn, xcp, fmt, a1, a2, a3, a4, a5, a6) struct x25config *xcp; char *fmt; { if (lcn) if (pkcbhead -> pk_next) printf ("X.25(%s): lcn %d: ", format_ntn (xcp), lcn); else printf ("X.25: lcn %d: ", lcn); else if (pkcbhead -> pk_next) printf ("X.25(%s): ", format_ntn (xcp)); else printf ("X.25: "); printf (fmt, a1, a2, a3, a4, a5, a6); printf ("\n"); }