/*- * Copyright (c) 1992 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Ralph Campbell and Rick Macklem. * * %sccs.include.redist.c% * * @(#)if_le.c 7.11 (Berkeley) 05/29/93 */ #include #if NLE > 0 #include /* * AMD 7990 LANCE * * This driver will generate and accept trailer encapsulated packets even * though it buys us nothing. The motivation was to avoid incompatibilities * with VAXen, SUNs, and others that handle and benefit from them. * This reasoning is dubious. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if defined (CCITT) && defined (LLC) #include #include extern llc_ctlinput(), cons_rtrequest(); #endif #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #include #endif int leprobe(); void leintr(); struct driver ledriver = { "le", leprobe, 0, 0, leintr, }; int ledebug = 1; /* console error messages */ /* * Ethernet software status per interface. * * Each interface is referenced by a network interface structure, * le_if, which the routing code uses to locate the interface. * This structure contains the output queue for the interface, its address, ... */ struct le_softc { struct arpcom sc_ac; /* common Ethernet structures */ #define sc_if sc_ac.ac_if /* network-visible interface */ #define sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */ volatile struct lereg1 *sc_r1; /* LANCE registers */ volatile void *sc_r2; /* dual-port RAM */ int sc_ler2pad; /* Do ring descriptors require short pads? */ void (*sc_copytobuf)(); /* Copy to buffer */ void (*sc_copyfrombuf)(); /* Copy from buffer */ void (*sc_zerobuf)(); /* and Zero bytes in buffer */ int sc_rmd; /* predicted next rmd to process */ int sc_tmd; /* last tmd processed */ int sc_tmdnext; /* next tmd to transmit with */ /* stats */ int sc_runt; int sc_merr; int sc_babl; int sc_cerr; int sc_miss; int sc_rown; int sc_xint; int sc_uflo; int sc_rxlen; int sc_rxoff; int sc_txoff; int sc_busy; short sc_iflags; } le_softc[NLE]; /* access LANCE registers */ static void lewritereg(); #define LERDWR(cntl, src, dst) { (dst) = (src); DELAY(10); } #define LEWREG(src, dst) lewritereg(&(dst), (src)) #define CPU_TO_CHIP_ADDR(cpu) \ ((unsigned)(&(((struct lereg2 *)0)->cpu))) #define LE_OFFSET_RAM 0x0 #define LE_OFFSET_LANCE 0x100000 #define LE_OFFSET_ROM 0x1c0000 void copytobuf_contig(), copyfrombuf_contig(), bzerobuf_contig(); void copytobuf_gap2(), copyfrombuf_gap2(), bzerobuf_gap2(); void copytobuf_gap16(), copyfrombuf_gap16(), bzerobuf_gap16(); extern int pmax_boardtype; extern u_long le_iomem; extern u_long asic_base; /* * Test to see if device is present. * Return true if found and initialized ok. * If interface exists, make available by filling in network interface * record. System will initialize the interface when it is ready * to accept packets. */ leprobe(dp) struct pmax_ctlr *dp; { volatile struct lereg1 *ler1; struct le_softc *le = &le_softc[dp->pmax_unit]; struct ifnet *ifp = &le->sc_if; u_char *cp; int i; extern int leinit(), lereset(), leioctl(), lestart(), ether_output(); switch (pmax_boardtype) { case DS_PMAX: le->sc_r1 = ler1 = (volatile struct lereg1 *)dp->pmax_addr; le->sc_r2 = (volatile void *)MACH_PHYS_TO_UNCACHED(0x19000000); cp = (u_char *)(MACH_PHYS_TO_UNCACHED(KN01_SYS_CLOCK) + 1); le->sc_ler2pad = 1; le->sc_copytobuf = copytobuf_gap2; le->sc_copyfrombuf = copyfrombuf_gap2; le->sc_zerobuf = bzerobuf_gap2; break; case DS_3MIN: case DS_MAXINE: case DS_3MAXPLUS: if (dp->pmax_unit == 0) { volatile u_int *ssr, *ldp; le->sc_r1 = ler1 = (volatile struct lereg1 *) ASIC_SYS_LANCE(asic_base); cp = (u_char *)ASIC_SYS_ETHER_ADDRESS(asic_base); le->sc_r2 = (volatile void *) MACH_PHYS_TO_UNCACHED(le_iomem); le->sc_ler2pad = 1; le->sc_copytobuf = copytobuf_gap16; le->sc_copyfrombuf = copyfrombuf_gap16; le->sc_zerobuf = bzerobuf_gap16; /* * And enable Lance dma through the asic. */ ssr = (volatile u_int *)ASIC_REG_CSR(asic_base); ldp = (volatile u_int *) ASIC_REG_LANCE_DMAPTR(asic_base); *ldp = (le_iomem << 3); /* phys addr << 3 */ *ssr |= ASIC_CSR_DMAEN_LANCE; break; } /* * Units other than 0 are turbochannel option boards and fall * through to DS_3MAX. */ case DS_3MAX: le->sc_r1 = ler1 = (volatile struct lereg1 *) (dp->pmax_addr + LE_OFFSET_LANCE); le->sc_r2 = (volatile void *)(dp->pmax_addr + LE_OFFSET_RAM); cp = (u_char *)(dp->pmax_addr + LE_OFFSET_ROM + 2); le->sc_ler2pad = 0; le->sc_copytobuf = copytobuf_contig; le->sc_copyfrombuf = copyfrombuf_contig; le->sc_zerobuf = bzerobuf_contig; break; default: printf("Unknown CPU board type %d\n", pmax_boardtype); return (0); }; /* * Get the ethernet address out of rom */ for (i = 0; i < sizeof(le->sc_addr); i++) { le->sc_addr[i] = *cp; cp += 4; } /* make sure the chip is stopped */ LEWREG(LE_CSR0, ler1->ler1_rap); LEWREG(LE_STOP, ler1->ler1_rdp); ifp->if_unit = dp->pmax_unit; ifp->if_name = "le"; ifp->if_mtu = ETHERMTU; ifp->if_init = leinit; ifp->if_reset = lereset; ifp->if_ioctl = leioctl; ifp->if_output = ether_output; ifp->if_start = lestart; #ifdef MULTICAST ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; #else ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX; #endif #if NBPFILTER > 0 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif if_attach(ifp); printf("le%d at nexus0 csr 0x%x priority %d ethernet address %s\n", dp->pmax_unit, dp->pmax_addr, dp->pmax_pri, ether_sprintf(le->sc_addr)); return (1); } #ifdef MULTICAST /* * Setup the logical address filter */ void lesetladrf(le) register struct le_softc *le; { register volatile struct lereg2 *ler2 = le->sc_r2; register struct ifnet *ifp = &le->sc_if; register struct ether_multi *enm; register u_char *cp; register u_long crc; register u_long c; register int i, len; struct ether_multistep step; /* * Set up multicast address filter by passing all multicast * addresses through a crc generator, and then using the high * order 6 bits as a index into the 64 bit logical address * filter. The high order two bits select the word, while the * rest of the bits select the bit within the word. */ LER2_ladrf0(ler2, 0); LER2_ladrf1(ler2, 0); ifp->if_flags &= ~IFF_ALLMULTI; ETHER_FIRST_MULTI(step, &le->sc_ac, enm); while (enm != NULL) { if (bcmp((caddr_t)&enm->enm_addrlo, (caddr_t)&enm->enm_addrhi, sizeof(enm->enm_addrlo)) == 0) { /* * We must listen to a range of multicast * addresses. For now, just accept all * multicasts, rather than trying to set only * those filter bits needed to match the range. * (At this time, the only use of address * ranges is for IP multicast routing, for * which the range is big enough to require all * bits set.) */ LER2_ladrf0(ler2, 0xff); LER2_ladrf1(ler2, 0xff); LER2_ladrf2(ler2, 0xff); LER2_ladrf3(ler2, 0xff); ifp->if_flags |= IFF_ALLMULTI; return; } cp = (unsigned char *)&enm->enm_addrlo; c = *cp; crc = 0xffffffff; len = 6; while (len-- > 0) { c = *cp; for (i = 0; i < 8; i++) { if ((c & 0x01) ^ (crc & 0x01)) { crc >>= 1; crc = crc ^ 0xedb88320; } else crc >>= 1; c >>= 1; } cp++; } /* Just want the 6 most significant bits. */ crc = crc >> 26; /* Turn on the corresponding bit in the filter. */ switch (crc >> 5) { case 0: LER2_ladrf0(ler2, 1 << (crc & 0x1f)); break; case 1: LER2_ladrf1(ler2, 1 << (crc & 0x1f)); break; case 2: LER2_ladrf2(ler2, 1 << (crc & 0x1f)); break; case 3: LER2_ladrf3(ler2, 1 << (crc & 0x1f)); } ETHER_NEXT_MULTI(step, enm); } } #endif ledrinit(le) struct le_softc *le; { register volatile void *rp; register int i; for (i = 0; i < LERBUF; i++) { rp = LER2_RMDADDR(le->sc_r2, i); LER2_rmd0(rp, CPU_TO_CHIP_ADDR(ler2_rbuf[i][0])); LER2_rmd1(rp, LE_OWN); LER2_rmd2(rp, -LEMTU); LER2_rmd3(rp, 0); } for (i = 0; i < LETBUF; i++) { rp = LER2_TMDADDR(le->sc_r2, i); LER2_tmd0(rp, CPU_TO_CHIP_ADDR(ler2_tbuf[i][0])); LER2_tmd1(rp, 0); LER2_tmd2(rp, 0); LER2_tmd3(rp, 0); } } lereset(unit) register int unit; { register struct le_softc *le = &le_softc[unit]; register volatile struct lereg1 *ler1 = le->sc_r1; register volatile void *ler2 = le->sc_r2; register int timo = 100000; register int stat; #ifdef lint stat = unit; #endif LEWREG(LE_CSR0, ler1->ler1_rap); LEWREG(LE_STOP, ler1->ler1_rdp); /* * Setup for transmit/receive */ #if NBPFILTER > 0 if (le->sc_if.if_flags & IFF_PROMISC) /* set the promiscuous bit */ LER2_mode(ler2, LE_MODE | 0x8000); else #endif LER2_mode(ler2, LE_MODE); LER2_padr0(ler2, (le->sc_addr[1] << 8) | le->sc_addr[0]); LER2_padr1(ler2, (le->sc_addr[3] << 8) | le->sc_addr[2]); LER2_padr2(ler2, (le->sc_addr[5] << 8) | le->sc_addr[4]); /* Setup the logical address filter */ #ifdef MULTICAST lesetladrf(le); #else LER2_ladrf0(ler2, 0); LER2_ladrf1(ler2, 0); LER2_ladrf2(ler2, 0); LER2_ladrf3(ler2, 0); #endif LER2_rlen(ler2, LE_RLEN); LER2_rdra(ler2, CPU_TO_CHIP_ADDR(ler2_rmd[0])); LER2_tlen(ler2, LE_TLEN); LER2_tdra(ler2, CPU_TO_CHIP_ADDR(ler2_tmd[0])); ledrinit(le); le->sc_rmd = 0; le->sc_tmd = LETBUF - 1; le->sc_tmdnext = 0; LEWREG(LE_CSR1, ler1->ler1_rap); LEWREG(CPU_TO_CHIP_ADDR(ler2_mode), ler1->ler1_rdp); LEWREG(LE_CSR2, ler1->ler1_rap); LEWREG(0, ler1->ler1_rdp); LEWREG(LE_CSR3, ler1->ler1_rap); LEWREG(0, ler1->ler1_rdp); LEWREG(LE_CSR0, ler1->ler1_rap); LERDWR(ler0, LE_INIT, ler1->ler1_rdp); do { if (--timo == 0) { printf("le%d: init timeout, stat = 0x%x\n", unit, stat); break; } stat = ler1->ler1_rdp; } while ((stat & LE_IDON) == 0); LERDWR(ler0, LE_IDON, ler1->ler1_rdp); LERDWR(ler0, LE_STRT | LE_INEA, ler1->ler1_rdp); le->sc_if.if_flags &= ~IFF_OACTIVE; } /* * Initialization of interface */ leinit(unit) int unit; { register struct ifnet *ifp = &le_softc[unit].sc_if; register struct ifaddr *ifa; int s; /* not yet, if address still unknown */ for (ifa = ifp->if_addrlist;; ifa = ifa->ifa_next) if (ifa == 0) return; else if (ifa->ifa_addr && ifa->ifa_addr->sa_family != AF_LINK) break; if ((ifp->if_flags & IFF_RUNNING) == 0) { s = splnet(); ifp->if_flags |= IFF_RUNNING; lereset(unit); (void) lestart(ifp); splx(s); } } #define LENEXTTMP \ if (++bix == LETBUF) \ bix = 0; \ tmd = LER2_TMDADDR(le->sc_r2, bix) /* * Start output on interface. Get another datagram to send * off of the interface queue, and copy it to the interface * before starting the output. */ lestart(ifp) struct ifnet *ifp; { register struct le_softc *le = &le_softc[ifp->if_unit]; register int bix = le->sc_tmdnext; register volatile void *tmd = LER2_TMDADDR(le->sc_r2, bix); register struct mbuf *m; int len = 0; if ((le->sc_if.if_flags & IFF_RUNNING) == 0) return (0); while (bix != le->sc_tmd) { if (LER2V_tmd1(tmd) & LE_OWN) panic("lestart"); IF_DEQUEUE(&le->sc_if.if_snd, m); if (m == 0) break; len = leput(le, LER2_TBUFADDR(le->sc_r2, bix), m); #if NBPFILTER > 0 /* * If bpf is listening on this interface, let it * see the packet before we commit it to the wire. */ if (ifp->if_bpf) bpf_tap(ifp->if_bpf, LER2_TBUFADDR(le->sc_r2, le->sc_tmd), len); #endif LER2_tmd3(tmd, 0); LER2_tmd2(tmd, -len); LER2_tmd1(tmd, LE_OWN | LE_STP | LE_ENP); LENEXTTMP; } if (len != 0) { le->sc_if.if_flags |= IFF_OACTIVE; LERDWR(ler0, LE_TDMD | LE_INEA, le->sc_r1->ler1_rdp); } le->sc_tmdnext = bix; return (0); } /* * Process interrupts from the 7990 chip. */ void leintr(unit) int unit; { register struct le_softc *le; register volatile struct lereg1 *ler1; register int stat; le = &le_softc[unit]; ler1 = le->sc_r1; stat = ler1->ler1_rdp; if (!(stat & LE_INTR)) { printf("le%d: spurrious interrupt\n", unit); return; } if (stat & LE_SERR) { leerror(unit, stat); if (stat & LE_MERR) { le->sc_merr++; lereset(unit); return; } if (stat & LE_BABL) le->sc_babl++; if (stat & LE_CERR) le->sc_cerr++; if (stat & LE_MISS) le->sc_miss++; LERDWR(ler0, LE_BABL|LE_CERR|LE_MISS|LE_INEA, ler1->ler1_rdp); } if ((stat & LE_RXON) == 0) { le->sc_rxoff++; lereset(unit); return; } if ((stat & LE_TXON) == 0) { le->sc_txoff++; lereset(unit); return; } if (stat & LE_RINT) { /* interrupt is cleared in lerint */ lerint(unit); } if (stat & LE_TINT) { LERDWR(ler0, LE_TINT|LE_INEA, ler1->ler1_rdp); lexint(unit); } } /* * Ethernet interface transmitter interrupt. * Start another output if more data to send. */ lexint(unit) register int unit; { register struct le_softc *le = &le_softc[unit]; register int bix = le->sc_tmd; register volatile void *tmd; if ((le->sc_if.if_flags & IFF_OACTIVE) == 0) { le->sc_xint++; return; } LENEXTTMP; while (bix != le->sc_tmdnext && (LER2V_tmd1(tmd) & LE_OWN) == 0) { le->sc_tmd = bix; if ((LER2V_tmd1(tmd) & LE_ERR) || (LER2V_tmd3(tmd) & LE_TBUFF)) { lexerror(unit); le->sc_if.if_oerrors++; if (LER2V_tmd3(tmd) & (LE_TBUFF|LE_UFLO)) { le->sc_uflo++; lereset(unit); break; } else if (LER2V_tmd3(tmd) & LE_LCOL) le->sc_if.if_collisions++; else if (LER2V_tmd3(tmd) & LE_RTRY) le->sc_if.if_collisions += 16; } else if (LER2V_tmd1(tmd) & LE_ONE) le->sc_if.if_collisions++; else if (LER2V_tmd1(tmd) & LE_MORE) /* what is the real number? */ le->sc_if.if_collisions += 2; else le->sc_if.if_opackets++; LENEXTTMP; } if (bix == le->sc_tmdnext) le->sc_if.if_flags &= ~IFF_OACTIVE; (void) lestart(&le->sc_if); } #define LENEXTRMP \ if (++bix == LERBUF) \ bix = 0; \ rmd = LER2_RMDADDR(le->sc_r2, bix) /* * Ethernet interface receiver interrupt. * If input error just drop packet. * Decapsulate packet based on type and pass to type specific * higher-level input routine. */ lerint(unit) int unit; { register struct le_softc *le = &le_softc[unit]; register int bix = le->sc_rmd; register volatile void *rmd = LER2_RMDADDR(le->sc_r2, bix); /* * Out of sync with hardware, should never happen? */ if (LER2V_rmd1(rmd) & LE_OWN) { le->sc_rown++; LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp); return; } /* * Process all buffers with valid data */ while ((LER2V_rmd1(rmd) & LE_OWN) == 0) { int len = LER2V_rmd3(rmd); /* Clear interrupt to avoid race condition */ LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp); if (LER2V_rmd1(rmd) & LE_ERR) { le->sc_rmd = bix; lererror(unit, "bad packet"); le->sc_if.if_ierrors++; } else if ((LER2V_rmd1(rmd) & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP)) { /* * Find the end of the packet so we can see how long * it was. We still throw it away. */ do { LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp); LER2_rmd3(rmd, 0); LER2_rmd1(rmd, LE_OWN); LENEXTRMP; } while (!(LER2V_rmd1(rmd) & (LE_OWN|LE_ERR|LE_STP|LE_ENP))); le->sc_rmd = bix; lererror(unit, "chained buffer"); le->sc_rxlen++; /* * If search terminated without successful completion * we reset the hardware (conservative). */ if ((LER2V_rmd1(rmd) & (LE_OWN|LE_ERR|LE_STP|LE_ENP)) != LE_ENP) { lereset(unit); return; } } else leread(unit, LER2_RBUFADDR(le->sc_r2, bix), len); LER2_rmd3(rmd, 0); LER2_rmd1(rmd, LE_OWN); LENEXTRMP; } MachEmptyWriteBuffer(); /* Paranoia */ le->sc_rmd = bix; } /* * Look at the packet in network buffer memory so we can be smart about how * we copy the data into mbufs. * This needs work since we can't just read network buffer memory like * regular memory. */ leread(unit, buf, len) int unit; volatile void *buf; int len; { register struct le_softc *le = &le_softc[unit]; struct ether_header et; struct mbuf *m, **hdrmp, **tailmp; int off, resid, flags; u_short sbuf[2], eth_type; extern struct mbuf *leget(); le->sc_if.if_ipackets++; (*le->sc_copyfrombuf)(buf, 0, (char *)&et, sizeof (et)); eth_type = ntohs(et.ether_type); /* adjust input length to account for header and CRC */ len = len - sizeof(struct ether_header) - 4; if (eth_type >= ETHERTYPE_TRAIL && eth_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { off = (eth_type - ETHERTYPE_TRAIL) * 512; if (off >= ETHERMTU) return; /* sanity */ (*le->sc_copyfrombuf)(buf, sizeof (et) + off, (char *)sbuf, sizeof (sbuf)); eth_type = ntohs(sbuf[0]); resid = ntohs(sbuf[1]); if (off + resid > len) return; /* sanity */ len = off + resid; } else off = 0; if (len <= 0) { if (ledebug) log(LOG_WARNING, "le%d: ierror(runt packet): from %s: len=%d\n", unit, ether_sprintf(et.ether_shost), len); le->sc_runt++; le->sc_if.if_ierrors++; return; } flags = 0; if (bcmp((caddr_t)etherbroadcastaddr, (caddr_t)et.ether_dhost, sizeof(etherbroadcastaddr)) == 0) flags |= M_BCAST; if (et.ether_dhost[0] & 1) flags |= M_MCAST; #if NBPFILTER > 0 /* * Check if there's a bpf filter listening on this interface. * If so, hand off the raw packet to enet. */ if (le->sc_if.if_bpf) { bpf_tap(le->sc_if.if_bpf, buf, len + sizeof(struct ether_header)); /* * Keep the packet if it's a broadcast or has our * physical ethernet address (or if we support * multicast and it's one). */ if ( #ifdef MULTICAST (flags & (M_BCAST | M_MCAST)) == 0 && #else (flags & M_BCAST) == 0 && #endif bcmp(et.ether_dhost, le->sc_addr, sizeof(et.ether_dhost)) != 0) return; } #endif /* * Pull packet off interface. Off is nonzero if packet * has trailing header; leget will then force this header * information to be at the front, but we still have to drop * the type and length which are at the front of any trailer data. * The hdrmp and tailmp pointers are used by lebpf_tap() to * temporarily reorder the mbuf list. See the comment at the beginning * of lebpf_tap() for all the ugly details. */ m = leget(le, buf, len, off, &le->sc_if, &hdrmp, &tailmp); if (m == 0) return; m->m_flags |= flags; et.ether_type = eth_type; ether_input(&le->sc_if, &et, m); } /* * Routine to copy from mbuf chain to transmit buffer in * network buffer memory. */ leput(le, lebuf, m) struct le_softc *le; register volatile void *lebuf; register struct mbuf *m; { register struct mbuf *mp; register int len, tlen = 0; register int boff = 0; for (mp = m; mp; mp = mp->m_next) { len = mp->m_len; if (len == 0) continue; (*le->sc_copytobuf)(mtod(mp, char *), lebuf, boff, len); tlen += len; boff += len; } m_freem(m); if (tlen < LEMINSIZE) { (*le->sc_zerobuf)(lebuf, boff, LEMINSIZE - tlen); tlen = LEMINSIZE; } return(tlen); } /* * Routine to copy from network buffer memory into mbufs. */ struct mbuf * leget(le, lebuf, totlen, off, ifp, hdrmp, tailmp) struct le_softc *le; volatile void *lebuf; int totlen, off; struct ifnet *ifp; struct mbuf ***hdrmp, ***tailmp; { register struct mbuf *m; struct mbuf *top = 0, **mp = ⊤ register int len, resid, boff; /* NOTE: sizeof(struct ether_header) should be even */ boff = sizeof(struct ether_header); if (off) { /* NOTE: off should be even */ boff += off + 2 * sizeof(u_short); totlen -= 2 * sizeof(u_short); resid = totlen - off; } else resid = totlen; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return (0); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = totlen; m->m_len = MHLEN; while (totlen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) { m_freem(top); return (0); } m->m_len = MLEN; } if (resid >= MINCLSIZE) MCLGET(m, M_DONTWAIT); if (m->m_flags & M_EXT) m->m_len = min(resid, MCLBYTES); else if (resid < m->m_len) { /* * Place initial small packet/header at end of mbuf. */ if (top == 0 && resid + max_linkhdr <= m->m_len) m->m_data += max_linkhdr; m->m_len = resid; } len = m->m_len; (*le->sc_copyfrombuf)(lebuf, boff, mtod(m, char *), len); boff += len; *mp = m; mp = &m->m_next; totlen -= len; resid -= len; if (resid == 0) { boff = sizeof (struct ether_header); resid = totlen; *hdrmp = mp; } } *tailmp = mp; return (top); } /* * Process an ioctl request. */ leioctl(ifp, cmd, data) register struct ifnet *ifp; int cmd; caddr_t data; { register struct ifaddr *ifa = (struct ifaddr *)data; struct le_softc *le = &le_softc[ifp->if_unit]; volatile struct lereg1 *ler1 = le->sc_r1; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: leinit(ifp->if_unit); /* before arpwhohas */ ((struct arpcom *)ifp)->ac_ipaddr = IA_SIN(ifa)->sin_addr; arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr); break; #endif #ifdef NS case AF_NS: { register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)(le->sc_addr); else { /* * The manual says we can't change the address * while the receiver is armed, * so reset everything */ ifp->if_flags &= ~IFF_RUNNING; LEWREG(LE_STOP, ler1->ler1_rdp); bcopy((caddr_t)ina->x_host.c_host, (caddr_t)le->sc_addr, sizeof(le->sc_addr)); } leinit(ifp->if_unit); /* does le_setaddr() */ break; } #endif default: leinit(ifp->if_unit); break; } break; #if defined (CCITT) && defined (LLC) case SIOCSIFCONF_X25: ifp->if_flags |= IFF_UP; ifa->ifa_rtrequest = cons_rtrequest; error = x25_llcglue(PRC_IFUP, ifa->ifa_addr); if (error == 0) leinit(ifp->if_unit); break; #endif /* CCITT && LLC */ case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) { LEWREG(LE_STOP, ler1->ler1_rdp); ifp->if_flags &= ~IFF_RUNNING; } else if (ifp->if_flags & IFF_UP && (ifp->if_flags & IFF_RUNNING) == 0) leinit(ifp->if_unit); /* * If the state of the promiscuous bit changes, the interface * must be reset to effect the change. */ if (((ifp->if_flags ^ le->sc_iflags) & IFF_PROMISC) && (ifp->if_flags & IFF_RUNNING)) { le->sc_iflags = ifp->if_flags; lereset(ifp->if_unit); lestart(ifp); } break; #ifdef MULTICAST case SIOCADDMULTI: case SIOCDELMULTI: /* Update our multicast list */ error = (cmd == SIOCADDMULTI) ? ether_addmulti((struct ifreq *)data, &le->sc_ac) : ether_delmulti((struct ifreq *)data, &le->sc_ac); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ lereset(ifp->if_unit); error = 0; } break; #endif default: error = EINVAL; } splx(s); return (error); } leerror(unit, stat) int unit; int stat; { if (!ledebug) return; /* * Not all transceivers implement heartbeat * so we only log CERR once. */ if ((stat & LE_CERR) && le_softc[unit].sc_cerr) return; log(LOG_WARNING, "le%d: error: stat=%b\n", unit, stat, "\20\20ERR\17BABL\16CERR\15MISS\14MERR\13RINT\12TINT\11IDON\10INTR\07INEA\06RXON\05TXON\04TDMD\03STOP\02STRT\01INIT"); } lererror(unit, msg) int unit; char *msg; { register struct le_softc *le = &le_softc[unit]; register volatile void *rmd; u_char eaddr[6]; int len; if (!ledebug) return; rmd = LER2_RMDADDR(le->sc_r2, le->sc_rmd); len = LER2V_rmd3(rmd); if (len > 11) (*le->sc_copyfrombuf)(LER2_RBUFADDR(le->sc_r2, le->sc_rmd), 6, eaddr, 6); log(LOG_WARNING, "le%d: ierror(%s): from %s: buf=%d, len=%d, rmd1=%b\n", unit, msg, len > 11 ? ether_sprintf(eaddr) : "unknown", le->sc_rmd, len, LER2V_rmd1(rmd), "\20\20OWN\17ERR\16FRAM\15OFLO\14CRC\13RBUF\12STP\11ENP"); } lexerror(unit) int unit; { register struct le_softc *le = &le_softc[unit]; register volatile void *tmd; u_char eaddr[6]; int len; if (!ledebug) return; tmd = LER2_TMDADDR(le->sc_r2, 0); len = -LER2V_tmd2(tmd); if (len > 5) (*le->sc_copyfrombuf)(LER2_TBUFADDR(le->sc_r2, 0), 0, eaddr, 6); log(LOG_WARNING, "le%d: oerror: to %s: buf=%d, len=%d, tmd1=%b, tmd3=%b\n", unit, len > 5 ? ether_sprintf(eaddr) : "unknown", 0, len, LER2V_tmd1(tmd), "\20\20OWN\17ERR\16RES\15MORE\14ONE\13DEF\12STP\11ENP", LER2V_tmd3(tmd), "\20\20BUFF\17UFLO\16RES\15LCOL\14LCAR\13RTRY"); } /* * Write a lance register port, reading it back to ensure success. This seems * to be necessary during initialization, since the chip appears to be a bit * pokey sometimes. */ static void lewritereg(regptr, val) register volatile u_short *regptr; register u_short val; { register int i = 0; while (*regptr != val) { *regptr = val; MachEmptyWriteBuffer(); if (++i > 10000) { printf("le: Reg did not settle (to x%x): x%x\n", val, *regptr); return; } DELAY(100); } } /* * Routines for accessing the transmit and receive buffers. Unfortunately, * CPU addressing of these buffers is done in one of 3 ways: * - contiguous (for the 3max and turbochannel option card) * - gap2, which means shorts (2 bytes) interspersed with short (2 byte) * spaces (for the pmax) * - gap16, which means 16bytes interspersed with 16byte spaces * for buffers which must begin on a 32byte boundary (for 3min and maxine) * The buffer offset is the logical byte offset, assuming contiguous storage. */ void copytobuf_contig(from, lebuf, boff, len) char *from; volatile void *lebuf; int boff; int len; { /* * Just call bcopy() to do the work. */ bcopy(from, ((char *)lebuf) + boff, len); } void copyfrombuf_contig(lebuf, boff, to, len) volatile void *lebuf; int boff; char *to; int len; { /* * Just call bcopy() to do the work. */ bcopy(((char *)lebuf) + boff, to, len); } void bzerobuf_contig(lebuf, boff, len) volatile void *lebuf; int boff; int len; { /* * Just let bzero() do the work */ bzero(((char *)lebuf) + boff, len); } /* * For the pmax the buffer consists of shorts (2 bytes) interspersed with * short (2 byte) spaces and must be accessed with halfword load/stores. * (don't worry about doing an extra byte) */ void copytobuf_gap2(from, lebuf, boff, len) register char *from; volatile void *lebuf; int boff; register int len; { register volatile u_short *bptr; register int xfer; if (boff & 0x1) { /* handle unaligned first byte */ bptr = ((volatile u_short *)lebuf) + (boff - 1); *bptr = (*from++ << 8) | (*bptr & 0xff); bptr += 2; len--; } else bptr = ((volatile u_short *)lebuf) + boff; if ((unsigned)from & 0x1) { while (len > 1) { *bptr = (from[1] << 8) | from[0]; bptr += 2; from += 2; len -= 2; } } else { /* optimize for aligned transfers */ xfer = (int)((unsigned)len & ~0x1); CopyToBuffer((u_short *)from, bptr, xfer); bptr += xfer; from += xfer; len -= xfer; } if (len == 1) *bptr = (u_short)*from; } void copyfrombuf_gap2(lebuf, boff, to, len) volatile void *lebuf; int boff; register char *to; register int len; { register volatile u_short *bptr; register u_short tmp; register int xfer; if (boff & 0x1) { /* handle unaligned first byte */ bptr = ((volatile u_short *)lebuf) + (boff - 1); *to++ = (*bptr >> 8) & 0xff; bptr += 2; len--; } else bptr = ((volatile u_short *)lebuf) + boff; if ((unsigned)to & 0x1) { while (len > 1) { tmp = *bptr; *to++ = tmp & 0xff; *to++ = (tmp >> 8) & 0xff; bptr += 2; len -= 2; } } else { /* optimize for aligned transfers */ xfer = (int)((unsigned)len & ~0x1); CopyFromBuffer(bptr, to, xfer); bptr += xfer; to += xfer; len -= xfer; } if (len == 1) *to = *bptr & 0xff; } void bzerobuf_gap2(lebuf, boff, len) volatile void *lebuf; int boff; int len; { register volatile u_short *bptr; if ((unsigned)boff & 0x1) { bptr = ((volatile u_short *)lebuf) + (boff - 1); *bptr &= 0xff; bptr += 2; len--; } else bptr = ((volatile u_short *)lebuf) + boff; while (len > 0) { *bptr = 0; bptr += 2; len -= 2; } } /* * For the 3min and maxine, the buffers are in main memory filled in with * 16byte blocks interspersed with 16byte spaces. */ void copytobuf_gap16(from, lebuf, boff, len) register char *from; volatile void *lebuf; int boff; register int len; { register char *bptr; register int xfer; bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f); boff &= 0xf; xfer = min(len, 16 - boff); while (len > 0) { bcopy(from, ((char *)bptr) + boff, xfer); from += xfer; bptr += 32; boff = 0; len -= xfer; xfer = min(len, 16); } } void copyfrombuf_gap16(lebuf, boff, to, len) volatile void *lebuf; int boff; register char *to; register int len; { register char *bptr; register int xfer; bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f); boff &= 0xf; xfer = min(len, 16 - boff); while (len > 0) { bcopy(((char *)bptr) + boff, to, xfer); to += xfer; bptr += 32; boff = 0; len -= xfer; xfer = min(len, 16); } } void bzerobuf_gap16(lebuf, boff, len) volatile void *lebuf; int boff; register int len; { register char *bptr; register int xfer; bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f); boff &= 0xf; xfer = min(len, 16 - boff); while (len > 0) { bzero(((char *)bptr) + boff, xfer); bptr += 32; boff = 0; len -= xfer; xfer = min(len, 16); } } #endif /* NLE */