/* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Van Jacobson of Lawrence Berkeley Laboratory and Ralph Campbell. * * %sccs.include.redist.c% * * @(#)rz.c 8.1 (Berkeley) 07/29/93 */ /* * SCSI CCS (Command Command Set) disk driver. * NOTE: The name was changed from "sd" to "rz" for DEC naming compatibility. * I guess I can't avoid confusion someplace. */ #include "rz.h" #if NRZ > 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int splbio(); extern void splx(); extern int physio(); int rzprobe(); void rzstrategy(), rzstart(), rzdone(); struct driver rzdriver = { "rz", rzprobe, rzstart, rzdone, }; struct size { u_long strtblk; u_long nblocks; }; /* * Since the SCSI standard tends to hide the disk structure, we define * partitions in terms of DEV_BSIZE blocks. The default partition table * (for an unlabeled disk) reserves 8K for a boot area, has an 8 meg * root and 32 meg of swap. The rest of the space on the drive goes in * the G partition. As usual, the C partition covers the entire disk * (including the boot area). */ static struct size rzdefaultpart[MAXPARTITIONS] = { 0, 16384, /* A */ 16384, 65536, /* B */ 0, 0, /* C */ 17408, 0, /* D */ 115712, 0, /* E */ 218112, 0, /* F */ 81920, 0, /* G */ 115712, 0, /* H */ }; #define RAWPART 2 /* 'c' partition */ /* XXX */ struct rzstats { long rzresets; long rztransfers; long rzpartials; }; struct rz_softc { struct scsi_device *sc_sd; /* physical unit info */ pid_t sc_format_pid; /* process using "format" mode */ u_long sc_openpart; /* partitions open */ u_long sc_bopenpart; /* block partitions open */ u_long sc_copenpart; /* character partitions open */ short sc_flags; /* see below */ short sc_type; /* drive type from INQUIRY cmd */ u_int sc_blks; /* number of blocks on device */ int sc_blksize; /* device block size in bytes */ int sc_bshift; /* convert device blocks to DEV_BSIZE */ u_int sc_wpms; /* average xfer rate in 16bit wds/sec */ struct disklabel sc_label; /* disk label for this disk */ struct rzstats sc_stats; /* statisic counts */ struct buf sc_tab; /* queue of pending operations */ struct buf sc_buf; /* buf for doing I/O */ struct buf sc_errbuf; /* buf for doing REQUEST_SENSE */ struct ScsiCmd sc_cmd; /* command for controller */ ScsiGroup1Cmd sc_rwcmd; /* SCSI cmd if not in "format" mode */ struct scsi_fmt_cdb sc_cdb; /* SCSI cmd if in "format" mode */ struct scsi_fmt_sense sc_sense; /* sense data from last cmd */ } rz_softc[NRZ]; /* sc_flags values */ #define RZF_ALIVE 0x01 /* drive found and ready */ #define RZF_SENSEINPROGRESS 0x02 /* REQUEST_SENSE command in progress */ #define RZF_HAVELABEL 0x04 /* valid label found on disk */ #define RZF_WLABEL 0x08 /* label is writeable */ #ifdef DEBUG int rzdebug = 3; #define RZB_ERROR 0x01 #define RZB_PARTIAL 0x02 #define RZB_PRLABEL 0x04 #endif #define rzunit(x) (minor(x) >> 3) #define rzpart(x) (minor(x) & 0x7) #define b_cylin b_resid /* * Table of scsi commands users are allowed to access via "format" mode. * 0 means not legal. * 1 means legal. */ static char legal_cmds[256] = { /***** 0 1 2 3 4 5 6 7 8 9 A B C D E F */ /*00*/ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*10*/ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, /*20*/ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*30*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*40*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*50*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*60*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*70*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*80*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*90*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*a0*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*b0*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*c0*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*d0*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*e0*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*f0*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; /* * Test to see if device is present. * Return true if found and initialized ok. */ rzprobe(sd) register struct scsi_device *sd; { register struct rz_softc *sc = &rz_softc[sd->sd_unit]; register int tries, i; ScsiInquiryData inqbuf; u_char capbuf[8]; ScsiClass7Sense *sp; /* init some parameters that don't change */ sc->sc_sd = sd; sc->sc_cmd.sd = sd; sc->sc_cmd.unit = sd->sd_unit; sc->sc_rwcmd.unitNumber = sd->sd_slave; /* try to find out what type of device this is */ sc->sc_format_pid = 1; /* force use of sc_cdb */ sc->sc_cdb.len = sizeof(ScsiGroup0Cmd); scsiGroup0Cmd(SCSI_INQUIRY, sd->sd_slave, 0, sizeof(inqbuf), (ScsiGroup0Cmd *)sc->sc_cdb.cdb); sc->sc_buf.b_flags = B_BUSY | B_PHYS | B_READ; sc->sc_buf.b_bcount = sizeof(inqbuf); sc->sc_buf.b_un.b_addr = (caddr_t)&inqbuf; sc->sc_buf.b_actf = (struct buf *)0; sc->sc_tab.b_actf = &sc->sc_buf; rzstart(sd->sd_unit); if (biowait(&sc->sc_buf) || (i = sizeof(inqbuf) - sc->sc_buf.b_resid) < 5) goto bad; switch (inqbuf.type) { case SCSI_DISK_TYPE: /* disk */ case SCSI_WORM_TYPE: /* WORM */ case SCSI_ROM_TYPE: /* CD-ROM */ case SCSI_OPTICAL_MEM_TYPE: /* Magneto-optical */ break; default: /* not a disk */ goto bad; } sc->sc_type = inqbuf.type; /* see if device is ready */ for (tries = 10; ; ) { sc->sc_cdb.len = sizeof(ScsiGroup0Cmd); scsiGroup0Cmd(SCSI_TEST_UNIT_READY, sd->sd_slave, 0, 0, (ScsiGroup0Cmd *)sc->sc_cdb.cdb); sc->sc_buf.b_flags = B_BUSY | B_PHYS | B_READ; sc->sc_buf.b_bcount = 0; sc->sc_buf.b_un.b_addr = (caddr_t)0; sc->sc_buf.b_actf = (struct buf *)0; sc->sc_tab.b_actf = &sc->sc_buf; sc->sc_cmd.cmd = sc->sc_cdb.cdb; sc->sc_cmd.cmdlen = sc->sc_cdb.len; sc->sc_cmd.buf = (caddr_t)0; sc->sc_cmd.buflen = 0; /* setup synchronous data transfers if the device supports it */ if (tries == 10 && (inqbuf.flags & SCSI_SYNC)) sc->sc_cmd.flags = SCSICMD_USE_SYNC; else sc->sc_cmd.flags = 0; (*sc->sc_sd->sd_cdriver->d_start)(&sc->sc_cmd); if (!biowait(&sc->sc_buf)) break; if (--tries < 0) goto bad; if (!(sc->sc_sense.status & SCSI_STATUS_CHECKCOND)) goto again; sp = (ScsiClass7Sense *)sc->sc_sense.sense; if (sp->error7 != 0x70) goto again; if (sp->key == SCSI_CLASS7_UNIT_ATTN && tries != 9) { /* drive recalibrating, give it a while */ DELAY(1000000); continue; } if (sp->key == SCSI_CLASS7_NOT_READY) { ScsiStartStopCmd *cp; /* try to spin-up disk with start/stop command */ sc->sc_cdb.len = sizeof(ScsiGroup0Cmd); cp = (ScsiStartStopCmd *)sc->sc_cdb.cdb; cp->command = SCSI_START_STOP; cp->unitNumber = sd->sd_slave; cp->immed = 0; cp->loadEject = 0; cp->start = 1; cp->pad1 = 0; cp->pad2 = 0; cp->pad3 = 0; cp->pad4 = 0; cp->control = 0; sc->sc_buf.b_flags = B_BUSY | B_PHYS | B_READ; sc->sc_buf.b_bcount = 0; sc->sc_buf.b_un.b_addr = (caddr_t)0; sc->sc_buf.b_actf = (struct buf *)0; sc->sc_tab.b_actf = &sc->sc_buf; rzstart(sd->sd_unit); if (biowait(&sc->sc_buf)) goto bad; continue; } again: DELAY(1000); } /* find out how big a disk this is */ sc->sc_cdb.len = sizeof(ScsiGroup1Cmd); scsiGroup1Cmd(SCSI_READ_CAPACITY, sd->sd_slave, 0, 0, (ScsiGroup1Cmd *)sc->sc_cdb.cdb); sc->sc_buf.b_flags = B_BUSY | B_PHYS | B_READ; sc->sc_buf.b_bcount = sizeof(capbuf); sc->sc_buf.b_un.b_addr = (caddr_t)capbuf; sc->sc_buf.b_actf = (struct buf *)0; sc->sc_tab.b_actf = &sc->sc_buf; rzstart(sd->sd_unit); if (biowait(&sc->sc_buf) || sc->sc_buf.b_resid != 0) goto bad; sc->sc_blks = ((capbuf[0] << 24) | (capbuf[1] << 16) | (capbuf[2] << 8) | capbuf[3]) + 1; sc->sc_blksize = (capbuf[4] << 24) | (capbuf[5] << 16) | (capbuf[6] << 8) | capbuf[7]; printf("rz%d at %s%d drive %d slave %d", sd->sd_unit, sd->sd_cdriver->d_name, sd->sd_ctlr, sd->sd_drive, sd->sd_slave); if (inqbuf.version > 1 || i < 36) printf(" type 0x%x, qual 0x%x, ver %d", inqbuf.type, inqbuf.qualifier, inqbuf.version); else { char vid[9], pid[17], revl[5]; bcopy((caddr_t)inqbuf.vendorID, (caddr_t)vid, 8); bcopy((caddr_t)inqbuf.productID, (caddr_t)pid, 16); bcopy((caddr_t)inqbuf.revLevel, (caddr_t)revl, 4); for (i = 8; --i > 0; ) if (vid[i] != ' ') break; vid[i+1] = 0; for (i = 16; --i > 0; ) if (pid[i] != ' ') break; pid[i+1] = 0; for (i = 4; --i > 0; ) if (revl[i] != ' ') break; revl[i+1] = 0; printf(" %s %s rev %s", vid, pid, revl); } printf(", %d %d byte blocks\n", sc->sc_blks, sc->sc_blksize); if (sc->sc_blksize != DEV_BSIZE) { if (sc->sc_blksize < DEV_BSIZE) { printf("rz%d: need %d byte blocks - drive ignored\n", sd->sd_unit, DEV_BSIZE); goto bad; } for (i = sc->sc_blksize; i > DEV_BSIZE; i >>= 1) ++sc->sc_bshift; sc->sc_blks <<= sc->sc_bshift; } sc->sc_wpms = 32 * (60 * DEV_BSIZE / 2); /* XXX */ sc->sc_format_pid = 0; sc->sc_flags = RZF_ALIVE; sc->sc_buf.b_flags = 0; return (1); bad: /* doesn't exist or not a CCS device */ sc->sc_format_pid = 0; sc->sc_buf.b_flags = 0; return (0); } /* * This routine is called for partial block transfers and non-aligned * transfers (the latter only being possible on devices with a block size * larger than DEV_BSIZE). The operation is performed in three steps * using a locally allocated buffer: * 1. transfer any initial partial block * 2. transfer full blocks * 3. transfer any final partial block */ static void rzlblkstrat(bp, bsize) register struct buf *bp; register int bsize; { register struct buf *cbp; caddr_t cbuf; register int bn, resid; register caddr_t addr; cbp = (struct buf *)malloc(sizeof(struct buf), M_DEVBUF, M_WAITOK); cbuf = (caddr_t)malloc(bsize, M_DEVBUF, M_WAITOK); bzero((caddr_t)cbp, sizeof(*cbp)); cbp->b_proc = curproc; cbp->b_dev = bp->b_dev; bn = bp->b_blkno; resid = bp->b_bcount; addr = bp->b_un.b_addr; #ifdef DEBUG if (rzdebug & RZB_PARTIAL) printf("rzlblkstrat: bp %x flags %x bn %x resid %x addr %x\n", bp, bp->b_flags, bn, resid, addr); #endif while (resid > 0) { register int boff = dbtob(bn) & (bsize - 1); register int count; if (boff || resid < bsize) { rz_softc[rzunit(bp->b_dev)].sc_stats.rzpartials++; count = min(resid, bsize - boff); cbp->b_flags = B_BUSY | B_PHYS | B_READ; cbp->b_blkno = bn - btodb(boff); cbp->b_un.b_addr = cbuf; cbp->b_bcount = bsize; #ifdef DEBUG if (rzdebug & RZB_PARTIAL) printf(" readahead: bn %x cnt %x off %x addr %x\n", cbp->b_blkno, count, boff, addr); #endif rzstrategy(cbp); biowait(cbp); if (cbp->b_flags & B_ERROR) { bp->b_flags |= B_ERROR; bp->b_error = cbp->b_error; break; } if (bp->b_flags & B_READ) { bcopy(&cbuf[boff], addr, count); goto done; } bcopy(addr, &cbuf[boff], count); #ifdef DEBUG if (rzdebug & RZB_PARTIAL) printf(" writeback: bn %x cnt %x off %x addr %x\n", cbp->b_blkno, count, boff, addr); #endif } else { count = resid & ~(bsize - 1); cbp->b_blkno = bn; cbp->b_un.b_addr = addr; cbp->b_bcount = count; #ifdef DEBUG if (rzdebug & RZB_PARTIAL) printf(" fulltrans: bn %x cnt %x addr %x\n", cbp->b_blkno, count, addr); #endif } cbp->b_flags = B_BUSY | B_PHYS | (bp->b_flags & B_READ); rzstrategy(cbp); biowait(cbp); if (cbp->b_flags & B_ERROR) { bp->b_flags |= B_ERROR; bp->b_error = cbp->b_error; break; } done: bn += btodb(count); resid -= count; addr += count; #ifdef DEBUG if (rzdebug & RZB_PARTIAL) printf(" done: bn %x resid %x addr %x\n", bn, resid, addr); #endif } free(cbuf, M_DEVBUF); free(cbp, M_DEVBUF); } void rzstrategy(bp) register struct buf *bp; { register int unit = rzunit(bp->b_dev); register int part = rzpart(bp->b_dev); register struct rz_softc *sc = &rz_softc[unit]; register struct partition *pp = &sc->sc_label.d_partitions[part]; register daddr_t bn; register long sz, s; if (sc->sc_format_pid) { if (sc->sc_format_pid != curproc->p_pid) { bp->b_error = EPERM; goto bad; } bp->b_cylin = 0; } else { bn = bp->b_blkno; sz = howmany(bp->b_bcount, DEV_BSIZE); if ((unsigned)bn + sz > pp->p_size) { sz = pp->p_size - bn; /* if exactly at end of disk, return an EOF */ if (sz == 0) { bp->b_resid = bp->b_bcount; goto done; } /* if none of it fits, error */ if (sz < 0) { bp->b_error = EINVAL; goto bad; } /* otherwise, truncate */ bp->b_bcount = dbtob(sz); } /* check for write to write protected label */ if (bn + pp->p_offset <= LABELSECTOR && #if LABELSECTOR != 0 bn + pp->p_offset + sz > LABELSECTOR && #endif !(bp->b_flags & B_READ) && !(sc->sc_flags & RZF_WLABEL)) { bp->b_error = EROFS; goto bad; } /* * Non-aligned or partial-block transfers handled specially. */ s = sc->sc_blksize - 1; if ((dbtob(bn) & s) || (bp->b_bcount & s)) { rzlblkstrat(bp, sc->sc_blksize); goto done; } bp->b_cylin = (bn + pp->p_offset) >> sc->sc_bshift; } /* don't let disksort() see sc_errbuf */ while (sc->sc_flags & RZF_SENSEINPROGRESS) printf("SENSE\n"); /* XXX */ s = splbio(); disksort(&sc->sc_tab, bp); if (sc->sc_tab.b_active == 0) { sc->sc_tab.b_active = 1; rzstart(unit); } splx(s); return; bad: bp->b_flags |= B_ERROR; done: biodone(bp); } void rzstart(unit) int unit; { register struct rz_softc *sc = &rz_softc[unit]; register struct buf *bp = sc->sc_tab.b_actf; register int n; sc->sc_cmd.buf = bp->b_un.b_addr; sc->sc_cmd.buflen = bp->b_bcount; if (sc->sc_format_pid || (sc->sc_flags & RZF_SENSEINPROGRESS)) { sc->sc_cmd.flags = !(bp->b_flags & B_READ) ? SCSICMD_DATA_TO_DEVICE : 0; sc->sc_cmd.cmd = sc->sc_cdb.cdb; sc->sc_cmd.cmdlen = sc->sc_cdb.len; } else { if (bp->b_flags & B_READ) { sc->sc_cmd.flags = 0; sc->sc_rwcmd.command = SCSI_READ_EXT; } else { sc->sc_cmd.flags = SCSICMD_DATA_TO_DEVICE; sc->sc_rwcmd.command = SCSI_WRITE_EXT; } sc->sc_cmd.cmd = (u_char *)&sc->sc_rwcmd; sc->sc_cmd.cmdlen = sizeof(sc->sc_rwcmd); n = bp->b_cylin; sc->sc_rwcmd.highAddr = n >> 24; sc->sc_rwcmd.midHighAddr = n >> 16; sc->sc_rwcmd.midLowAddr = n >> 8; sc->sc_rwcmd.lowAddr = n; n = howmany(bp->b_bcount, sc->sc_blksize); sc->sc_rwcmd.highBlockCount = n >> 8; sc->sc_rwcmd.lowBlockCount = n; #ifdef DEBUG if ((bp->b_bcount & (sc->sc_blksize - 1)) != 0) printf("rz%d: partial block xfer -- %x bytes\n", unit, bp->b_bcount); #endif sc->sc_stats.rztransfers++; if ((n = sc->sc_sd->sd_dk) >= 0) { dk_busy |= 1 << n; ++dk_seek[n]; ++dk_xfer[n]; dk_wds[n] += bp->b_bcount >> 6; } } /* tell controller to start this command */ (*sc->sc_sd->sd_cdriver->d_start)(&sc->sc_cmd); } /* * This is called by the controller driver when the command is done. */ void rzdone(unit, error, resid, status) register int unit; int error; /* error number from errno.h */ int resid; /* amount not transfered */ int status; /* SCSI status byte */ { register struct rz_softc *sc = &rz_softc[unit]; register struct buf *bp = sc->sc_tab.b_actf; register struct scsi_device *sd = sc->sc_sd; extern int cold; if (bp == NULL) { printf("rz%d: bp == NULL\n", unit); return; } if (sd->sd_dk >= 0) dk_busy &= ~(1 << sd->sd_dk); if (sc->sc_flags & RZF_SENSEINPROGRESS) { sc->sc_flags &= ~RZF_SENSEINPROGRESS; sc->sc_tab.b_actf = bp = bp->b_actf; /* remove sc_errbuf */ if (error || (status & SCSI_STATUS_CHECKCOND)) { #ifdef DEBUG if (rzdebug & RZB_ERROR) printf("rz%d: error reading sense data: error %d scsi status 0x%x\n", unit, error, status); #endif /* * We got an error during the REQUEST_SENSE, * fill in no sense for data. */ sc->sc_sense.sense[0] = 0x70; sc->sc_sense.sense[2] = SCSI_CLASS7_NO_SENSE; } else if (!cold) { printf("rz%d: ", unit); scsiPrintSense((ScsiClass7Sense *)sc->sc_sense.sense, sizeof(sc->sc_sense.sense) - resid); } } else if (error || (status & SCSI_STATUS_CHECKCOND)) { #ifdef DEBUG if (!cold && (rzdebug & RZB_ERROR)) printf("rz%d: error %d scsi status 0x%x\n", unit, error, status); #endif /* save error info */ sc->sc_sense.status = status; bp->b_flags |= B_ERROR; bp->b_error = error; bp->b_resid = resid; if (status & SCSI_STATUS_CHECKCOND) { /* * Start a REQUEST_SENSE command. * Since we are called at interrupt time, we can't * wait for the command to finish; that's why we use * the sc_flags field. */ sc->sc_flags |= RZF_SENSEINPROGRESS; sc->sc_cdb.len = sizeof(ScsiGroup0Cmd); scsiGroup0Cmd(SCSI_REQUEST_SENSE, sd->sd_slave, 0, sizeof(sc->sc_sense.sense), (ScsiGroup0Cmd *)sc->sc_cdb.cdb); sc->sc_errbuf.b_flags = B_BUSY | B_PHYS | B_READ; sc->sc_errbuf.b_bcount = sizeof(sc->sc_sense.sense); sc->sc_errbuf.b_un.b_addr = (caddr_t)sc->sc_sense.sense; sc->sc_errbuf.b_actf = bp; sc->sc_tab.b_actf = &sc->sc_errbuf; rzstart(unit); return; } } else { sc->sc_sense.status = status; bp->b_resid = resid; } sc->sc_tab.b_actf = bp->b_actf; biodone(bp); if (sc->sc_tab.b_actf) rzstart(unit); else { sc->sc_tab.b_active = 0; /* finish close protocol */ if (sc->sc_openpart == 0) wakeup((caddr_t)&sc->sc_tab); } } /* * Read or constuct a disklabel */ void rzgetinfo(dev) dev_t dev; { register int unit = rzunit(dev); register struct rz_softc *sc = &rz_softc[unit]; register struct disklabel *lp = &sc->sc_label; register int i; char *msg; int part; extern char *readdisklabel(); part = rzpart(dev); sc->sc_flags |= RZF_HAVELABEL; lp->d_type = DTYPE_SCSI; lp->d_secsize = DEV_BSIZE; lp->d_secpercyl = 1 << sc->sc_bshift; lp->d_npartitions = MAXPARTITIONS; lp->d_partitions[part].p_offset = 0; lp->d_partitions[part].p_size = sc->sc_blks; /* * Now try to read the disklabel */ msg = readdisklabel(dev, rzstrategy, lp); if (msg == NULL) return; printf("rz%d: WARNING: %s\n", unit, msg); sc->sc_label.d_magic = DISKMAGIC; sc->sc_label.d_magic2 = DISKMAGIC; sc->sc_label.d_type = DTYPE_SCSI; sc->sc_label.d_subtype = 0; sc->sc_label.d_typename[0] = '\0'; sc->sc_label.d_secsize = DEV_BSIZE; sc->sc_label.d_secperunit = sc->sc_blks; sc->sc_label.d_npartitions = MAXPARTITIONS; sc->sc_label.d_bbsize = BBSIZE; sc->sc_label.d_sbsize = SBSIZE; for (i = 0; i < MAXPARTITIONS; i++) { sc->sc_label.d_partitions[i].p_size = rzdefaultpart[i].nblocks; sc->sc_label.d_partitions[i].p_offset = rzdefaultpart[i].strtblk; } sc->sc_label.d_partitions[RAWPART].p_size = sc->sc_blks; } int rzopen(dev, flags, mode, p) dev_t dev; int flags, mode; struct proc *p; { register int unit = rzunit(dev); register struct rz_softc *sc = &rz_softc[unit]; register struct disklabel *lp; register int i; int part; u_long mask; if (unit >= NRZ || !(sc->sc_flags & RZF_ALIVE)) return (ENXIO); /* try to read disk label and partition table information */ part = rzpart(dev); if (!(sc->sc_flags & RZF_HAVELABEL)) rzgetinfo(dev); lp = &sc->sc_label; if (part >= lp->d_npartitions || lp->d_partitions[part].p_size == 0) return (ENXIO); /* * Warn if a partition is opened that overlaps another * already open, unless either is the `raw' partition * (whole disk). */ mask = 1 << part; if ((sc->sc_openpart & mask) == 0 && part != RAWPART) { register struct partition *pp; u_long start, end; pp = &lp->d_partitions[part]; start = pp->p_offset; end = pp->p_offset + pp->p_size; for (pp = lp->d_partitions, i = 0; i < lp->d_npartitions; pp++, i++) { if (pp->p_offset + pp->p_size <= start || pp->p_offset >= end || i == RAWPART) continue; if (sc->sc_openpart & (1 << i)) log(LOG_WARNING, "rz%d%c: overlaps open partition (%c)\n", unit, part + 'a', i + 'a'); } } switch (mode) { case S_IFCHR: sc->sc_copenpart |= mask; break; case S_IFBLK: sc->sc_bopenpart |= mask; break; } sc->sc_openpart |= mask; if (sc->sc_sd->sd_dk >= 0) dk_wpms[sc->sc_sd->sd_dk] = sc->sc_wpms; return (0); } rzclose(dev, flags, mode) dev_t dev; int flags, mode; { register struct rz_softc *sc = &rz_softc[rzunit(dev)]; u_long mask = (1 << rzpart(dev)); int s; switch (mode) { case S_IFCHR: sc->sc_copenpart &= ~mask; break; case S_IFBLK: sc->sc_bopenpart &= ~mask; break; } sc->sc_openpart = sc->sc_copenpart | sc->sc_bopenpart; /* * Should wait for I/O to complete on this partition even if * others are open, but wait for work on blkflush(). */ if (sc->sc_openpart == 0) { s = splbio(); while (sc->sc_tab.b_actf) sleep((caddr_t)&sc->sc_tab, PZERO - 1); splx(s); sc->sc_flags &= ~RZF_WLABEL; } return (0); } int rzread(dev, uio) dev_t dev; struct uio *uio; { register struct rz_softc *sc = &rz_softc[rzunit(dev)]; if (sc->sc_format_pid && sc->sc_format_pid != curproc->p_pid) return (EPERM); return (physio(rzstrategy, (struct buf *)0, dev, B_READ, minphys, uio)); } int rzwrite(dev, uio) dev_t dev; struct uio *uio; { register struct rz_softc *sc = &rz_softc[rzunit(dev)]; if (sc->sc_format_pid && sc->sc_format_pid != curproc->p_pid) return (EPERM); return (physio(rzstrategy, (struct buf *)0, dev, B_WRITE, minphys, uio)); } int rzioctl(dev, cmd, data, flag, p) dev_t dev; int cmd; caddr_t data; int flag; struct proc *p; { register struct rz_softc *sc = &rz_softc[rzunit(dev)]; int error; int flags; switch (cmd) { default: return (EINVAL); case SDIOCSFORMAT: /* take this device into or out of "format" mode */ if (suser(p->p_ucred, &p->p_acflag)) return (EPERM); if (*(int *)data) { if (sc->sc_format_pid) return (EPERM); sc->sc_format_pid = p->p_pid; } else sc->sc_format_pid = 0; return (0); case SDIOCGFORMAT: /* find out who has the device in format mode */ *(int *)data = sc->sc_format_pid; return (0); case SDIOCSCSICOMMAND: /* * Save what user gave us as SCSI cdb to use with next * read or write to the char device. */ if (sc->sc_format_pid != p->p_pid) return (EPERM); if (legal_cmds[((struct scsi_fmt_cdb *)data)->cdb[0]] == 0) return (EINVAL); bcopy(data, (caddr_t)&sc->sc_cdb, sizeof(sc->sc_cdb)); return (0); case SDIOCSENSE: /* * return the SCSI sense data saved after the last * operation that completed with "check condition" status. */ bcopy((caddr_t)&sc->sc_sense, data, sizeof(sc->sc_sense)); return (0); case DIOCGDINFO: /* get the current disk label */ *(struct disklabel *)data = sc->sc_label; return (0); case DIOCSDINFO: /* set the current disk label */ if (!(flag & FWRITE)) return (EBADF); error = setdisklabel(&sc->sc_label, (struct disklabel *)data, (sc->sc_flags & RZF_WLABEL) ? 0 : sc->sc_openpart); return (error); case DIOCGPART: /* return the disk partition data */ ((struct partinfo *)data)->disklab = &sc->sc_label; ((struct partinfo *)data)->part = &sc->sc_label.d_partitions[rzpart(dev)]; return (0); case DIOCWLABEL: if (!(flag & FWRITE)) return (EBADF); if (*(int *)data) sc->sc_flags |= RZF_WLABEL; else sc->sc_flags &= ~RZF_WLABEL; return (0); case DIOCWDINFO: /* write the disk label to disk */ if (!(flag & FWRITE)) return (EBADF); error = setdisklabel(&sc->sc_label, (struct disklabel *)data, (sc->sc_flags & RZF_WLABEL) ? 0 : sc->sc_openpart); if (error) return (error); /* simulate opening partition 0 so write succeeds */ flags = sc->sc_flags; sc->sc_flags = RZF_ALIVE | RZF_WLABEL; error = writedisklabel(dev, rzstrategy, &sc->sc_label); sc->sc_flags = flags; return (error); } /*NOTREACHED*/ } int rzsize(dev) dev_t dev; { register int unit = rzunit(dev); register int part = rzpart(dev); register struct rz_softc *sc = &rz_softc[unit]; if (unit >= NRZ || !(sc->sc_flags & RZF_ALIVE)) return (-1); /* * We get called very early on (via swapconf) * without the device being open so we need to * read the disklabel here. */ if (!(sc->sc_flags & RZF_HAVELABEL)) rzgetinfo(dev); if (part >= sc->sc_label.d_npartitions) return (-1); return (sc->sc_label.d_partitions[part].p_size); } /* * Non-interrupt driven, non-dma dump routine. */ int rzdump(dev) dev_t dev; { #ifdef notdef int part = rzpart(dev); int unit = rzunit(dev); register struct rz_softc *sc = &rz_softc[unit]; register struct scsi_device *sd = sc->sc_hd; register daddr_t baddr; register int maddr; register int pages, i; int stat; extern int lowram; /* * Hmm... all vax drivers dump maxfree pages which is physmem minus * the message buffer. Is there a reason for not dumping the * message buffer? Savecore expects to read 'dumpsize' pages of * dump, where dumpsys() sets dumpsize to physmem! */ pages = physmem; /* is drive ok? */ if (unit >= NRZ || (sc->sc_flags & RZF_ALIVE) == 0) return (ENXIO); /* dump parameters in range? */ if (dumplo < 0 || dumplo >= sc->sc_info.part[part].nblocks) return (EINVAL); if (dumplo + ctod(pages) > sc->sc_info.part[part].nblocks) pages = dtoc(sc->sc_info.part[part].nblocks - dumplo); maddr = lowram; baddr = dumplo + sc->sc_info.part[part].strtblk; /* scsi bus idle? */ if (!scsireq(&sc->sc_dq)) { scsireset(sd->sd_ctlr); sc->sc_stats.rzresets++; printf("[ drive %d reset ] ", unit); } for (i = 0; i < pages; i++) { #define NPGMB (1024*1024/NBPG) /* print out how many Mbs we have dumped */ if (i && (i % NPGMB) == 0) printf("%d ", i / NPGMB); #undef NPBMG mapin(mmap, (u_int)vmmap, btop(maddr), PG_URKR|PG_CI|PG_V); stat = scsi_tt_write(sd->sd_ctlr, sd->sd_drive, sd->sd_slave, vmmap, NBPG, baddr, sc->sc_bshift); if (stat) { printf("rzdump: scsi write error 0x%x\n", stat); return (EIO); } maddr += NBPG; baddr += ctod(1); } return (0); #else /* notdef */ return (ENXIO); #endif /* notdef */ } #endif