/*- * Copyright (c) 1985 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Computer Consoles Inc. * * %sccs.include.redist.c% * * @(#)Kmuld.s 7.1 (Berkeley) 12/06/90 */ #include "../math/fp.h" #include "../math/Kfp.h" #include "../tahoe/SYS.h" #define HIDDEN 23 /* here we count from 0 not from 1 as in fp.h */ /* * _Kmuld(acc_most,acc_least,op_most,op_least,hfs) */ .text ENTRY(Kmuld, R9|R8|R7|R6|R5|R4|R3|R2) clrl r3 /* r3 - sign: 0 for positive,1 for negative. */ movl 4(fp),r0 jgeq 1f movl $1,r3 1: movl 12(fp),r2 jgeq 2f bbc $0,r3,1f /* seconed operand is negative. */ clrl r3 /* if first was neg, make result pos */ jmp 2f 1: movl $1,r3 /* if first was pos, make result neg */ 2: andl2 $EXPMASK,r0 /* compute first 'pure'exponent. */ jeql retzero shrl $EXPSHIFT,r0,r0 subl2 $BIASP1,r0 andl2 $EXPMASK,r2 /* compute seconed 'pure'exponent. */ jeql retzero shrl $EXPSHIFT,r2,r2 subl2 $BIASP1,r2 addl2 r0,r2 /* add the exponents. */ addl2 $(BIASP1+2),r2 jleq underflow cmpl r2,$258 /* normalization can make the exp. smaller. */ jgeq overflow /* * We have the sign in r3,the exponent in r2,now is the time to * perform the multiplication... */ /* fetch first fraction: (r0,r1) */ andl3 $(0!(EXPMASK | SIGNBIT)),4(fp),r0 orl2 $(0!CLEARHID),r0 movl 8(fp),r1 shlq $7,r0,r0 /* leave the sign bit cleared. */ /* fetch seconed fraction: (r4,r5) */ andl3 $(0!(EXPMASK | SIGNBIT)),12(fp),r4 orl2 $(0!CLEARHID),r4 movl 16(fp),r5 shlq $7,r4,r4 /* leave the sign bit cleared. */ /* in the following lp1 stands for least significant part of operand 1, * lp2 for least significant part of operand 2, * mp1 for most significant part of operand 1, * mp2 for most significant part of operand 2. */ clrl r6 shrl $1,r1,r1 /* clear the sign bit of the lp1. */ jeql 1f emul r1,r4,$0,r6 /* r6,r7 <-- lp1*mp2 */ shlq $1,r6,r6 /* to compensate for the shift we did to clear the sign bit. */ 1: shrl $1,r5,r5 /* clear the sign bit of the lp2. */ jeql 1f emul r0,r5,$0,r8 /* r8,r9 <-- mp1*lp2 */ shlq $1,r8,r8 addl2 r9,r7 /* r6,r7 <-- the sum of the products. */ adwc r8,r6 1: emul r0,r4,$0,r0 /* r0,r1 <-- mp1*mp2 */ addl2 r6,r1 /* add the most sig. part of the sum. */ adwc $0,r0 movl r0,r4 /* to see how much we realy need to shift. */ movl $6,r5 /* r5 - shift counter. */ shrl $7,r4,r4 /* dummy shift. */ 1: bbs $HIDDEN,r4,realshift shll $1,r4,r4 decl r2 /* update exponent. */ jeql underflow decl r5 /* update shift counter. */ jmp 1b realshift: shrq r5,r0,r0 bbc $0,r1,shiftmore incl r1 /* rounding. */ shiftmore: shrq $1,r0,r0 comb: andl2 $CLEARHID,r0 shll $EXPSHIFT,r2,r4 orl2 r4,r0 cmpl r2,$256 jlss 1f orl2 $HFS_OVF,*20(fp) sign: 1: bbc $0,r3,done orl2 $SIGNBIT,r0 done: ret retzero: clrl r0 clrl r1 ret overflow: orl2 $HFS_OVF,*20(fp) ret underflow: orl2 $HFS_UNDF,*20(fp) ret