/* * plugin-gen.c - TCG-related bits of plugin infrastructure * * Copyright (C) 2018, Emilio G. Cota * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * We support instrumentation at an instruction granularity. That is, * if a plugin wants to instrument the memory accesses performed by a * particular instruction, it can just do that instead of instrumenting * all memory accesses. Thus, in order to do this we first have to * translate a TB, so that plugins can decide what/where to instrument. * * Injecting the desired instrumentation could be done with a second * translation pass that combined the instrumentation requests, but that * would be ugly and inefficient since we would decode the guest code twice. * Instead, during TB translation we add "empty" instrumentation calls for all * possible instrumentation events, and then once we collect the instrumentation * requests from plugins, we either "fill in" those empty events or remove them * if they have no requests. * * When "filling in" an event we first copy the empty callback's TCG ops. This * might seem unnecessary, but it is done to support an arbitrary number * of callbacks per event. Take for example a regular instruction callback. * We first generate a callback to an empty helper function. Then, if two * plugins register one callback each for this instruction, we make two copies * of the TCG ops generated for the empty callback, substituting the function * pointer that points to the empty helper function with the plugins' desired * callback functions. After that we remove the empty callback's ops. * * Note that the location in TCGOp.args[] of the pointer to a helper function * varies across different guest and host architectures. Instead of duplicating * the logic that figures this out, we rely on the fact that the empty * callbacks point to empty functions that are unique pointers in the program. * Thus, to find the right location we just have to look for a match in * TCGOp.args[]. This is the main reason why we first copy an empty callback's * TCG ops and then fill them in; regardless of whether we have one or many * callbacks for that event, the logic to add all of them is the same. * * When generating more than one callback per event, we make a small * optimization to avoid generating redundant operations. For instance, for the * second and all subsequent callbacks of an event, we do not need to reload the * CPU's index into a TCG temp, since the first callback did it already. */ #include "qemu/osdep.h" #include "qemu/plugin.h" #include "cpu.h" #include "tcg/tcg.h" #include "tcg/tcg-temp-internal.h" #include "tcg/tcg-op.h" #include "exec/exec-all.h" #include "exec/plugin-gen.h" #include "exec/translator.h" #include "exec/helper-proto-common.h" #define HELPER_H "accel/tcg/plugin-helpers.h" #include "exec/helper-info.c.inc" #undef HELPER_H #ifdef CONFIG_SOFTMMU # define CONFIG_SOFTMMU_GATE 1 #else # define CONFIG_SOFTMMU_GATE 0 #endif /* * plugin_cb_start TCG op args[]: * 0: enum plugin_gen_from * 1: enum plugin_gen_cb * 2: set to 1 for mem callback that is a write, 0 otherwise. */ enum plugin_gen_from { PLUGIN_GEN_FROM_TB, PLUGIN_GEN_FROM_INSN, PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_AFTER_INSN, PLUGIN_GEN_N_FROMS, }; enum plugin_gen_cb { PLUGIN_GEN_CB_UDATA, PLUGIN_GEN_CB_UDATA_R, PLUGIN_GEN_CB_INLINE, PLUGIN_GEN_CB_MEM, PLUGIN_GEN_ENABLE_MEM_HELPER, PLUGIN_GEN_DISABLE_MEM_HELPER, PLUGIN_GEN_N_CBS, }; /* * These helpers are stubs that get dynamically switched out for calls * direct to the plugin if they are subscribed to. */ void HELPER(plugin_vcpu_udata_cb_no_wg)(uint32_t cpu_index, void *udata) { } void HELPER(plugin_vcpu_udata_cb_no_rwg)(uint32_t cpu_index, void *udata) { } void HELPER(plugin_vcpu_mem_cb)(unsigned int vcpu_index, qemu_plugin_meminfo_t info, uint64_t vaddr, void *userdata) { } static void gen_empty_udata_cb(void (*gen_helper)(TCGv_i32, TCGv_ptr)) { TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); TCGv_ptr udata = tcg_temp_ebb_new_ptr(); tcg_gen_movi_ptr(udata, 0); tcg_gen_ld_i32(cpu_index, tcg_env, -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); gen_helper(cpu_index, udata); tcg_temp_free_ptr(udata); tcg_temp_free_i32(cpu_index); } static void gen_empty_udata_cb_no_wg(void) { gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_wg); } static void gen_empty_udata_cb_no_rwg(void) { gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_rwg); } /* * For now we only support addi_i64. * When we support more ops, we can generate one empty inline cb for each. */ static void gen_empty_inline_cb(void) { TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); TCGv_ptr cpu_index_as_ptr = tcg_temp_ebb_new_ptr(); TCGv_i64 val = tcg_temp_ebb_new_i64(); TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); tcg_gen_ld_i32(cpu_index, tcg_env, -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); /* second operand will be replaced by immediate value */ tcg_gen_mul_i32(cpu_index, cpu_index, cpu_index); tcg_gen_ext_i32_ptr(cpu_index_as_ptr, cpu_index); tcg_gen_movi_ptr(ptr, 0); tcg_gen_add_ptr(ptr, ptr, cpu_index_as_ptr); tcg_gen_ld_i64(val, ptr, 0); /* second operand will be replaced by immediate value */ tcg_gen_add_i64(val, val, val); tcg_gen_st_i64(val, ptr, 0); tcg_temp_free_ptr(ptr); tcg_temp_free_i64(val); tcg_temp_free_ptr(cpu_index_as_ptr); tcg_temp_free_i32(cpu_index); } static void gen_empty_mem_cb(TCGv_i64 addr, uint32_t info) { TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); TCGv_i32 meminfo = tcg_temp_ebb_new_i32(); TCGv_ptr udata = tcg_temp_ebb_new_ptr(); tcg_gen_movi_i32(meminfo, info); tcg_gen_movi_ptr(udata, 0); tcg_gen_ld_i32(cpu_index, tcg_env, -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); gen_helper_plugin_vcpu_mem_cb(cpu_index, meminfo, addr, udata); tcg_temp_free_ptr(udata); tcg_temp_free_i32(meminfo); tcg_temp_free_i32(cpu_index); } /* * Share the same function for enable/disable. When enabling, the NULL * pointer will be overwritten later. */ static void gen_empty_mem_helper(void) { TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); tcg_gen_movi_ptr(ptr, 0); tcg_gen_st_ptr(ptr, tcg_env, offsetof(CPUState, plugin_mem_cbs) - offsetof(ArchCPU, env)); tcg_temp_free_ptr(ptr); } static void gen_plugin_cb_start(enum plugin_gen_from from, enum plugin_gen_cb type, unsigned wr) { tcg_gen_plugin_cb_start(from, type, wr); } static void gen_wrapped(enum plugin_gen_from from, enum plugin_gen_cb type, void (*func)(void)) { gen_plugin_cb_start(from, type, 0); func(); tcg_gen_plugin_cb_end(); } static void plugin_gen_empty_callback(enum plugin_gen_from from) { switch (from) { case PLUGIN_GEN_AFTER_INSN: gen_wrapped(from, PLUGIN_GEN_DISABLE_MEM_HELPER, gen_empty_mem_helper); break; case PLUGIN_GEN_FROM_INSN: /* * Note: plugin_gen_inject() relies on ENABLE_MEM_HELPER being * the first callback of an instruction */ gen_wrapped(from, PLUGIN_GEN_ENABLE_MEM_HELPER, gen_empty_mem_helper); /* fall through */ case PLUGIN_GEN_FROM_TB: gen_wrapped(from, PLUGIN_GEN_CB_UDATA, gen_empty_udata_cb_no_rwg); gen_wrapped(from, PLUGIN_GEN_CB_UDATA_R, gen_empty_udata_cb_no_wg); gen_wrapped(from, PLUGIN_GEN_CB_INLINE, gen_empty_inline_cb); break; default: g_assert_not_reached(); } } void plugin_gen_empty_mem_callback(TCGv_i64 addr, uint32_t info) { enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_MEM, rw); gen_empty_mem_cb(addr, info); tcg_gen_plugin_cb_end(); gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_INLINE, rw); gen_empty_inline_cb(); tcg_gen_plugin_cb_end(); } static TCGOp *find_op(TCGOp *op, TCGOpcode opc) { while (op) { if (op->opc == opc) { return op; } op = QTAILQ_NEXT(op, link); } return NULL; } static TCGOp *rm_ops_range(TCGOp *begin, TCGOp *end) { TCGOp *ret = QTAILQ_NEXT(end, link); QTAILQ_REMOVE_SEVERAL(&tcg_ctx->ops, begin, end, link); return ret; } /* remove all ops until (and including) plugin_cb_end */ static TCGOp *rm_ops(TCGOp *op) { TCGOp *end_op = find_op(op, INDEX_op_plugin_cb_end); tcg_debug_assert(end_op); return rm_ops_range(op, end_op); } static TCGOp *copy_op_nocheck(TCGOp **begin_op, TCGOp *op) { TCGOp *old_op = QTAILQ_NEXT(*begin_op, link); unsigned nargs = old_op->nargs; *begin_op = old_op; op = tcg_op_insert_after(tcg_ctx, op, old_op->opc, nargs); memcpy(op->args, old_op->args, sizeof(op->args[0]) * nargs); return op; } static TCGOp *copy_op(TCGOp **begin_op, TCGOp *op, TCGOpcode opc) { op = copy_op_nocheck(begin_op, op); tcg_debug_assert((*begin_op)->opc == opc); return op; } static TCGOp *copy_const_ptr(TCGOp **begin_op, TCGOp *op, void *ptr) { if (UINTPTR_MAX == UINT32_MAX) { /* mov_i32 */ op = copy_op(begin_op, op, INDEX_op_mov_i32); op->args[1] = tcgv_i32_arg(tcg_constant_i32((uintptr_t)ptr)); } else { /* mov_i64 */ op = copy_op(begin_op, op, INDEX_op_mov_i64); op->args[1] = tcgv_i64_arg(tcg_constant_i64((uintptr_t)ptr)); } return op; } static TCGOp *copy_ld_i32(TCGOp **begin_op, TCGOp *op) { return copy_op(begin_op, op, INDEX_op_ld_i32); } static TCGOp *copy_ext_i32_ptr(TCGOp **begin_op, TCGOp *op) { if (UINTPTR_MAX == UINT32_MAX) { op = copy_op(begin_op, op, INDEX_op_mov_i32); } else { op = copy_op(begin_op, op, INDEX_op_ext_i32_i64); } return op; } static TCGOp *copy_add_ptr(TCGOp **begin_op, TCGOp *op) { if (UINTPTR_MAX == UINT32_MAX) { op = copy_op(begin_op, op, INDEX_op_add_i32); } else { op = copy_op(begin_op, op, INDEX_op_add_i64); } return op; } static TCGOp *copy_ld_i64(TCGOp **begin_op, TCGOp *op) { if (TCG_TARGET_REG_BITS == 32) { /* 2x ld_i32 */ op = copy_ld_i32(begin_op, op); op = copy_ld_i32(begin_op, op); } else { /* ld_i64 */ op = copy_op(begin_op, op, INDEX_op_ld_i64); } return op; } static TCGOp *copy_st_i64(TCGOp **begin_op, TCGOp *op) { if (TCG_TARGET_REG_BITS == 32) { /* 2x st_i32 */ op = copy_op(begin_op, op, INDEX_op_st_i32); op = copy_op(begin_op, op, INDEX_op_st_i32); } else { /* st_i64 */ op = copy_op(begin_op, op, INDEX_op_st_i64); } return op; } static TCGOp *copy_add_i64(TCGOp **begin_op, TCGOp *op, uint64_t v) { if (TCG_TARGET_REG_BITS == 32) { /* all 32-bit backends must implement add2_i32 */ g_assert(TCG_TARGET_HAS_add2_i32); op = copy_op(begin_op, op, INDEX_op_add2_i32); op->args[4] = tcgv_i32_arg(tcg_constant_i32(v)); op->args[5] = tcgv_i32_arg(tcg_constant_i32(v >> 32)); } else { op = copy_op(begin_op, op, INDEX_op_add_i64); op->args[2] = tcgv_i64_arg(tcg_constant_i64(v)); } return op; } static TCGOp *copy_mul_i32(TCGOp **begin_op, TCGOp *op, uint32_t v) { op = copy_op(begin_op, op, INDEX_op_mul_i32); op->args[2] = tcgv_i32_arg(tcg_constant_i32(v)); return op; } static TCGOp *copy_st_ptr(TCGOp **begin_op, TCGOp *op) { if (UINTPTR_MAX == UINT32_MAX) { /* st_i32 */ op = copy_op(begin_op, op, INDEX_op_st_i32); } else { /* st_i64 */ op = copy_st_i64(begin_op, op); } return op; } static TCGOp *copy_call(TCGOp **begin_op, TCGOp *op, void *func, int *cb_idx) { TCGOp *old_op; int func_idx; /* copy all ops until the call */ do { op = copy_op_nocheck(begin_op, op); } while (op->opc != INDEX_op_call); /* fill in the op call */ old_op = *begin_op; TCGOP_CALLI(op) = TCGOP_CALLI(old_op); TCGOP_CALLO(op) = TCGOP_CALLO(old_op); tcg_debug_assert(op->life == 0); func_idx = TCGOP_CALLO(op) + TCGOP_CALLI(op); *cb_idx = func_idx; op->args[func_idx] = (uintptr_t)func; return op; } /* * When we append/replace ops here we are sensitive to changing patterns of * TCGOps generated by the tcg_gen_FOO calls when we generated the * empty callbacks. This will assert very quickly in a debug build as * we assert the ops we are replacing are the correct ones. */ static TCGOp *append_udata_cb(const struct qemu_plugin_dyn_cb *cb, TCGOp *begin_op, TCGOp *op, int *cb_idx) { /* const_ptr */ op = copy_const_ptr(&begin_op, op, cb->userp); /* copy the ld_i32, but note that we only have to copy it once */ if (*cb_idx == -1) { op = copy_op(&begin_op, op, INDEX_op_ld_i32); } else { begin_op = QTAILQ_NEXT(begin_op, link); tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); } /* call */ op = copy_call(&begin_op, op, cb->f.vcpu_udata, cb_idx); return op; } static TCGOp *append_inline_cb(const struct qemu_plugin_dyn_cb *cb, TCGOp *begin_op, TCGOp *op, int *unused) { char *ptr = cb->inline_insn.entry.score->data->data; size_t elem_size = g_array_get_element_size( cb->inline_insn.entry.score->data); size_t offset = cb->inline_insn.entry.offset; op = copy_ld_i32(&begin_op, op); op = copy_mul_i32(&begin_op, op, elem_size); op = copy_ext_i32_ptr(&begin_op, op); op = copy_const_ptr(&begin_op, op, ptr + offset); op = copy_add_ptr(&begin_op, op); op = copy_ld_i64(&begin_op, op); op = copy_add_i64(&begin_op, op, cb->inline_insn.imm); op = copy_st_i64(&begin_op, op); return op; } static TCGOp *append_mem_cb(const struct qemu_plugin_dyn_cb *cb, TCGOp *begin_op, TCGOp *op, int *cb_idx) { enum plugin_gen_cb type = begin_op->args[1]; tcg_debug_assert(type == PLUGIN_GEN_CB_MEM); /* const_i32 == mov_i32 ("info", so it remains as is) */ op = copy_op(&begin_op, op, INDEX_op_mov_i32); /* const_ptr */ op = copy_const_ptr(&begin_op, op, cb->userp); /* copy the ld_i32, but note that we only have to copy it once */ if (*cb_idx == -1) { op = copy_op(&begin_op, op, INDEX_op_ld_i32); } else { begin_op = QTAILQ_NEXT(begin_op, link); tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); } if (type == PLUGIN_GEN_CB_MEM) { /* call */ op = copy_call(&begin_op, op, cb->f.vcpu_udata, cb_idx); } return op; } typedef TCGOp *(*inject_fn)(const struct qemu_plugin_dyn_cb *cb, TCGOp *begin_op, TCGOp *op, int *intp); typedef bool (*op_ok_fn)(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb); static bool op_ok(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) { return true; } static bool op_rw(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) { int w; w = op->args[2]; return !!(cb->rw & (w + 1)); } static void inject_cb_type(const GArray *cbs, TCGOp *begin_op, inject_fn inject, op_ok_fn ok) { TCGOp *end_op; TCGOp *op; int cb_idx = -1; int i; if (!cbs || cbs->len == 0) { rm_ops(begin_op); return; } end_op = find_op(begin_op, INDEX_op_plugin_cb_end); tcg_debug_assert(end_op); op = end_op; for (i = 0; i < cbs->len; i++) { struct qemu_plugin_dyn_cb *cb = &g_array_index(cbs, struct qemu_plugin_dyn_cb, i); if (!ok(begin_op, cb)) { continue; } op = inject(cb, begin_op, op, &cb_idx); } rm_ops_range(begin_op, end_op); } static void inject_udata_cb(const GArray *cbs, TCGOp *begin_op) { inject_cb_type(cbs, begin_op, append_udata_cb, op_ok); } static void inject_inline_cb(const GArray *cbs, TCGOp *begin_op, op_ok_fn ok) { inject_cb_type(cbs, begin_op, append_inline_cb, ok); } static void inject_mem_cb(const GArray *cbs, TCGOp *begin_op) { inject_cb_type(cbs, begin_op, append_mem_cb, op_rw); } /* we could change the ops in place, but we can reuse more code by copying */ static void inject_mem_helper(TCGOp *begin_op, GArray *arr) { TCGOp *orig_op = begin_op; TCGOp *end_op; TCGOp *op; end_op = find_op(begin_op, INDEX_op_plugin_cb_end); tcg_debug_assert(end_op); /* const ptr */ op = copy_const_ptr(&begin_op, end_op, arr); /* st_ptr */ op = copy_st_ptr(&begin_op, op); rm_ops_range(orig_op, end_op); } /* * Tracking memory accesses performed from helpers requires extra work. * If an instruction is emulated with helpers, we do two things: * (1) copy the CB descriptors, and keep track of it so that they can be * freed later on, and (2) point CPUState.plugin_mem_cbs to the descriptors, so * that we can read them at run-time (i.e. when the helper executes). * This run-time access is performed from qemu_plugin_vcpu_mem_cb. * * Note that plugin_gen_disable_mem_helpers undoes (2). Since it * is possible that the code we generate after the instruction is * dead, we also add checks before generating tb_exit etc. */ static void inject_mem_enable_helper(struct qemu_plugin_tb *ptb, struct qemu_plugin_insn *plugin_insn, TCGOp *begin_op) { GArray *cbs[2]; GArray *arr; size_t n_cbs, i; cbs[0] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR]; cbs[1] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; n_cbs = 0; for (i = 0; i < ARRAY_SIZE(cbs); i++) { n_cbs += cbs[i]->len; } plugin_insn->mem_helper = plugin_insn->calls_helpers && n_cbs; if (likely(!plugin_insn->mem_helper)) { rm_ops(begin_op); return; } ptb->mem_helper = true; arr = g_array_sized_new(false, false, sizeof(struct qemu_plugin_dyn_cb), n_cbs); for (i = 0; i < ARRAY_SIZE(cbs); i++) { g_array_append_vals(arr, cbs[i]->data, cbs[i]->len); } qemu_plugin_add_dyn_cb_arr(arr); inject_mem_helper(begin_op, arr); } static void inject_mem_disable_helper(struct qemu_plugin_insn *plugin_insn, TCGOp *begin_op) { if (likely(!plugin_insn->mem_helper)) { rm_ops(begin_op); return; } inject_mem_helper(begin_op, NULL); } /* called before finishing a TB with exit_tb, goto_tb or goto_ptr */ void plugin_gen_disable_mem_helpers(void) { /* * We could emit the clearing unconditionally and be done. However, this can * be wasteful if for instance plugins don't track memory accesses, or if * most TBs don't use helpers. Instead, emit the clearing iff the TB calls * helpers that might access guest memory. * * Note: we do not reset plugin_tb->mem_helper here; a TB might have several * exit points, and we want to emit the clearing from all of them. */ if (!tcg_ctx->plugin_tb->mem_helper) { return; } tcg_gen_st_ptr(tcg_constant_ptr(NULL), tcg_env, offsetof(CPUState, plugin_mem_cbs) - offsetof(ArchCPU, env)); } static void plugin_gen_tb_udata(const struct qemu_plugin_tb *ptb, TCGOp *begin_op) { inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR], begin_op); } static void plugin_gen_tb_udata_r(const struct qemu_plugin_tb *ptb, TCGOp *begin_op) { inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR_R], begin_op); } static void plugin_gen_tb_inline(const struct qemu_plugin_tb *ptb, TCGOp *begin_op) { inject_inline_cb(ptb->cbs[PLUGIN_CB_INLINE], begin_op, op_ok); } static void plugin_gen_insn_udata(const struct qemu_plugin_tb *ptb, TCGOp *begin_op, int insn_idx) { struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], begin_op); } static void plugin_gen_insn_udata_r(const struct qemu_plugin_tb *ptb, TCGOp *begin_op, int insn_idx) { struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR_R], begin_op); } static void plugin_gen_insn_inline(const struct qemu_plugin_tb *ptb, TCGOp *begin_op, int insn_idx) { struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); inject_inline_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], begin_op, op_ok); } static void plugin_gen_mem_regular(const struct qemu_plugin_tb *ptb, TCGOp *begin_op, int insn_idx) { struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); inject_mem_cb(insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], begin_op); } static void plugin_gen_mem_inline(const struct qemu_plugin_tb *ptb, TCGOp *begin_op, int insn_idx) { const GArray *cbs; struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); cbs = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; inject_inline_cb(cbs, begin_op, op_rw); } static void plugin_gen_enable_mem_helper(struct qemu_plugin_tb *ptb, TCGOp *begin_op, int insn_idx) { struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); inject_mem_enable_helper(ptb, insn, begin_op); } static void plugin_gen_disable_mem_helper(struct qemu_plugin_tb *ptb, TCGOp *begin_op, int insn_idx) { struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); inject_mem_disable_helper(insn, begin_op); } /* #define DEBUG_PLUGIN_GEN_OPS */ static void pr_ops(void) { #ifdef DEBUG_PLUGIN_GEN_OPS TCGOp *op; int i = 0; QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { const char *name = ""; const char *type = ""; if (op->opc == INDEX_op_plugin_cb_start) { switch (op->args[0]) { case PLUGIN_GEN_FROM_TB: name = "tb"; break; case PLUGIN_GEN_FROM_INSN: name = "insn"; break; case PLUGIN_GEN_FROM_MEM: name = "mem"; break; case PLUGIN_GEN_AFTER_INSN: name = "after insn"; break; default: break; } switch (op->args[1]) { case PLUGIN_GEN_CB_UDATA: type = "udata"; break; case PLUGIN_GEN_CB_INLINE: type = "inline"; break; case PLUGIN_GEN_CB_MEM: type = "mem"; break; case PLUGIN_GEN_ENABLE_MEM_HELPER: type = "enable mem helper"; break; case PLUGIN_GEN_DISABLE_MEM_HELPER: type = "disable mem helper"; break; default: break; } } printf("op[%2i]: %s %s %s\n", i, tcg_op_defs[op->opc].name, name, type); i++; } #endif } static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb) { TCGOp *op; int insn_idx = -1; pr_ops(); QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { switch (op->opc) { case INDEX_op_insn_start: insn_idx++; break; case INDEX_op_plugin_cb_start: { enum plugin_gen_from from = op->args[0]; enum plugin_gen_cb type = op->args[1]; switch (from) { case PLUGIN_GEN_FROM_TB: { g_assert(insn_idx == -1); switch (type) { case PLUGIN_GEN_CB_UDATA: plugin_gen_tb_udata(plugin_tb, op); break; case PLUGIN_GEN_CB_UDATA_R: plugin_gen_tb_udata_r(plugin_tb, op); break; case PLUGIN_GEN_CB_INLINE: plugin_gen_tb_inline(plugin_tb, op); break; default: g_assert_not_reached(); } break; } case PLUGIN_GEN_FROM_INSN: { g_assert(insn_idx >= 0); switch (type) { case PLUGIN_GEN_CB_UDATA: plugin_gen_insn_udata(plugin_tb, op, insn_idx); break; case PLUGIN_GEN_CB_UDATA_R: plugin_gen_insn_udata_r(plugin_tb, op, insn_idx); break; case PLUGIN_GEN_CB_INLINE: plugin_gen_insn_inline(plugin_tb, op, insn_idx); break; case PLUGIN_GEN_ENABLE_MEM_HELPER: plugin_gen_enable_mem_helper(plugin_tb, op, insn_idx); break; default: g_assert_not_reached(); } break; } case PLUGIN_GEN_FROM_MEM: { g_assert(insn_idx >= 0); switch (type) { case PLUGIN_GEN_CB_MEM: plugin_gen_mem_regular(plugin_tb, op, insn_idx); break; case PLUGIN_GEN_CB_INLINE: plugin_gen_mem_inline(plugin_tb, op, insn_idx); break; default: g_assert_not_reached(); } break; } case PLUGIN_GEN_AFTER_INSN: { g_assert(insn_idx >= 0); switch (type) { case PLUGIN_GEN_DISABLE_MEM_HELPER: plugin_gen_disable_mem_helper(plugin_tb, op, insn_idx); break; default: g_assert_not_reached(); } break; } default: g_assert_not_reached(); } break; } default: /* plugins don't care about any other ops */ break; } } pr_ops(); } bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db, bool mem_only) { bool ret = false; if (test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS, cpu->plugin_state->event_mask)) { struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; int i; /* reset callbacks */ for (i = 0; i < PLUGIN_N_CB_SUBTYPES; i++) { if (ptb->cbs[i]) { g_array_set_size(ptb->cbs[i], 0); } } ptb->n = 0; ret = true; ptb->vaddr = db->pc_first; ptb->vaddr2 = -1; ptb->haddr1 = db->host_addr[0]; ptb->haddr2 = NULL; ptb->mem_only = mem_only; ptb->mem_helper = false; plugin_gen_empty_callback(PLUGIN_GEN_FROM_TB); } tcg_ctx->plugin_insn = NULL; return ret; } void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db) { struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; struct qemu_plugin_insn *pinsn; pinsn = qemu_plugin_tb_insn_get(ptb, db->pc_next); tcg_ctx->plugin_insn = pinsn; plugin_gen_empty_callback(PLUGIN_GEN_FROM_INSN); /* * Detect page crossing to get the new host address. * Note that we skip this when haddr1 == NULL, e.g. when we're * fetching instructions from a region not backed by RAM. */ if (ptb->haddr1 == NULL) { pinsn->haddr = NULL; } else if (is_same_page(db, db->pc_next)) { pinsn->haddr = ptb->haddr1 + pinsn->vaddr - ptb->vaddr; } else { if (ptb->vaddr2 == -1) { ptb->vaddr2 = TARGET_PAGE_ALIGN(db->pc_first); get_page_addr_code_hostp(cpu_env(cpu), ptb->vaddr2, &ptb->haddr2); } pinsn->haddr = ptb->haddr2 + pinsn->vaddr - ptb->vaddr2; } } void plugin_gen_insn_end(void) { plugin_gen_empty_callback(PLUGIN_GEN_AFTER_INSN); } /* * There are cases where we never get to finalise a translation - for * example a page fault during translation. As a result we shouldn't * do any clean-up here and make sure things are reset in * plugin_gen_tb_start. */ void plugin_gen_tb_end(CPUState *cpu, size_t num_insns) { struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; /* translator may have removed instructions, update final count */ g_assert(num_insns <= ptb->n); ptb->n = num_insns; /* collect instrumentation requests */ qemu_plugin_tb_trans_cb(cpu, ptb); /* inject the instrumentation at the appropriate places */ plugin_gen_inject(ptb); }