/* * ELF loading code * * Copyright (c) 2013 Stacey D. Son * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu.h" #include "disas/disas.h" #include "qemu/path.h" static abi_ulong target_auxents; /* Where the AUX entries are in target */ static size_t target_auxents_sz; /* Size of AUX entries including AT_NULL */ #include "target_arch_reg.h" #include "target_os_elf.h" #include "target_os_stack.h" #include "target_os_thread.h" #include "target_os_user.h" abi_ulong target_stksiz; abi_ulong target_stkbas; static int elf_core_dump(int signr, CPUArchState *env); static int load_elf_sections(const struct elfhdr *hdr, struct elf_phdr *phdr, int fd, abi_ulong rbase, abi_ulong *baddrp); static inline void memcpy_fromfs(void *to, const void *from, unsigned long n) { memcpy(to, from, n); } #ifdef BSWAP_NEEDED static void bswap_ehdr(struct elfhdr *ehdr) { bswap16s(&ehdr->e_type); /* Object file type */ bswap16s(&ehdr->e_machine); /* Architecture */ bswap32s(&ehdr->e_version); /* Object file version */ bswaptls(&ehdr->e_entry); /* Entry point virtual address */ bswaptls(&ehdr->e_phoff); /* Program header table file offset */ bswaptls(&ehdr->e_shoff); /* Section header table file offset */ bswap32s(&ehdr->e_flags); /* Processor-specific flags */ bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ bswap16s(&ehdr->e_phnum); /* Program header table entry count */ bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ bswap16s(&ehdr->e_shnum); /* Section header table entry count */ bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ } static void bswap_phdr(struct elf_phdr *phdr, int phnum) { int i; for (i = 0; i < phnum; i++, phdr++) { bswap32s(&phdr->p_type); /* Segment type */ bswap32s(&phdr->p_flags); /* Segment flags */ bswaptls(&phdr->p_offset); /* Segment file offset */ bswaptls(&phdr->p_vaddr); /* Segment virtual address */ bswaptls(&phdr->p_paddr); /* Segment physical address */ bswaptls(&phdr->p_filesz); /* Segment size in file */ bswaptls(&phdr->p_memsz); /* Segment size in memory */ bswaptls(&phdr->p_align); /* Segment alignment */ } } static void bswap_shdr(struct elf_shdr *shdr, int shnum) { int i; for (i = 0; i < shnum; i++, shdr++) { bswap32s(&shdr->sh_name); bswap32s(&shdr->sh_type); bswaptls(&shdr->sh_flags); bswaptls(&shdr->sh_addr); bswaptls(&shdr->sh_offset); bswaptls(&shdr->sh_size); bswap32s(&shdr->sh_link); bswap32s(&shdr->sh_info); bswaptls(&shdr->sh_addralign); bswaptls(&shdr->sh_entsize); } } static void bswap_sym(struct elf_sym *sym) { bswap32s(&sym->st_name); bswaptls(&sym->st_value); bswaptls(&sym->st_size); bswap16s(&sym->st_shndx); } static void bswap_note(struct elf_note *en) { bswap32s(&en->n_namesz); bswap32s(&en->n_descsz); bswap32s(&en->n_type); } #else /* ! BSWAP_NEEDED */ static void bswap_ehdr(struct elfhdr *ehdr) { } static void bswap_phdr(struct elf_phdr *phdr, int phnum) { } static void bswap_shdr(struct elf_shdr *shdr, int shnum) { } static void bswap_sym(struct elf_sym *sym) { } static void bswap_note(struct elf_note *en) { } #endif /* ! BSWAP_NEEDED */ #include "elfcore.c" /* * 'copy_elf_strings()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. * */ static abi_ulong copy_elf_strings(int argc, char **argv, void **page, abi_ulong p) { char *tmp, *tmp1, *pag = NULL; int len, offset = 0; if (!p) { return 0; /* bullet-proofing */ } while (argc-- > 0) { tmp = argv[argc]; if (!tmp) { fprintf(stderr, "VFS: argc is wrong"); exit(-1); } tmp1 = tmp; while (*tmp++) { continue; } len = tmp - tmp1; if (p < len) { /* this shouldn't happen - 128kB */ return 0; } while (len) { --p; --tmp; --len; if (--offset < 0) { offset = p % TARGET_PAGE_SIZE; pag = page[p / TARGET_PAGE_SIZE]; if (!pag) { pag = g_try_malloc0(TARGET_PAGE_SIZE); page[p / TARGET_PAGE_SIZE] = pag; if (!pag) { return 0; } } } if (len == 0 || offset == 0) { *(pag + offset) = *tmp; } else { int bytes_to_copy = (len > offset) ? offset : len; tmp -= bytes_to_copy; p -= bytes_to_copy; offset -= bytes_to_copy; len -= bytes_to_copy; memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); } } } return p; } static void setup_arg_pages(struct bsd_binprm *bprm, struct image_info *info, abi_ulong *stackp, abi_ulong *stringp) { abi_ulong stack_base, size; abi_long addr; /* * Create enough stack to hold everything. If we don't use it for args, * we'll use it for something else... */ size = target_dflssiz; stack_base = TARGET_USRSTACK - size; addr = target_mmap(stack_base , size + qemu_host_page_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); if (addr == -1) { perror("stk mmap"); exit(-1); } /* we reserve one extra page at the top of the stack as guard */ target_mprotect(addr + size, qemu_host_page_size, PROT_NONE); target_stksiz = size; target_stkbas = addr; if (setup_initial_stack(bprm, stackp, stringp) != 0) { perror("stk setup"); exit(-1); } } static void set_brk(abi_ulong start, abi_ulong end) { /* page-align the start and end addresses... */ start = HOST_PAGE_ALIGN(start); end = HOST_PAGE_ALIGN(end); if (end <= start) { return; } if (target_mmap(start, end - start, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { perror("cannot mmap brk"); exit(-1); } } /* * We need to explicitly zero any fractional pages after the data * section (i.e. bss). This would contain the junk from the file that * should not be in memory. */ static void padzero(abi_ulong elf_bss, abi_ulong last_bss) { abi_ulong nbyte; if (elf_bss >= last_bss) { return; } /* * XXX: this is really a hack : if the real host page size is * smaller than the target page size, some pages after the end * of the file may not be mapped. A better fix would be to * patch target_mmap(), but it is more complicated as the file * size must be known. */ if (qemu_real_host_page_size() < qemu_host_page_size) { abi_ulong end_addr, end_addr1; end_addr1 = REAL_HOST_PAGE_ALIGN(elf_bss); end_addr = HOST_PAGE_ALIGN(elf_bss); if (end_addr1 < end_addr) { mmap((void *)g2h_untagged(end_addr1), end_addr - end_addr1, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0); } } nbyte = elf_bss & (qemu_host_page_size - 1); if (nbyte) { nbyte = qemu_host_page_size - nbyte; do { /* FIXME - what to do if put_user() fails? */ put_user_u8(0, elf_bss); elf_bss++; } while (--nbyte); } } static abi_ulong load_elf_interp(struct elfhdr *interp_elf_ex, int interpreter_fd, abi_ulong *interp_load_addr) { struct elf_phdr *elf_phdata = NULL; abi_ulong rbase; int retval; abi_ulong baddr, error; error = 0; bswap_ehdr(interp_elf_ex); /* First of all, some simple consistency checks */ if ((interp_elf_ex->e_type != ET_EXEC && interp_elf_ex->e_type != ET_DYN) || !elf_check_arch(interp_elf_ex->e_machine)) { return ~((abi_ulong)0UL); } /* Now read in all of the header information */ if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE) { return ~(abi_ulong)0UL; } elf_phdata = (struct elf_phdr *) malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); if (!elf_phdata) { return ~((abi_ulong)0UL); } /* * If the size of this structure has changed, then punt, since * we will be doing the wrong thing. */ if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) { free(elf_phdata); return ~((abi_ulong)0UL); } retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET); if (retval >= 0) { retval = read(interpreter_fd, (char *) elf_phdata, sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); } if (retval < 0) { perror("load_elf_interp"); exit(-1); free(elf_phdata); return retval; } bswap_phdr(elf_phdata, interp_elf_ex->e_phnum); rbase = 0; if (interp_elf_ex->e_type == ET_DYN) { /* * In order to avoid hardcoding the interpreter load * address in qemu, we allocate a big enough memory zone. */ rbase = target_mmap(0, INTERP_MAP_SIZE, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); if (rbase == -1) { perror("mmap"); exit(-1); } } error = load_elf_sections(interp_elf_ex, elf_phdata, interpreter_fd, rbase, &baddr); if (error != 0) { perror("load_elf_sections"); exit(-1); } /* Now use mmap to map the library into memory. */ close(interpreter_fd); free(elf_phdata); *interp_load_addr = baddr; return ((abi_ulong) interp_elf_ex->e_entry) + rbase; } static int symfind(const void *s0, const void *s1) { struct elf_sym *sym = (struct elf_sym *)s1; __typeof(sym->st_value) addr = *(uint64_t *)s0; int result = 0; if (addr < sym->st_value) { result = -1; } else if (addr >= sym->st_value + sym->st_size) { result = 1; } return result; } static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) { #if ELF_CLASS == ELFCLASS32 struct elf_sym *syms = s->disas_symtab.elf32; #else struct elf_sym *syms = s->disas_symtab.elf64; #endif /* binary search */ struct elf_sym *sym; sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); if (sym != NULL) { return s->disas_strtab + sym->st_name; } return ""; } /* FIXME: This should use elf_ops.h */ static int symcmp(const void *s0, const void *s1) { struct elf_sym *sym0 = (struct elf_sym *)s0; struct elf_sym *sym1 = (struct elf_sym *)s1; return (sym0->st_value < sym1->st_value) ? -1 : ((sym0->st_value > sym1->st_value) ? 1 : 0); } /* Best attempt to load symbols from this ELF object. */ static void load_symbols(struct elfhdr *hdr, int fd) { unsigned int i, nsyms; struct elf_shdr sechdr, symtab, strtab; char *strings; struct syminfo *s; struct elf_sym *syms, *new_syms; lseek(fd, hdr->e_shoff, SEEK_SET); for (i = 0; i < hdr->e_shnum; i++) { if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr)) { return; } bswap_shdr(&sechdr, 1); if (sechdr.sh_type == SHT_SYMTAB) { symtab = sechdr; lseek(fd, hdr->e_shoff + sizeof(sechdr) * sechdr.sh_link, SEEK_SET); if (read(fd, &strtab, sizeof(strtab)) != sizeof(strtab)) { return; } bswap_shdr(&strtab, 1); goto found; } } return; /* Shouldn't happen... */ found: /* Now know where the strtab and symtab are. Snarf them. */ s = malloc(sizeof(*s)); syms = malloc(symtab.sh_size); if (!syms) { free(s); return; } s->disas_strtab = strings = malloc(strtab.sh_size); if (!s->disas_strtab) { free(s); free(syms); return; } lseek(fd, symtab.sh_offset, SEEK_SET); if (read(fd, syms, symtab.sh_size) != symtab.sh_size) { free(s); free(syms); free(strings); return; } nsyms = symtab.sh_size / sizeof(struct elf_sym); i = 0; while (i < nsyms) { bswap_sym(syms + i); /* Throw away entries which we do not need. */ if (syms[i].st_shndx == SHN_UNDEF || syms[i].st_shndx >= SHN_LORESERVE || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { nsyms--; if (i < nsyms) { syms[i] = syms[nsyms]; } continue; } #if defined(TARGET_ARM) || defined(TARGET_MIPS) /* The bottom address bit marks a Thumb or MIPS16 symbol. */ syms[i].st_value &= ~(target_ulong)1; #endif i++; } /* * Attempt to free the storage associated with the local symbols * that we threw away. Whether or not this has any effect on the * memory allocation depends on the malloc implementation and how * many symbols we managed to discard. */ new_syms = realloc(syms, nsyms * sizeof(*syms)); if (new_syms == NULL) { free(s); free(syms); free(strings); return; } syms = new_syms; qsort(syms, nsyms, sizeof(*syms), symcmp); lseek(fd, strtab.sh_offset, SEEK_SET); if (read(fd, strings, strtab.sh_size) != strtab.sh_size) { free(s); free(syms); free(strings); return; } s->disas_num_syms = nsyms; #if ELF_CLASS == ELFCLASS32 s->disas_symtab.elf32 = syms; s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; #else s->disas_symtab.elf64 = syms; s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; #endif s->next = syminfos; syminfos = s; } /* Check the elf header and see if this a target elf binary. */ int is_target_elf_binary(int fd) { uint8_t buf[128]; struct elfhdr elf_ex; if (lseek(fd, 0L, SEEK_SET) < 0) { return 0; } if (read(fd, buf, sizeof(buf)) < 0) { return 0; } elf_ex = *((struct elfhdr *)buf); bswap_ehdr(&elf_ex); if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || (!elf_check_arch(elf_ex.e_machine))) { return 0; } else { return 1; } } static int load_elf_sections(const struct elfhdr *hdr, struct elf_phdr *phdr, int fd, abi_ulong rbase, abi_ulong *baddrp) { struct elf_phdr *elf_ppnt; abi_ulong baddr; int i; bool first; /* * Now we do a little grungy work by mmaping the ELF image into * the correct location in memory. At this point, we assume that * the image should be loaded at fixed address, not at a variable * address. */ first = true; for (i = 0, elf_ppnt = phdr; i < hdr->e_phnum; i++, elf_ppnt++) { int elf_prot = 0; abi_ulong error; /* XXX Skip memsz == 0. */ if (elf_ppnt->p_type != PT_LOAD) { continue; } if (elf_ppnt->p_flags & PF_R) { elf_prot |= PROT_READ; } if (elf_ppnt->p_flags & PF_W) { elf_prot |= PROT_WRITE; } if (elf_ppnt->p_flags & PF_X) { elf_prot |= PROT_EXEC; } error = target_mmap(TARGET_ELF_PAGESTART(rbase + elf_ppnt->p_vaddr), (elf_ppnt->p_filesz + TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)), elf_prot, (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), fd, (elf_ppnt->p_offset - TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr))); if (error == -1) { perror("mmap"); exit(-1); } else if (elf_ppnt->p_memsz != elf_ppnt->p_filesz) { abi_ulong start_bss, end_bss; start_bss = rbase + elf_ppnt->p_vaddr + elf_ppnt->p_filesz; end_bss = rbase + elf_ppnt->p_vaddr + elf_ppnt->p_memsz; /* * Calling set_brk effectively mmaps the pages that we need for the * bss and break sections. */ set_brk(start_bss, end_bss); padzero(start_bss, end_bss); } if (first) { baddr = TARGET_ELF_PAGESTART(rbase + elf_ppnt->p_vaddr); first = false; } } if (baddrp != NULL) { *baddrp = baddr; } return 0; } int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, struct image_info *info) { struct elfhdr elf_ex; struct elfhdr interp_elf_ex; int interpreter_fd = -1; /* avoid warning */ abi_ulong load_addr; int i; struct elf_phdr *elf_ppnt; struct elf_phdr *elf_phdata; abi_ulong elf_brk; int error, retval; char *elf_interpreter; abi_ulong baddr, elf_entry, et_dyn_addr, interp_load_addr = 0; abi_ulong reloc_func_desc = 0; load_addr = 0; elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */ bswap_ehdr(&elf_ex); /* First of all, some simple consistency checks */ if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || (!elf_check_arch(elf_ex.e_machine))) { return -ENOEXEC; } bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); bprm->p = copy_elf_strings(bprm->envc, bprm->envp, bprm->page, bprm->p); bprm->p = copy_elf_strings(bprm->argc, bprm->argv, bprm->page, bprm->p); if (!bprm->p) { retval = -E2BIG; } /* Now read in all of the header information */ elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize * elf_ex.e_phnum); if (elf_phdata == NULL) { return -ENOMEM; } retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET); if (retval > 0) { retval = read(bprm->fd, (char *)elf_phdata, elf_ex.e_phentsize * elf_ex.e_phnum); } if (retval < 0) { perror("load_elf_binary"); exit(-1); free(elf_phdata); return -errno; } bswap_phdr(elf_phdata, elf_ex.e_phnum); elf_ppnt = elf_phdata; elf_brk = 0; elf_interpreter = NULL; for (i = 0; i < elf_ex.e_phnum; i++) { if (elf_ppnt->p_type == PT_INTERP) { if (elf_interpreter != NULL) { free(elf_phdata); free(elf_interpreter); close(bprm->fd); return -EINVAL; } elf_interpreter = (char *)malloc(elf_ppnt->p_filesz); if (elf_interpreter == NULL) { free(elf_phdata); close(bprm->fd); return -ENOMEM; } retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET); if (retval >= 0) { retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz); } if (retval < 0) { perror("load_elf_binary2"); exit(-1); } if (retval >= 0) { retval = open(path(elf_interpreter), O_RDONLY); if (retval >= 0) { interpreter_fd = retval; } else { perror(elf_interpreter); exit(-1); /* retval = -errno; */ } } if (retval >= 0) { retval = lseek(interpreter_fd, 0, SEEK_SET); if (retval >= 0) { retval = read(interpreter_fd, bprm->buf, 128); } } if (retval >= 0) { interp_elf_ex = *((struct elfhdr *) bprm->buf); } if (retval < 0) { perror("load_elf_binary3"); exit(-1); free(elf_phdata); free(elf_interpreter); close(bprm->fd); return retval; } } elf_ppnt++; } /* Some simple consistency checks for the interpreter */ if (elf_interpreter) { if (interp_elf_ex.e_ident[0] != 0x7f || strncmp((char *)&interp_elf_ex.e_ident[1], "ELF", 3) != 0) { free(elf_interpreter); free(elf_phdata); close(bprm->fd); return -ELIBBAD; } } /* * OK, we are done with that, now set up the arg stuff, and then start this * sucker up */ if (!bprm->p) { free(elf_interpreter); free(elf_phdata); close(bprm->fd); return -E2BIG; } /* OK, This is the point of no return */ info->end_data = 0; info->end_code = 0; info->start_mmap = (abi_ulong)ELF_START_MMAP; info->mmap = 0; elf_entry = (abi_ulong) elf_ex.e_entry; /* XXX Join this with PT_INTERP search? */ baddr = 0; for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { if (elf_ppnt->p_type != PT_LOAD) { continue; } baddr = elf_ppnt->p_vaddr; break; } et_dyn_addr = 0; if (elf_ex.e_type == ET_DYN && baddr == 0) { et_dyn_addr = ELF_ET_DYN_LOAD_ADDR; } /* * Do this so that we can load the interpreter, if need be. We will * change some of these later */ info->rss = 0; setup_arg_pages(bprm, info, &bprm->p, &bprm->stringp); info->start_stack = bprm->p; info->elf_flags = elf_ex.e_flags; error = load_elf_sections(&elf_ex, elf_phdata, bprm->fd, et_dyn_addr, &load_addr); for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { if (elf_ppnt->p_type != PT_LOAD) { continue; } if (elf_ppnt->p_memsz > elf_ppnt->p_filesz) elf_brk = MAX(elf_brk, et_dyn_addr + elf_ppnt->p_vaddr + elf_ppnt->p_memsz); } if (error != 0) { perror("load_elf_sections"); exit(-1); } if (elf_interpreter) { elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd, &interp_load_addr); reloc_func_desc = interp_load_addr; close(interpreter_fd); free(elf_interpreter); if (elf_entry == ~((abi_ulong)0UL)) { printf("Unable to load interpreter\n"); free(elf_phdata); exit(-1); return 0; } } else { interp_load_addr = et_dyn_addr; elf_entry += interp_load_addr; } free(elf_phdata); if (qemu_log_enabled()) { load_symbols(&elf_ex, bprm->fd); } close(bprm->fd); bprm->p = target_create_elf_tables(bprm->p, bprm->argc, bprm->envc, bprm->stringp, &elf_ex, load_addr, et_dyn_addr, interp_load_addr, info); info->load_addr = reloc_func_desc; info->start_brk = info->brk = elf_brk; info->start_stack = bprm->p; info->load_bias = 0; info->entry = elf_entry; #ifdef USE_ELF_CORE_DUMP bprm->core_dump = &elf_core_dump; #else bprm->core_dump = NULL; #endif return 0; } void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) { target_thread_init(regs, infop); }