/* * Copyright (C) 2021, Mahmoud Mandour * * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include #include #include #include #define STRTOLL(x) g_ascii_strtoll(x, NULL, 10) QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; static GHashTable *miss_ht; static GMutex hashtable_lock; static GRand *rng; static int limit; static bool sys; enum EvictionPolicy { LRU, FIFO, RAND, }; enum EvictionPolicy policy; /* * A CacheSet is a set of cache blocks. A memory block that maps to a set can be * put in any of the blocks inside the set. The number of block per set is * called the associativity (assoc). * * Each block contains the the stored tag and a valid bit. Since this is not * a functional simulator, the data itself is not stored. We only identify * whether a block is in the cache or not by searching for its tag. * * In order to search for memory data in the cache, the set identifier and tag * are extracted from the address and the set is probed to see whether a tag * match occur. * * An address is logically divided into three portions: The block offset, * the set number, and the tag. * * The set number is used to identify the set in which the block may exist. * The tag is compared against all the tags of a set to search for a match. If a * match is found, then the access is a hit. * * The CacheSet also contains bookkeaping information about eviction details. */ typedef struct { uint64_t tag; bool valid; } CacheBlock; typedef struct { CacheBlock *blocks; uint64_t *lru_priorities; uint64_t lru_gen_counter; GQueue *fifo_queue; } CacheSet; typedef struct { CacheSet *sets; int num_sets; int cachesize; int assoc; int blksize_shift; uint64_t set_mask; uint64_t tag_mask; uint64_t accesses; uint64_t misses; } Cache; typedef struct { char *disas_str; const char *symbol; uint64_t addr; uint64_t l1_dmisses; uint64_t l1_imisses; uint64_t l2_misses; } InsnData; void (*update_hit)(Cache *cache, int set, int blk); void (*update_miss)(Cache *cache, int set, int blk); void (*metadata_init)(Cache *cache); void (*metadata_destroy)(Cache *cache); static int cores; static Cache **l1_dcaches, **l1_icaches; static bool use_l2; static Cache **l2_ucaches; static GMutex *l1_dcache_locks; static GMutex *l1_icache_locks; static GMutex *l2_ucache_locks; static uint64_t l1_dmem_accesses; static uint64_t l1_imem_accesses; static uint64_t l1_imisses; static uint64_t l1_dmisses; static uint64_t l2_mem_accesses; static uint64_t l2_misses; static int pow_of_two(int num) { g_assert((num & (num - 1)) == 0); int ret = 0; while (num /= 2) { ret++; } return ret; } /* * LRU evection policy: For each set, a generation counter is maintained * alongside a priority array. * * On each set access, the generation counter is incremented. * * On a cache hit: The hit-block is assigned the current generation counter, * indicating that it is the most recently used block. * * On a cache miss: The block with the least priority is searched and replaced * with the newly-cached block, of which the priority is set to the current * generation number. */ static void lru_priorities_init(Cache *cache) { int i; for (i = 0; i < cache->num_sets; i++) { cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc); cache->sets[i].lru_gen_counter = 0; } } static void lru_update_blk(Cache *cache, int set_idx, int blk_idx) { CacheSet *set = &cache->sets[set_idx]; set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter; set->lru_gen_counter++; } static int lru_get_lru_block(Cache *cache, int set_idx) { int i, min_idx, min_priority; min_priority = cache->sets[set_idx].lru_priorities[0]; min_idx = 0; for (i = 1; i < cache->assoc; i++) { if (cache->sets[set_idx].lru_priorities[i] < min_priority) { min_priority = cache->sets[set_idx].lru_priorities[i]; min_idx = i; } } return min_idx; } static void lru_priorities_destroy(Cache *cache) { int i; for (i = 0; i < cache->num_sets; i++) { g_free(cache->sets[i].lru_priorities); } } /* * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that * stores accesses to the cache. * * On a compulsory miss: The block index is enqueued to the fifo_queue to * indicate that it's the latest cached block. * * On a conflict miss: The first-in block is removed from the cache and the new * block is put in its place and enqueued to the FIFO queue. */ static void fifo_init(Cache *cache) { int i; for (i = 0; i < cache->num_sets; i++) { cache->sets[i].fifo_queue = g_queue_new(); } } static int fifo_get_first_block(Cache *cache, int set) { GQueue *q = cache->sets[set].fifo_queue; return GPOINTER_TO_INT(g_queue_pop_tail(q)); } static void fifo_update_on_miss(Cache *cache, int set, int blk_idx) { GQueue *q = cache->sets[set].fifo_queue; g_queue_push_head(q, GINT_TO_POINTER(blk_idx)); } static void fifo_destroy(Cache *cache) { int i; for (i = 0; i < cache->num_sets; i++) { g_queue_free(cache->sets[i].fifo_queue); } } static inline uint64_t extract_tag(Cache *cache, uint64_t addr) { return addr & cache->tag_mask; } static inline uint64_t extract_set(Cache *cache, uint64_t addr) { return (addr & cache->set_mask) >> cache->blksize_shift; } static const char *cache_config_error(int blksize, int assoc, int cachesize) { if (cachesize % blksize != 0) { return "cache size must be divisible by block size"; } else if (cachesize % (blksize * assoc) != 0) { return "cache size must be divisible by set size (assoc * block size)"; } else { return NULL; } } static bool bad_cache_params(int blksize, int assoc, int cachesize) { return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0); } static Cache *cache_init(int blksize, int assoc, int cachesize) { Cache *cache; int i; uint64_t blk_mask; /* * This function shall not be called directly, and hence expects suitable * parameters. */ g_assert(!bad_cache_params(blksize, assoc, cachesize)); cache = g_new(Cache, 1); cache->assoc = assoc; cache->cachesize = cachesize; cache->num_sets = cachesize / (blksize * assoc); cache->sets = g_new(CacheSet, cache->num_sets); cache->blksize_shift = pow_of_two(blksize); cache->accesses = 0; cache->misses = 0; for (i = 0; i < cache->num_sets; i++) { cache->sets[i].blocks = g_new0(CacheBlock, assoc); } blk_mask = blksize - 1; cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift); cache->tag_mask = ~(cache->set_mask | blk_mask); if (metadata_init) { metadata_init(cache); } return cache; } static Cache **caches_init(int blksize, int assoc, int cachesize) { Cache **caches; int i; if (bad_cache_params(blksize, assoc, cachesize)) { return NULL; } caches = g_new(Cache *, cores); for (i = 0; i < cores; i++) { caches[i] = cache_init(blksize, assoc, cachesize); } return caches; } static int get_invalid_block(Cache *cache, uint64_t set) { int i; for (i = 0; i < cache->assoc; i++) { if (!cache->sets[set].blocks[i].valid) { return i; } } return -1; } static int get_replaced_block(Cache *cache, int set) { switch (policy) { case RAND: return g_rand_int_range(rng, 0, cache->assoc); case LRU: return lru_get_lru_block(cache, set); case FIFO: return fifo_get_first_block(cache, set); default: g_assert_not_reached(); } } static int in_cache(Cache *cache, uint64_t addr) { int i; uint64_t tag, set; tag = extract_tag(cache, addr); set = extract_set(cache, addr); for (i = 0; i < cache->assoc; i++) { if (cache->sets[set].blocks[i].tag == tag && cache->sets[set].blocks[i].valid) { return i; } } return -1; } /** * access_cache(): Simulate a cache access * @cache: The cache under simulation * @addr: The address of the requested memory location * * Returns true if the requsted data is hit in the cache and false when missed. * The cache is updated on miss for the next access. */ static bool access_cache(Cache *cache, uint64_t addr) { int hit_blk, replaced_blk; uint64_t tag, set; tag = extract_tag(cache, addr); set = extract_set(cache, addr); hit_blk = in_cache(cache, addr); if (hit_blk != -1) { if (update_hit) { update_hit(cache, set, hit_blk); } return true; } replaced_blk = get_invalid_block(cache, set); if (replaced_blk == -1) { replaced_blk = get_replaced_block(cache, set); } if (update_miss) { update_miss(cache, set, replaced_blk); } cache->sets[set].blocks[replaced_blk].tag = tag; cache->sets[set].blocks[replaced_blk].valid = true; return false; } static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info, uint64_t vaddr, void *userdata) { uint64_t effective_addr; struct qemu_plugin_hwaddr *hwaddr; int cache_idx; InsnData *insn; bool hit_in_l1; hwaddr = qemu_plugin_get_hwaddr(info, vaddr); if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) { return; } effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr; cache_idx = vcpu_index % cores; g_mutex_lock(&l1_dcache_locks[cache_idx]); hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr); if (!hit_in_l1) { insn = (InsnData *) userdata; __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST); l1_dcaches[cache_idx]->misses++; } l1_dcaches[cache_idx]->accesses++; g_mutex_unlock(&l1_dcache_locks[cache_idx]); if (hit_in_l1 || !use_l2) { /* No need to access L2 */ return; } g_mutex_lock(&l2_ucache_locks[cache_idx]); if (!access_cache(l2_ucaches[cache_idx], effective_addr)) { insn = (InsnData *) userdata; __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); l2_ucaches[cache_idx]->misses++; } l2_ucaches[cache_idx]->accesses++; g_mutex_unlock(&l2_ucache_locks[cache_idx]); } static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata) { uint64_t insn_addr; InsnData *insn; int cache_idx; bool hit_in_l1; insn_addr = ((InsnData *) userdata)->addr; cache_idx = vcpu_index % cores; g_mutex_lock(&l1_icache_locks[cache_idx]); hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr); if (!hit_in_l1) { insn = (InsnData *) userdata; __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST); l1_icaches[cache_idx]->misses++; } l1_icaches[cache_idx]->accesses++; g_mutex_unlock(&l1_icache_locks[cache_idx]); if (hit_in_l1 || !use_l2) { /* No need to access L2 */ return; } g_mutex_lock(&l2_ucache_locks[cache_idx]); if (!access_cache(l2_ucaches[cache_idx], insn_addr)) { insn = (InsnData *) userdata; __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); l2_ucaches[cache_idx]->misses++; } l2_ucaches[cache_idx]->accesses++; g_mutex_unlock(&l2_ucache_locks[cache_idx]); } static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) { size_t n_insns; size_t i; InsnData *data; n_insns = qemu_plugin_tb_n_insns(tb); for (i = 0; i < n_insns; i++) { struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); uint64_t effective_addr; if (sys) { effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn); } else { effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn); } /* * Instructions might get translated multiple times, we do not create * new entries for those instructions. Instead, we fetch the same * entry from the hash table and register it for the callback again. */ g_mutex_lock(&hashtable_lock); data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr)); if (data == NULL) { data = g_new0(InsnData, 1); data->disas_str = qemu_plugin_insn_disas(insn); data->symbol = qemu_plugin_insn_symbol(insn); data->addr = effective_addr; g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr), (gpointer) data); } g_mutex_unlock(&hashtable_lock); qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access, QEMU_PLUGIN_CB_NO_REGS, rw, data); qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec, QEMU_PLUGIN_CB_NO_REGS, data); } } static void insn_free(gpointer data) { InsnData *insn = (InsnData *) data; g_free(insn->disas_str); g_free(insn); } static void cache_free(Cache *cache) { for (int i = 0; i < cache->num_sets; i++) { g_free(cache->sets[i].blocks); } if (metadata_destroy) { metadata_destroy(cache); } g_free(cache->sets); g_free(cache); } static void caches_free(Cache **caches) { int i; for (i = 0; i < cores; i++) { cache_free(caches[i]); } } static void append_stats_line(GString *line, uint64_t l1_daccess, uint64_t l1_dmisses, uint64_t l1_iaccess, uint64_t l1_imisses, uint64_t l2_access, uint64_t l2_misses) { double l1_dmiss_rate, l1_imiss_rate, l2_miss_rate; l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0; l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0; g_string_append_printf(line, "%-14lu %-12lu %9.4lf%% %-14lu %-12lu" " %9.4lf%%", l1_daccess, l1_dmisses, l1_daccess ? l1_dmiss_rate : 0.0, l1_iaccess, l1_imisses, l1_iaccess ? l1_imiss_rate : 0.0); if (use_l2) { l2_miss_rate = ((double) l2_misses) / (l2_access) * 100.0; g_string_append_printf(line, " %-12lu %-11lu %10.4lf%%", l2_access, l2_misses, l2_access ? l2_miss_rate : 0.0); } g_string_append(line, "\n"); } static void sum_stats(void) { int i; g_assert(cores > 1); for (i = 0; i < cores; i++) { l1_imisses += l1_icaches[i]->misses; l1_dmisses += l1_dcaches[i]->misses; l1_imem_accesses += l1_icaches[i]->accesses; l1_dmem_accesses += l1_dcaches[i]->accesses; if (use_l2) { l2_misses += l2_ucaches[i]->misses; l2_mem_accesses += l2_ucaches[i]->accesses; } } } static int dcmp(gconstpointer a, gconstpointer b) { InsnData *insn_a = (InsnData *) a; InsnData *insn_b = (InsnData *) b; return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1; } static int icmp(gconstpointer a, gconstpointer b) { InsnData *insn_a = (InsnData *) a; InsnData *insn_b = (InsnData *) b; return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1; } static int l2_cmp(gconstpointer a, gconstpointer b) { InsnData *insn_a = (InsnData *) a; InsnData *insn_b = (InsnData *) b; return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1; } static void log_stats(void) { int i; Cache *icache, *dcache, *l2_cache; g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses," " dmiss rate, insn accesses," " insn misses, imiss rate"); if (use_l2) { g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate"); } g_string_append(rep, "\n"); for (i = 0; i < cores; i++) { g_string_append_printf(rep, "%-8d", i); dcache = l1_dcaches[i]; icache = l1_icaches[i]; l2_cache = use_l2 ? l2_ucaches[i] : NULL; append_stats_line(rep, dcache->accesses, dcache->misses, icache->accesses, icache->misses, l2_cache ? l2_cache->accesses : 0, l2_cache ? l2_cache->misses : 0); } if (cores > 1) { sum_stats(); g_string_append_printf(rep, "%-8s", "sum"); append_stats_line(rep, l1_dmem_accesses, l1_dmisses, l1_imem_accesses, l1_imisses, l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0); } g_string_append(rep, "\n"); qemu_plugin_outs(rep->str); } static void log_top_insns(void) { int i; GList *curr, *miss_insns; InsnData *insn; miss_insns = g_hash_table_get_values(miss_ht); miss_insns = g_list_sort(miss_insns, dcmp); g_autoptr(GString) rep = g_string_new(""); g_string_append_printf(rep, "%s", "address, data misses, instruction\n"); for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { insn = (InsnData *) curr->data; g_string_append_printf(rep, "0x%" PRIx64, insn->addr); if (insn->symbol) { g_string_append_printf(rep, " (%s)", insn->symbol); } g_string_append_printf(rep, ", %ld, %s\n", insn->l1_dmisses, insn->disas_str); } miss_insns = g_list_sort(miss_insns, icmp); g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n"); for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { insn = (InsnData *) curr->data; g_string_append_printf(rep, "0x%" PRIx64, insn->addr); if (insn->symbol) { g_string_append_printf(rep, " (%s)", insn->symbol); } g_string_append_printf(rep, ", %ld, %s\n", insn->l1_imisses, insn->disas_str); } if (!use_l2) { goto finish; } miss_insns = g_list_sort(miss_insns, l2_cmp); g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n"); for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { insn = (InsnData *) curr->data; g_string_append_printf(rep, "0x%" PRIx64, insn->addr); if (insn->symbol) { g_string_append_printf(rep, " (%s)", insn->symbol); } g_string_append_printf(rep, ", %ld, %s\n", insn->l2_misses, insn->disas_str); } finish: qemu_plugin_outs(rep->str); g_list_free(miss_insns); } static void plugin_exit(qemu_plugin_id_t id, void *p) { log_stats(); log_top_insns(); caches_free(l1_dcaches); caches_free(l1_icaches); g_free(l1_dcache_locks); g_free(l1_icache_locks); if (use_l2) { caches_free(l2_ucaches); g_free(l2_ucache_locks); } g_hash_table_destroy(miss_ht); } static void policy_init(void) { switch (policy) { case LRU: update_hit = lru_update_blk; update_miss = lru_update_blk; metadata_init = lru_priorities_init; metadata_destroy = lru_priorities_destroy; break; case FIFO: update_miss = fifo_update_on_miss; metadata_init = fifo_init; metadata_destroy = fifo_destroy; break; case RAND: rng = g_rand_new(); break; default: g_assert_not_reached(); } } QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, int argc, char **argv) { int i; int l1_iassoc, l1_iblksize, l1_icachesize; int l1_dassoc, l1_dblksize, l1_dcachesize; int l2_assoc, l2_blksize, l2_cachesize; limit = 32; sys = info->system_emulation; l1_dassoc = 8; l1_dblksize = 64; l1_dcachesize = l1_dblksize * l1_dassoc * 32; l1_iassoc = 8; l1_iblksize = 64; l1_icachesize = l1_iblksize * l1_iassoc * 32; l2_assoc = 16; l2_blksize = 64; l2_cachesize = l2_assoc * l2_blksize * 2048; policy = LRU; cores = sys ? qemu_plugin_n_vcpus() : 1; for (i = 0; i < argc; i++) { char *opt = argv[i]; g_autofree char **tokens = g_strsplit(opt, "=", 2); if (g_strcmp0(tokens[0], "iblksize") == 0) { l1_iblksize = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "iassoc") == 0) { l1_iassoc = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "icachesize") == 0) { l1_icachesize = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "dblksize") == 0) { l1_dblksize = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "dassoc") == 0) { l1_dassoc = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "dcachesize") == 0) { l1_dcachesize = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "limit") == 0) { limit = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "cores") == 0) { cores = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) { use_l2 = true; l2_cachesize = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "l2blksize") == 0) { use_l2 = true; l2_blksize = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "l2assoc") == 0) { use_l2 = true; l2_assoc = STRTOLL(tokens[1]); } else if (g_strcmp0(tokens[0], "l2") == 0) { if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) { fprintf(stderr, "boolean argument parsing failed: %s\n", opt); return -1; } } else if (g_strcmp0(tokens[0], "evict") == 0) { if (g_strcmp0(tokens[1], "rand") == 0) { policy = RAND; } else if (g_strcmp0(tokens[1], "lru") == 0) { policy = LRU; } else if (g_strcmp0(tokens[1], "fifo") == 0) { policy = FIFO; } else { fprintf(stderr, "invalid eviction policy: %s\n", opt); return -1; } } else { fprintf(stderr, "option parsing failed: %s\n", opt); return -1; } } policy_init(); l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize); if (!l1_dcaches) { const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize); fprintf(stderr, "dcache cannot be constructed from given parameters\n"); fprintf(stderr, "%s\n", err); return -1; } l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize); if (!l1_icaches) { const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize); fprintf(stderr, "icache cannot be constructed from given parameters\n"); fprintf(stderr, "%s\n", err); return -1; } l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL; if (!l2_ucaches && use_l2) { const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize); fprintf(stderr, "L2 cache cannot be constructed from given parameters\n"); fprintf(stderr, "%s\n", err); return -1; } l1_dcache_locks = g_new0(GMutex, cores); l1_icache_locks = g_new0(GMutex, cores); l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL; qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free); return 0; }