/* * QEMU HPPA hardware system emulator. * (C) Copyright 2018-2023 Helge Deller * * This work is licensed under the GNU GPL license version 2 or later. */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "cpu.h" #include "elf.h" #include "hw/loader.h" #include "qemu/error-report.h" #include "sysemu/reset.h" #include "sysemu/sysemu.h" #include "sysemu/runstate.h" #include "hw/rtc/mc146818rtc.h" #include "hw/timer/i8254.h" #include "hw/char/serial.h" #include "hw/char/parallel.h" #include "hw/intc/i8259.h" #include "hw/input/lasips2.h" #include "hw/net/lasi_82596.h" #include "hw/nmi.h" #include "hw/usb.h" #include "hw/pci/pci.h" #include "hw/pci/pci_device.h" #include "hw/pci-host/astro.h" #include "hw/pci-host/dino.h" #include "hw/misc/lasi.h" #include "hppa_hardware.h" #include "qemu/units.h" #include "qapi/error.h" #include "net/net.h" #include "qemu/log.h" #define MIN_SEABIOS_HPPA_VERSION 12 /* require at least this fw version */ /* Power button address at &PAGE0->pad[4] */ #define HPA_POWER_BUTTON (0x40 + 4 * sizeof(uint32_t)) #define enable_lasi_lan() 0 static DeviceState *lasi_dev; static void hppa_powerdown_req(Notifier *n, void *opaque) { hwaddr soft_power_reg = HPA_POWER_BUTTON; uint32_t val; val = ldl_be_phys(&address_space_memory, soft_power_reg); if ((val >> 8) == 0) { /* immediately shut down when under hardware control */ qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); return; } /* clear bit 31 to indicate that the power switch was pressed. */ val &= ~1; stl_be_phys(&address_space_memory, soft_power_reg, val); } static Notifier hppa_system_powerdown_notifier = { .notify = hppa_powerdown_req }; /* Fallback for unassigned PCI I/O operations. Avoids MCHK. */ static uint64_t ignore_read(void *opaque, hwaddr addr, unsigned size) { return 0; } static void ignore_write(void *opaque, hwaddr addr, uint64_t v, unsigned size) { } static const MemoryRegionOps hppa_pci_ignore_ops = { .read = ignore_read, .write = ignore_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, }, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; static ISABus *hppa_isa_bus(hwaddr addr) { ISABus *isa_bus; qemu_irq *isa_irqs; MemoryRegion *isa_region; isa_region = g_new(MemoryRegion, 1); memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops, NULL, "isa-io", 0x800); memory_region_add_subregion(get_system_memory(), addr, isa_region); isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region, &error_abort); isa_irqs = i8259_init(isa_bus, NULL); isa_bus_register_input_irqs(isa_bus, isa_irqs); return isa_bus; } /* * Helper functions to emulate RTC clock and DebugOutputPort */ static time_t rtc_ref; static uint64_t io_cpu_read(void *opaque, hwaddr addr, unsigned size) { uint64_t val = 0; switch (addr) { case 0: /* RTC clock */ val = time(NULL); val += rtc_ref; break; case 8: /* DebugOutputPort */ return 0xe9; /* readback */ } return val; } static void io_cpu_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { unsigned char ch; Chardev *debugout; switch (addr) { case 0: /* RTC clock */ rtc_ref = val - time(NULL); break; case 8: /* DebugOutputPort */ ch = val; debugout = serial_hd(0); if (debugout) { qemu_chr_fe_write_all(debugout->be, &ch, 1); } else { fprintf(stderr, "%c", ch); } break; } } static const MemoryRegionOps hppa_io_helper_ops = { .read = io_cpu_read, .write = io_cpu_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, }, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; typedef uint64_t TranslateFn(void *opaque, uint64_t addr); static uint64_t linux_kernel_virt_to_phys(void *opaque, uint64_t addr) { addr &= (0x10000000 - 1); return addr; } static uint64_t translate_pa10(void *dummy, uint64_t addr) { return (uint32_t)addr; } static uint64_t translate_pa20(void *dummy, uint64_t addr) { return hppa_abs_to_phys_pa2_w0(addr); } static HPPACPU *cpu[HPPA_MAX_CPUS]; static uint64_t firmware_entry; static void fw_cfg_boot_set(void *opaque, const char *boot_device, Error **errp) { fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); } static FWCfgState *create_fw_cfg(MachineState *ms, PCIBus *pci_bus, hwaddr addr) { FWCfgState *fw_cfg; uint64_t val; const char qemu_version[] = QEMU_VERSION; MachineClass *mc = MACHINE_GET_CLASS(ms); int btlb_entries = HPPA_BTLB_ENTRIES(&cpu[0]->env); int len; fw_cfg = fw_cfg_init_mem(addr, addr + 4); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, ms->smp.cpus); fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, HPPA_MAX_CPUS); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size); val = cpu_to_le64(MIN_SEABIOS_HPPA_VERSION); fw_cfg_add_file(fw_cfg, "/etc/firmware-min-version", g_memdup(&val, sizeof(val)), sizeof(val)); val = cpu_to_le64(HPPA_TLB_ENTRIES - btlb_entries); fw_cfg_add_file(fw_cfg, "/etc/cpu/tlb_entries", g_memdup(&val, sizeof(val)), sizeof(val)); val = cpu_to_le64(btlb_entries); fw_cfg_add_file(fw_cfg, "/etc/cpu/btlb_entries", g_memdup(&val, sizeof(val)), sizeof(val)); len = strlen(mc->name) + 1; fw_cfg_add_file(fw_cfg, "/etc/hppa/machine", g_memdup(mc->name, len), len); val = cpu_to_le64(HPA_POWER_BUTTON); fw_cfg_add_file(fw_cfg, "/etc/hppa/power-button-addr", g_memdup(&val, sizeof(val)), sizeof(val)); val = cpu_to_le64(CPU_HPA + 16); fw_cfg_add_file(fw_cfg, "/etc/hppa/rtc-addr", g_memdup(&val, sizeof(val)), sizeof(val)); val = cpu_to_le64(CPU_HPA + 24); fw_cfg_add_file(fw_cfg, "/etc/hppa/DebugOutputPort", g_memdup(&val, sizeof(val)), sizeof(val)); fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ms->boot_config.order[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); fw_cfg_add_file(fw_cfg, "/etc/qemu-version", g_memdup(qemu_version, sizeof(qemu_version)), sizeof(qemu_version)); fw_cfg_add_extra_pci_roots(pci_bus, fw_cfg); return fw_cfg; } static LasiState *lasi_init(void) { DeviceState *dev; dev = qdev_new(TYPE_LASI_CHIP); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); return LASI_CHIP(dev); } static DinoState *dino_init(MemoryRegion *addr_space) { DeviceState *dev; dev = qdev_new(TYPE_DINO_PCI_HOST_BRIDGE); object_property_set_link(OBJECT(dev), "memory-as", OBJECT(addr_space), &error_fatal); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); return DINO_PCI_HOST_BRIDGE(dev); } /* * Step 1: Create CPUs and Memory */ static TranslateFn *machine_HP_common_init_cpus(MachineState *machine) { MemoryRegion *addr_space = get_system_memory(); unsigned int smp_cpus = machine->smp.cpus; TranslateFn *translate; MemoryRegion *cpu_region; /* Create CPUs. */ for (unsigned int i = 0; i < smp_cpus; i++) { cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type)); } /* * For now, treat address layout as if PSW_W is clear. * TODO: create a proper hppa64 board model and load elf64 firmware. */ if (hppa_is_pa20(&cpu[0]->env)) { translate = translate_pa20; } else { translate = translate_pa10; } for (unsigned int i = 0; i < smp_cpus; i++) { g_autofree char *name = g_strdup_printf("cpu%u-io-eir", i); cpu_region = g_new(MemoryRegion, 1); memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops, cpu[i], name, 4); memory_region_add_subregion(addr_space, translate(NULL, CPU_HPA + i * 0x1000), cpu_region); } /* RTC and DebugOutputPort on CPU #0 */ cpu_region = g_new(MemoryRegion, 1); memory_region_init_io(cpu_region, OBJECT(cpu[0]), &hppa_io_helper_ops, cpu[0], "cpu0-io-rtc", 2 * sizeof(uint64_t)); memory_region_add_subregion(addr_space, translate(NULL, CPU_HPA + 16), cpu_region); /* Main memory region. */ if (machine->ram_size > 3 * GiB) { error_report("RAM size is currently restricted to 3GB"); exit(EXIT_FAILURE); } memory_region_add_subregion_overlap(addr_space, 0, machine->ram, -1); return translate; } /* * Last creation step: Add SCSI discs, NICs, graphics & load firmware */ static void machine_HP_common_init_tail(MachineState *machine, PCIBus *pci_bus, TranslateFn *translate) { const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; MachineClass *mc = MACHINE_GET_CLASS(machine); DeviceState *dev; PCIDevice *pci_dev; char *firmware_filename; uint64_t firmware_low, firmware_high; long size; uint64_t kernel_entry = 0, kernel_low, kernel_high; MemoryRegion *addr_space = get_system_memory(); MemoryRegion *rom_region; long i; unsigned int smp_cpus = machine->smp.cpus; SysBusDevice *s; /* SCSI disk setup. */ dev = DEVICE(pci_create_simple(pci_bus, -1, "lsi53c895a")); lsi53c8xx_handle_legacy_cmdline(dev); /* Graphics setup. */ if (machine->enable_graphics && vga_interface_type != VGA_NONE) { vga_interface_created = true; dev = qdev_new("artist"); s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); sysbus_mmio_map(s, 0, translate(NULL, LASI_GFX_HPA)); sysbus_mmio_map(s, 1, translate(NULL, ARTIST_FB_ADDR)); } /* Network setup. */ if (enable_lasi_lan()) { lasi_82596_init(addr_space, translate(NULL, LASI_LAN_HPA), qdev_get_gpio_in(lasi_dev, LASI_IRQ_LAN_HPA)); } for (i = 0; i < nb_nics; i++) { if (!enable_lasi_lan()) { pci_nic_init_nofail(&nd_table[i], pci_bus, mc->default_nic, NULL); } } /* BMC board: HP Powerbar SP2 Diva (with console only) */ pci_dev = pci_new(-1, "pci-serial"); if (!lasi_dev) { /* bind default keyboard/serial to Diva card */ qdev_prop_set_chr(DEVICE(pci_dev), "chardev", serial_hd(0)); } qdev_prop_set_uint8(DEVICE(pci_dev), "prog_if", 0); pci_realize_and_unref(pci_dev, pci_bus, &error_fatal); pci_config_set_vendor_id(pci_dev->config, PCI_VENDOR_ID_HP); pci_config_set_device_id(pci_dev->config, 0x1048); pci_set_word(&pci_dev->config[PCI_SUBSYSTEM_VENDOR_ID], PCI_VENDOR_ID_HP); pci_set_word(&pci_dev->config[PCI_SUBSYSTEM_ID], 0x1227); /* Powerbar */ /* create a second serial PCI card when running Astro */ if (!lasi_dev) { pci_dev = pci_new(-1, "pci-serial-4x"); qdev_prop_set_chr(DEVICE(pci_dev), "chardev1", serial_hd(1)); qdev_prop_set_chr(DEVICE(pci_dev), "chardev2", serial_hd(2)); qdev_prop_set_chr(DEVICE(pci_dev), "chardev3", serial_hd(3)); qdev_prop_set_chr(DEVICE(pci_dev), "chardev4", serial_hd(4)); pci_realize_and_unref(pci_dev, pci_bus, &error_fatal); } /* create USB OHCI controller for USB keyboard & mouse on Astro machines */ if (!lasi_dev && machine->enable_graphics) { pci_create_simple(pci_bus, -1, "pci-ohci"); usb_create_simple(usb_bus_find(-1), "usb-kbd"); usb_create_simple(usb_bus_find(-1), "usb-mouse"); } /* register power switch emulation */ qemu_register_powerdown_notifier(&hppa_system_powerdown_notifier); /* fw_cfg configuration interface */ create_fw_cfg(machine, pci_bus, translate(NULL, FW_CFG_IO_BASE)); /* Load firmware. Given that this is not "real" firmware, but one explicitly written for the emulation, we might as well load it directly from an ELF image. */ firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, machine->firmware ?: "hppa-firmware.img"); if (firmware_filename == NULL) { error_report("no firmware provided"); exit(1); } size = load_elf(firmware_filename, NULL, translate, NULL, &firmware_entry, &firmware_low, &firmware_high, NULL, true, EM_PARISC, 0, 0); if (size < 0) { error_report("could not load firmware '%s'", firmware_filename); exit(1); } qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64 "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n", firmware_low, firmware_high, firmware_entry); if (firmware_low < translate(NULL, FIRMWARE_START) || firmware_high >= translate(NULL, FIRMWARE_END)) { error_report("Firmware overlaps with memory or IO space"); exit(1); } g_free(firmware_filename); rom_region = g_new(MemoryRegion, 1); memory_region_init_ram(rom_region, NULL, "firmware", (FIRMWARE_END - FIRMWARE_START), &error_fatal); memory_region_add_subregion(addr_space, translate(NULL, FIRMWARE_START), rom_region); /* Load kernel */ if (kernel_filename) { size = load_elf(kernel_filename, NULL, linux_kernel_virt_to_phys, NULL, &kernel_entry, &kernel_low, &kernel_high, NULL, true, EM_PARISC, 0, 0); kernel_entry = linux_kernel_virt_to_phys(NULL, kernel_entry); if (size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64 "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ", size %" PRIu64 " kB\n", kernel_low, kernel_high, kernel_entry, size / KiB); if (kernel_cmdline) { cpu[0]->env.gr[24] = 0x4000; pstrcpy_targphys("cmdline", cpu[0]->env.gr[24], TARGET_PAGE_SIZE, kernel_cmdline); } if (initrd_filename) { ram_addr_t initrd_base; int64_t initrd_size; initrd_size = get_image_size(initrd_filename); if (initrd_size < 0) { error_report("could not load initial ram disk '%s'", initrd_filename); exit(1); } /* Load the initrd image high in memory. Mirror the algorithm used by palo: (1) Due to sign-extension problems and PDC, put the initrd no higher than 1G. (2) Reserve 64k for stack. */ initrd_base = MIN(machine->ram_size, 1 * GiB); initrd_base = initrd_base - 64 * KiB; initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK; if (initrd_base < kernel_high) { error_report("kernel and initial ram disk too large!"); exit(1); } load_image_targphys(initrd_filename, initrd_base, initrd_size); cpu[0]->env.gr[23] = initrd_base; cpu[0]->env.gr[22] = initrd_base + initrd_size; } } if (!kernel_entry) { /* When booting via firmware, tell firmware if we want interactive * mode (kernel_entry=1), and to boot from CD (gr[24]='d') * or hard disc * (gr[24]='c'). */ kernel_entry = machine->boot_config.has_menu ? machine->boot_config.menu : 0; cpu[0]->env.gr[24] = machine->boot_config.order[0]; } /* We jump to the firmware entry routine and pass the * various parameters in registers. After firmware initialization, * firmware will start the Linux kernel with ramdisk and cmdline. */ cpu[0]->env.gr[26] = machine->ram_size; cpu[0]->env.gr[25] = kernel_entry; /* tell firmware how many SMP CPUs to present in inventory table */ cpu[0]->env.gr[21] = smp_cpus; /* tell firmware fw_cfg port */ cpu[0]->env.gr[19] = FW_CFG_IO_BASE; } /* * Create HP B160L workstation */ static void machine_HP_B160L_init(MachineState *machine) { DeviceState *dev, *dino_dev; MemoryRegion *addr_space = get_system_memory(); TranslateFn *translate; ISABus *isa_bus; PCIBus *pci_bus; /* Create CPUs and RAM. */ translate = machine_HP_common_init_cpus(machine); if (hppa_is_pa20(&cpu[0]->env)) { error_report("The HP B160L workstation requires a 32-bit " "CPU. Use '-machine C3700' instead."); exit(1); } /* Init Lasi chip */ lasi_dev = DEVICE(lasi_init()); memory_region_add_subregion(addr_space, translate(NULL, LASI_HPA), sysbus_mmio_get_region( SYS_BUS_DEVICE(lasi_dev), 0)); /* Init Dino (PCI host bus chip). */ dino_dev = DEVICE(dino_init(addr_space)); memory_region_add_subregion(addr_space, translate(NULL, DINO_HPA), sysbus_mmio_get_region( SYS_BUS_DEVICE(dino_dev), 0)); pci_bus = PCI_BUS(qdev_get_child_bus(dino_dev, "pci")); assert(pci_bus); /* Create ISA bus, needed for PS/2 kbd/mouse port emulation */ isa_bus = hppa_isa_bus(translate(NULL, IDE_HPA)); assert(isa_bus); /* Serial ports: Lasi and Dino use a 7.272727 MHz clock. */ serial_mm_init(addr_space, translate(NULL, LASI_UART_HPA + 0x800), 0, qdev_get_gpio_in(lasi_dev, LASI_IRQ_UART_HPA), 7272727 / 16, serial_hd(0), DEVICE_BIG_ENDIAN); serial_mm_init(addr_space, translate(NULL, DINO_UART_HPA + 0x800), 0, qdev_get_gpio_in(dino_dev, DINO_IRQ_RS232INT), 7272727 / 16, serial_hd(1), DEVICE_BIG_ENDIAN); /* Parallel port */ parallel_mm_init(addr_space, translate(NULL, LASI_LPT_HPA + 0x800), 0, qdev_get_gpio_in(lasi_dev, LASI_IRQ_LAN_HPA), parallel_hds[0]); /* PS/2 Keyboard/Mouse */ dev = qdev_new(TYPE_LASIPS2); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(lasi_dev, LASI_IRQ_PS2KBD_HPA)); memory_region_add_subregion(addr_space, translate(NULL, LASI_PS2KBD_HPA), sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); memory_region_add_subregion(addr_space, translate(NULL, LASI_PS2KBD_HPA + 0x100), sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1)); /* Add SCSI discs, NICs, graphics & load firmware */ machine_HP_common_init_tail(machine, pci_bus, translate); } static AstroState *astro_init(void) { DeviceState *dev; dev = qdev_new(TYPE_ASTRO_CHIP); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); return ASTRO_CHIP(dev); } /* * Create HP C3700 workstation */ static void machine_HP_C3700_init(MachineState *machine) { PCIBus *pci_bus; AstroState *astro; DeviceState *astro_dev; MemoryRegion *addr_space = get_system_memory(); TranslateFn *translate; /* Create CPUs and RAM. */ translate = machine_HP_common_init_cpus(machine); if (!hppa_is_pa20(&cpu[0]->env)) { error_report("The HP C3000 workstation requires a 64-bit CPU. " "Use '-machine B160L' instead."); exit(1); } /* Init Astro and the Elroys (PCI host bus chips). */ astro = astro_init(); astro_dev = DEVICE(astro); memory_region_add_subregion(addr_space, translate(NULL, ASTRO_HPA), sysbus_mmio_get_region( SYS_BUS_DEVICE(astro_dev), 0)); pci_bus = PCI_BUS(qdev_get_child_bus(DEVICE(astro->elroy[0]), "pci")); assert(pci_bus); /* Add SCSI discs, NICs, graphics & load firmware */ machine_HP_common_init_tail(machine, pci_bus, translate); } static void hppa_machine_reset(MachineState *ms, ShutdownCause reason) { unsigned int smp_cpus = ms->smp.cpus; int i; qemu_devices_reset(reason); /* Start all CPUs at the firmware entry point. * Monarch CPU will initialize firmware, secondary CPUs * will enter a small idle loop and wait for rendevouz. */ for (i = 0; i < smp_cpus; i++) { CPUState *cs = CPU(cpu[i]); cpu_set_pc(cs, firmware_entry); cpu[i]->env.psw = PSW_Q; cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000; cs->exception_index = -1; cs->halted = 0; } /* already initialized by machine_hppa_init()? */ if (cpu[0]->env.gr[26] == ms->ram_size) { return; } cpu[0]->env.gr[26] = ms->ram_size; cpu[0]->env.gr[25] = 0; /* no firmware boot menu */ cpu[0]->env.gr[24] = 'c'; /* gr22/gr23 unused, no initrd while reboot. */ cpu[0]->env.gr[21] = smp_cpus; /* tell firmware fw_cfg port */ cpu[0]->env.gr[19] = FW_CFG_IO_BASE; } static void hppa_nmi(NMIState *n, int cpu_index, Error **errp) { CPUState *cs; CPU_FOREACH(cs) { cpu_interrupt(cs, CPU_INTERRUPT_NMI); } } static const char *HP_B160L_machine_valid_cpu_types[] = { TYPE_HPPA_CPU, NULL }; static void HP_B160L_machine_init_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); NMIClass *nc = NMI_CLASS(oc); mc->desc = "HP B160L workstation"; mc->default_cpu_type = TYPE_HPPA_CPU; mc->valid_cpu_types = HP_B160L_machine_valid_cpu_types; mc->init = machine_HP_B160L_init; mc->reset = hppa_machine_reset; mc->block_default_type = IF_SCSI; mc->max_cpus = HPPA_MAX_CPUS; mc->default_cpus = 1; mc->is_default = true; mc->default_ram_size = 512 * MiB; mc->default_boot_order = "cd"; mc->default_ram_id = "ram"; mc->default_nic = "tulip"; nc->nmi_monitor_handler = hppa_nmi; } static const TypeInfo HP_B160L_machine_init_typeinfo = { .name = MACHINE_TYPE_NAME("B160L"), .parent = TYPE_MACHINE, .class_init = HP_B160L_machine_init_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_NMI }, { } }, }; static const char *HP_C3700_machine_valid_cpu_types[] = { TYPE_HPPA64_CPU, NULL }; static void HP_C3700_machine_init_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); NMIClass *nc = NMI_CLASS(oc); mc->desc = "HP C3700 workstation"; mc->default_cpu_type = TYPE_HPPA64_CPU; mc->valid_cpu_types = HP_C3700_machine_valid_cpu_types; mc->init = machine_HP_C3700_init; mc->reset = hppa_machine_reset; mc->block_default_type = IF_SCSI; mc->max_cpus = HPPA_MAX_CPUS; mc->default_cpus = 1; mc->is_default = false; mc->default_ram_size = 1024 * MiB; mc->default_boot_order = "cd"; mc->default_ram_id = "ram"; mc->default_nic = "tulip"; nc->nmi_monitor_handler = hppa_nmi; } static const TypeInfo HP_C3700_machine_init_typeinfo = { .name = MACHINE_TYPE_NAME("C3700"), .parent = TYPE_MACHINE, .class_init = HP_C3700_machine_init_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_NMI }, { } }, }; static void hppa_machine_init_register_types(void) { type_register_static(&HP_B160L_machine_init_typeinfo); type_register_static(&HP_C3700_machine_init_typeinfo); } type_init(hppa_machine_init_register_types)