/* * RISC-V APLIC (Advanced Platform Level Interrupt Controller) * * Copyright (c) 2021 Western Digital Corporation or its affiliates. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/error-report.h" #include "qemu/bswap.h" #include "exec/address-spaces.h" #include "hw/sysbus.h" #include "hw/pci/msi.h" #include "hw/boards.h" #include "hw/qdev-properties.h" #include "hw/intc/riscv_aplic.h" #include "hw/irq.h" #include "target/riscv/cpu.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "kvm/kvm_riscv.h" #include "migration/vmstate.h" #define APLIC_MAX_IDC (1UL << 14) #define APLIC_MAX_SOURCE 1024 #define APLIC_MIN_IPRIO_BITS 1 #define APLIC_MAX_IPRIO_BITS 8 #define APLIC_MAX_CHILDREN 1024 #define APLIC_DOMAINCFG 0x0000 #define APLIC_DOMAINCFG_RDONLY 0x80000000 #define APLIC_DOMAINCFG_IE (1 << 8) #define APLIC_DOMAINCFG_DM (1 << 2) #define APLIC_DOMAINCFG_BE (1 << 0) #define APLIC_SOURCECFG_BASE 0x0004 #define APLIC_SOURCECFG_D (1 << 10) #define APLIC_SOURCECFG_CHILDIDX_MASK 0x000003ff #define APLIC_SOURCECFG_SM_MASK 0x00000007 #define APLIC_SOURCECFG_SM_INACTIVE 0x0 #define APLIC_SOURCECFG_SM_DETACH 0x1 #define APLIC_SOURCECFG_SM_EDGE_RISE 0x4 #define APLIC_SOURCECFG_SM_EDGE_FALL 0x5 #define APLIC_SOURCECFG_SM_LEVEL_HIGH 0x6 #define APLIC_SOURCECFG_SM_LEVEL_LOW 0x7 #define APLIC_MMSICFGADDR 0x1bc0 #define APLIC_MMSICFGADDRH 0x1bc4 #define APLIC_SMSICFGADDR 0x1bc8 #define APLIC_SMSICFGADDRH 0x1bcc #define APLIC_xMSICFGADDRH_L (1UL << 31) #define APLIC_xMSICFGADDRH_HHXS_MASK 0x1f #define APLIC_xMSICFGADDRH_HHXS_SHIFT 24 #define APLIC_xMSICFGADDRH_LHXS_MASK 0x7 #define APLIC_xMSICFGADDRH_LHXS_SHIFT 20 #define APLIC_xMSICFGADDRH_HHXW_MASK 0x7 #define APLIC_xMSICFGADDRH_HHXW_SHIFT 16 #define APLIC_xMSICFGADDRH_LHXW_MASK 0xf #define APLIC_xMSICFGADDRH_LHXW_SHIFT 12 #define APLIC_xMSICFGADDRH_BAPPN_MASK 0xfff #define APLIC_xMSICFGADDR_PPN_SHIFT 12 #define APLIC_xMSICFGADDR_PPN_HART(__lhxs) \ ((1UL << (__lhxs)) - 1) #define APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) \ ((1UL << (__lhxw)) - 1) #define APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs) \ ((__lhxs)) #define APLIC_xMSICFGADDR_PPN_LHX(__lhxw, __lhxs) \ (APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) << \ APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs)) #define APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) \ ((1UL << (__hhxw)) - 1) #define APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs) \ ((__hhxs) + APLIC_xMSICFGADDR_PPN_SHIFT) #define APLIC_xMSICFGADDR_PPN_HHX(__hhxw, __hhxs) \ (APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) << \ APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs)) #define APLIC_xMSICFGADDRH_VALID_MASK \ (APLIC_xMSICFGADDRH_L | \ (APLIC_xMSICFGADDRH_HHXS_MASK << APLIC_xMSICFGADDRH_HHXS_SHIFT) | \ (APLIC_xMSICFGADDRH_LHXS_MASK << APLIC_xMSICFGADDRH_LHXS_SHIFT) | \ (APLIC_xMSICFGADDRH_HHXW_MASK << APLIC_xMSICFGADDRH_HHXW_SHIFT) | \ (APLIC_xMSICFGADDRH_LHXW_MASK << APLIC_xMSICFGADDRH_LHXW_SHIFT) | \ APLIC_xMSICFGADDRH_BAPPN_MASK) #define APLIC_SETIP_BASE 0x1c00 #define APLIC_SETIPNUM 0x1cdc #define APLIC_CLRIP_BASE 0x1d00 #define APLIC_CLRIPNUM 0x1ddc #define APLIC_SETIE_BASE 0x1e00 #define APLIC_SETIENUM 0x1edc #define APLIC_CLRIE_BASE 0x1f00 #define APLIC_CLRIENUM 0x1fdc #define APLIC_SETIPNUM_LE 0x2000 #define APLIC_SETIPNUM_BE 0x2004 #define APLIC_ISTATE_PENDING (1U << 0) #define APLIC_ISTATE_ENABLED (1U << 1) #define APLIC_ISTATE_ENPEND (APLIC_ISTATE_ENABLED | \ APLIC_ISTATE_PENDING) #define APLIC_ISTATE_INPUT (1U << 8) #define APLIC_GENMSI 0x3000 #define APLIC_TARGET_BASE 0x3004 #define APLIC_TARGET_HART_IDX_SHIFT 18 #define APLIC_TARGET_HART_IDX_MASK 0x3fff #define APLIC_TARGET_GUEST_IDX_SHIFT 12 #define APLIC_TARGET_GUEST_IDX_MASK 0x3f #define APLIC_TARGET_IPRIO_MASK 0xff #define APLIC_TARGET_EIID_MASK 0x7ff #define APLIC_IDC_BASE 0x4000 #define APLIC_IDC_SIZE 32 #define APLIC_IDC_IDELIVERY 0x00 #define APLIC_IDC_IFORCE 0x04 #define APLIC_IDC_ITHRESHOLD 0x08 #define APLIC_IDC_TOPI 0x18 #define APLIC_IDC_TOPI_ID_SHIFT 16 #define APLIC_IDC_TOPI_ID_MASK 0x3ff #define APLIC_IDC_TOPI_PRIO_MASK 0xff #define APLIC_IDC_CLAIMI 0x1c /* * KVM AIA only supports APLIC MSI, fallback to QEMU emulation if we want to use * APLIC Wired. */ static bool is_kvm_aia(bool msimode) { return kvm_irqchip_in_kernel() && msimode; } static uint32_t riscv_aplic_read_input_word(RISCVAPLICState *aplic, uint32_t word) { uint32_t i, irq, sourcecfg, sm, raw_input, irq_inverted, ret = 0; for (i = 0; i < 32; i++) { irq = word * 32 + i; if (!irq || aplic->num_irqs <= irq) { continue; } sourcecfg = aplic->sourcecfg[irq]; if (sourcecfg & APLIC_SOURCECFG_D) { continue; } sm = sourcecfg & APLIC_SOURCECFG_SM_MASK; if (sm == APLIC_SOURCECFG_SM_INACTIVE) { continue; } raw_input = (aplic->state[irq] & APLIC_ISTATE_INPUT) ? 1 : 0; irq_inverted = (sm == APLIC_SOURCECFG_SM_LEVEL_LOW || sm == APLIC_SOURCECFG_SM_EDGE_FALL) ? 1 : 0; ret |= (raw_input ^ irq_inverted) << i; } return ret; } static uint32_t riscv_aplic_read_pending_word(RISCVAPLICState *aplic, uint32_t word) { uint32_t i, irq, ret = 0; for (i = 0; i < 32; i++) { irq = word * 32 + i; if (!irq || aplic->num_irqs <= irq) { continue; } ret |= ((aplic->state[irq] & APLIC_ISTATE_PENDING) ? 1 : 0) << i; } return ret; } static void riscv_aplic_set_pending_raw(RISCVAPLICState *aplic, uint32_t irq, bool pending) { if (pending) { aplic->state[irq] |= APLIC_ISTATE_PENDING; } else { aplic->state[irq] &= ~APLIC_ISTATE_PENDING; } } static void riscv_aplic_set_pending(RISCVAPLICState *aplic, uint32_t irq, bool pending) { uint32_t sourcecfg, sm; if ((irq <= 0) || (aplic->num_irqs <= irq)) { return; } sourcecfg = aplic->sourcecfg[irq]; if (sourcecfg & APLIC_SOURCECFG_D) { return; } sm = sourcecfg & APLIC_SOURCECFG_SM_MASK; if (sm == APLIC_SOURCECFG_SM_INACTIVE) { return; } if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) || (sm == APLIC_SOURCECFG_SM_LEVEL_LOW)) { if (!aplic->msimode || (aplic->msimode && !pending)) { return; } if ((aplic->state[irq] & APLIC_ISTATE_INPUT) && (sm == APLIC_SOURCECFG_SM_LEVEL_LOW)) { return; } if (!(aplic->state[irq] & APLIC_ISTATE_INPUT) && (sm == APLIC_SOURCECFG_SM_LEVEL_HIGH)) { return; } } riscv_aplic_set_pending_raw(aplic, irq, pending); } static void riscv_aplic_set_pending_word(RISCVAPLICState *aplic, uint32_t word, uint32_t value, bool pending) { uint32_t i, irq; for (i = 0; i < 32; i++) { irq = word * 32 + i; if (!irq || aplic->num_irqs <= irq) { continue; } if (value & (1U << i)) { riscv_aplic_set_pending(aplic, irq, pending); } } } static uint32_t riscv_aplic_read_enabled_word(RISCVAPLICState *aplic, int word) { uint32_t i, irq, ret = 0; for (i = 0; i < 32; i++) { irq = word * 32 + i; if (!irq || aplic->num_irqs <= irq) { continue; } ret |= ((aplic->state[irq] & APLIC_ISTATE_ENABLED) ? 1 : 0) << i; } return ret; } static void riscv_aplic_set_enabled_raw(RISCVAPLICState *aplic, uint32_t irq, bool enabled) { if (enabled) { aplic->state[irq] |= APLIC_ISTATE_ENABLED; } else { aplic->state[irq] &= ~APLIC_ISTATE_ENABLED; } } static void riscv_aplic_set_enabled(RISCVAPLICState *aplic, uint32_t irq, bool enabled) { uint32_t sourcecfg, sm; if ((irq <= 0) || (aplic->num_irqs <= irq)) { return; } sourcecfg = aplic->sourcecfg[irq]; if (sourcecfg & APLIC_SOURCECFG_D) { return; } sm = sourcecfg & APLIC_SOURCECFG_SM_MASK; if (sm == APLIC_SOURCECFG_SM_INACTIVE) { return; } riscv_aplic_set_enabled_raw(aplic, irq, enabled); } static void riscv_aplic_set_enabled_word(RISCVAPLICState *aplic, uint32_t word, uint32_t value, bool enabled) { uint32_t i, irq; for (i = 0; i < 32; i++) { irq = word * 32 + i; if (!irq || aplic->num_irqs <= irq) { continue; } if (value & (1U << i)) { riscv_aplic_set_enabled(aplic, irq, enabled); } } } static void riscv_aplic_msi_send(RISCVAPLICState *aplic, uint32_t hart_idx, uint32_t guest_idx, uint32_t eiid) { uint64_t addr; MemTxResult result; RISCVAPLICState *aplic_m; uint32_t lhxs, lhxw, hhxs, hhxw, group_idx, msicfgaddr, msicfgaddrH; aplic_m = aplic; while (aplic_m && !aplic_m->mmode) { aplic_m = aplic_m->parent; } if (!aplic_m) { qemu_log_mask(LOG_GUEST_ERROR, "%s: m-level APLIC not found\n", __func__); return; } if (aplic->mmode) { msicfgaddr = aplic_m->mmsicfgaddr; msicfgaddrH = aplic_m->mmsicfgaddrH; } else { msicfgaddr = aplic_m->smsicfgaddr; msicfgaddrH = aplic_m->smsicfgaddrH; } lhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXS_SHIFT) & APLIC_xMSICFGADDRH_LHXS_MASK; lhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXW_SHIFT) & APLIC_xMSICFGADDRH_LHXW_MASK; hhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXS_SHIFT) & APLIC_xMSICFGADDRH_HHXS_MASK; hhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXW_SHIFT) & APLIC_xMSICFGADDRH_HHXW_MASK; group_idx = hart_idx >> lhxw; hart_idx &= APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw); addr = msicfgaddr; addr |= ((uint64_t)(msicfgaddrH & APLIC_xMSICFGADDRH_BAPPN_MASK)) << 32; addr |= ((uint64_t)(group_idx & APLIC_xMSICFGADDR_PPN_HHX_MASK(hhxw))) << APLIC_xMSICFGADDR_PPN_HHX_SHIFT(hhxs); addr |= ((uint64_t)(hart_idx & APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw))) << APLIC_xMSICFGADDR_PPN_LHX_SHIFT(lhxs); addr |= (uint64_t)(guest_idx & APLIC_xMSICFGADDR_PPN_HART(lhxs)); addr <<= APLIC_xMSICFGADDR_PPN_SHIFT; address_space_stl_le(&address_space_memory, addr, eiid, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { qemu_log_mask(LOG_GUEST_ERROR, "%s: MSI write failed for " "hart_index=%d guest_index=%d eiid=%d\n", __func__, hart_idx, guest_idx, eiid); } } static void riscv_aplic_msi_irq_update(RISCVAPLICState *aplic, uint32_t irq) { uint32_t hart_idx, guest_idx, eiid; if (!aplic->msimode || (aplic->num_irqs <= irq) || !(aplic->domaincfg & APLIC_DOMAINCFG_IE)) { return; } if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) != APLIC_ISTATE_ENPEND) { return; } riscv_aplic_set_pending_raw(aplic, irq, false); hart_idx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT; hart_idx &= APLIC_TARGET_HART_IDX_MASK; if (aplic->mmode) { /* M-level APLIC ignores guest_index */ guest_idx = 0; } else { guest_idx = aplic->target[irq] >> APLIC_TARGET_GUEST_IDX_SHIFT; guest_idx &= APLIC_TARGET_GUEST_IDX_MASK; } eiid = aplic->target[irq] & APLIC_TARGET_EIID_MASK; riscv_aplic_msi_send(aplic, hart_idx, guest_idx, eiid); } static uint32_t riscv_aplic_idc_topi(RISCVAPLICState *aplic, uint32_t idc) { uint32_t best_irq, best_iprio; uint32_t irq, iprio, ihartidx, ithres; if (aplic->num_harts <= idc) { return 0; } ithres = aplic->ithreshold[idc]; best_irq = best_iprio = UINT32_MAX; for (irq = 1; irq < aplic->num_irqs; irq++) { if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) != APLIC_ISTATE_ENPEND) { continue; } ihartidx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT; ihartidx &= APLIC_TARGET_HART_IDX_MASK; if (ihartidx != idc) { continue; } iprio = aplic->target[irq] & aplic->iprio_mask; if (ithres && iprio >= ithres) { continue; } if (iprio < best_iprio) { best_irq = irq; best_iprio = iprio; } } if (best_irq < aplic->num_irqs && best_iprio <= aplic->iprio_mask) { return (best_irq << APLIC_IDC_TOPI_ID_SHIFT) | best_iprio; } return 0; } static void riscv_aplic_idc_update(RISCVAPLICState *aplic, uint32_t idc) { uint32_t topi; if (aplic->msimode || aplic->num_harts <= idc) { return; } topi = riscv_aplic_idc_topi(aplic, idc); if ((aplic->domaincfg & APLIC_DOMAINCFG_IE) && aplic->idelivery[idc] && (aplic->iforce[idc] || topi)) { qemu_irq_raise(aplic->external_irqs[idc]); } else { qemu_irq_lower(aplic->external_irqs[idc]); } } static uint32_t riscv_aplic_idc_claimi(RISCVAPLICState *aplic, uint32_t idc) { uint32_t irq, state, sm, topi = riscv_aplic_idc_topi(aplic, idc); if (!topi) { aplic->iforce[idc] = 0; return 0; } irq = (topi >> APLIC_IDC_TOPI_ID_SHIFT) & APLIC_IDC_TOPI_ID_MASK; sm = aplic->sourcecfg[irq] & APLIC_SOURCECFG_SM_MASK; state = aplic->state[irq]; riscv_aplic_set_pending_raw(aplic, irq, false); if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) && (state & APLIC_ISTATE_INPUT)) { riscv_aplic_set_pending_raw(aplic, irq, true); } else if ((sm == APLIC_SOURCECFG_SM_LEVEL_LOW) && !(state & APLIC_ISTATE_INPUT)) { riscv_aplic_set_pending_raw(aplic, irq, true); } riscv_aplic_idc_update(aplic, idc); return topi; } static void riscv_aplic_request(void *opaque, int irq, int level) { bool update = false; RISCVAPLICState *aplic = opaque; uint32_t sourcecfg, childidx, state, idc; assert((0 < irq) && (irq < aplic->num_irqs)); sourcecfg = aplic->sourcecfg[irq]; if (sourcecfg & APLIC_SOURCECFG_D) { childidx = sourcecfg & APLIC_SOURCECFG_CHILDIDX_MASK; if (childidx < aplic->num_children) { riscv_aplic_request(aplic->children[childidx], irq, level); } return; } state = aplic->state[irq]; switch (sourcecfg & APLIC_SOURCECFG_SM_MASK) { case APLIC_SOURCECFG_SM_EDGE_RISE: if ((level > 0) && !(state & APLIC_ISTATE_INPUT) && !(state & APLIC_ISTATE_PENDING)) { riscv_aplic_set_pending_raw(aplic, irq, true); update = true; } break; case APLIC_SOURCECFG_SM_EDGE_FALL: if ((level <= 0) && (state & APLIC_ISTATE_INPUT) && !(state & APLIC_ISTATE_PENDING)) { riscv_aplic_set_pending_raw(aplic, irq, true); update = true; } break; case APLIC_SOURCECFG_SM_LEVEL_HIGH: if ((level > 0) && !(state & APLIC_ISTATE_PENDING)) { riscv_aplic_set_pending_raw(aplic, irq, true); update = true; } break; case APLIC_SOURCECFG_SM_LEVEL_LOW: if ((level <= 0) && !(state & APLIC_ISTATE_PENDING)) { riscv_aplic_set_pending_raw(aplic, irq, true); update = true; } break; default: break; } if (level <= 0) { aplic->state[irq] &= ~APLIC_ISTATE_INPUT; } else { aplic->state[irq] |= APLIC_ISTATE_INPUT; } if (update) { if (aplic->msimode) { riscv_aplic_msi_irq_update(aplic, irq); } else { idc = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT; idc &= APLIC_TARGET_HART_IDX_MASK; riscv_aplic_idc_update(aplic, idc); } } } static uint64_t riscv_aplic_read(void *opaque, hwaddr addr, unsigned size) { uint32_t irq, word, idc; RISCVAPLICState *aplic = opaque; /* Reads must be 4 byte words */ if ((addr & 0x3) != 0) { goto err; } if (addr == APLIC_DOMAINCFG) { return APLIC_DOMAINCFG_RDONLY | aplic->domaincfg | (aplic->msimode ? APLIC_DOMAINCFG_DM : 0); } else if ((APLIC_SOURCECFG_BASE <= addr) && (addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) { irq = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1; return aplic->sourcecfg[irq]; } else if (aplic->mmode && aplic->msimode && (addr == APLIC_MMSICFGADDR)) { return aplic->mmsicfgaddr; } else if (aplic->mmode && aplic->msimode && (addr == APLIC_MMSICFGADDRH)) { return aplic->mmsicfgaddrH; } else if (aplic->mmode && aplic->msimode && (addr == APLIC_SMSICFGADDR)) { /* * Registers SMSICFGADDR and SMSICFGADDRH are implemented only if: * (a) the interrupt domain is at machine level * (b) the domain's harts implement supervisor mode * (c) the domain has one or more child supervisor-level domains * that support MSI delivery mode (domaincfg.DM is not read- * only zero in at least one of the supervisor-level child * domains). */ return (aplic->num_children) ? aplic->smsicfgaddr : 0; } else if (aplic->mmode && aplic->msimode && (addr == APLIC_SMSICFGADDRH)) { return (aplic->num_children) ? aplic->smsicfgaddrH : 0; } else if ((APLIC_SETIP_BASE <= addr) && (addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) { word = (addr - APLIC_SETIP_BASE) >> 2; return riscv_aplic_read_pending_word(aplic, word); } else if (addr == APLIC_SETIPNUM) { return 0; } else if ((APLIC_CLRIP_BASE <= addr) && (addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) { word = (addr - APLIC_CLRIP_BASE) >> 2; return riscv_aplic_read_input_word(aplic, word); } else if (addr == APLIC_CLRIPNUM) { return 0; } else if ((APLIC_SETIE_BASE <= addr) && (addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) { word = (addr - APLIC_SETIE_BASE) >> 2; return riscv_aplic_read_enabled_word(aplic, word); } else if (addr == APLIC_SETIENUM) { return 0; } else if ((APLIC_CLRIE_BASE <= addr) && (addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) { return 0; } else if (addr == APLIC_CLRIENUM) { return 0; } else if (addr == APLIC_SETIPNUM_LE) { return 0; } else if (addr == APLIC_SETIPNUM_BE) { return 0; } else if (addr == APLIC_GENMSI) { return (aplic->msimode) ? aplic->genmsi : 0; } else if ((APLIC_TARGET_BASE <= addr) && (addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) { irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1; return aplic->target[irq]; } else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) && (addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) { idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE; switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) { case APLIC_IDC_IDELIVERY: return aplic->idelivery[idc]; case APLIC_IDC_IFORCE: return aplic->iforce[idc]; case APLIC_IDC_ITHRESHOLD: return aplic->ithreshold[idc]; case APLIC_IDC_TOPI: return riscv_aplic_idc_topi(aplic, idc); case APLIC_IDC_CLAIMI: return riscv_aplic_idc_claimi(aplic, idc); default: goto err; }; } err: qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid register read 0x%" HWADDR_PRIx "\n", __func__, addr); return 0; } static void riscv_aplic_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { RISCVAPLICState *aplic = opaque; uint32_t irq, word, idc = UINT32_MAX; /* Writes must be 4 byte words */ if ((addr & 0x3) != 0) { goto err; } if (addr == APLIC_DOMAINCFG) { /* Only IE bit writable at the moment */ value &= APLIC_DOMAINCFG_IE; aplic->domaincfg = value; } else if ((APLIC_SOURCECFG_BASE <= addr) && (addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) { irq = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1; if (!aplic->num_children && (value & APLIC_SOURCECFG_D)) { value = 0; } if (value & APLIC_SOURCECFG_D) { value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_CHILDIDX_MASK); } else { value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_SM_MASK); } aplic->sourcecfg[irq] = value; if ((aplic->sourcecfg[irq] & APLIC_SOURCECFG_D) || (aplic->sourcecfg[irq] == 0)) { riscv_aplic_set_pending_raw(aplic, irq, false); riscv_aplic_set_enabled_raw(aplic, irq, false); } } else if (aplic->mmode && aplic->msimode && (addr == APLIC_MMSICFGADDR)) { if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) { aplic->mmsicfgaddr = value; } } else if (aplic->mmode && aplic->msimode && (addr == APLIC_MMSICFGADDRH)) { if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) { aplic->mmsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK; } } else if (aplic->mmode && aplic->msimode && (addr == APLIC_SMSICFGADDR)) { /* * Registers SMSICFGADDR and SMSICFGADDRH are implemented only if: * (a) the interrupt domain is at machine level * (b) the domain's harts implement supervisor mode * (c) the domain has one or more child supervisor-level domains * that support MSI delivery mode (domaincfg.DM is not read- * only zero in at least one of the supervisor-level child * domains). */ if (aplic->num_children && !(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) { aplic->smsicfgaddr = value; } } else if (aplic->mmode && aplic->msimode && (addr == APLIC_SMSICFGADDRH)) { if (aplic->num_children && !(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) { aplic->smsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK; } } else if ((APLIC_SETIP_BASE <= addr) && (addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) { word = (addr - APLIC_SETIP_BASE) >> 2; riscv_aplic_set_pending_word(aplic, word, value, true); } else if (addr == APLIC_SETIPNUM) { riscv_aplic_set_pending(aplic, value, true); } else if ((APLIC_CLRIP_BASE <= addr) && (addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) { word = (addr - APLIC_CLRIP_BASE) >> 2; riscv_aplic_set_pending_word(aplic, word, value, false); } else if (addr == APLIC_CLRIPNUM) { riscv_aplic_set_pending(aplic, value, false); } else if ((APLIC_SETIE_BASE <= addr) && (addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) { word = (addr - APLIC_SETIE_BASE) >> 2; riscv_aplic_set_enabled_word(aplic, word, value, true); } else if (addr == APLIC_SETIENUM) { riscv_aplic_set_enabled(aplic, value, true); } else if ((APLIC_CLRIE_BASE <= addr) && (addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) { word = (addr - APLIC_CLRIE_BASE) >> 2; riscv_aplic_set_enabled_word(aplic, word, value, false); } else if (addr == APLIC_CLRIENUM) { riscv_aplic_set_enabled(aplic, value, false); } else if (addr == APLIC_SETIPNUM_LE) { riscv_aplic_set_pending(aplic, value, true); } else if (addr == APLIC_SETIPNUM_BE) { riscv_aplic_set_pending(aplic, bswap32(value), true); } else if (addr == APLIC_GENMSI) { if (aplic->msimode) { aplic->genmsi = value & ~(APLIC_TARGET_GUEST_IDX_MASK << APLIC_TARGET_GUEST_IDX_SHIFT); riscv_aplic_msi_send(aplic, value >> APLIC_TARGET_HART_IDX_SHIFT, 0, value & APLIC_TARGET_EIID_MASK); } } else if ((APLIC_TARGET_BASE <= addr) && (addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) { irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1; if (aplic->msimode) { aplic->target[irq] = value; } else { aplic->target[irq] = (value & ~APLIC_TARGET_IPRIO_MASK) | ((value & aplic->iprio_mask) ? (value & aplic->iprio_mask) : 1); } } else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) && (addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) { idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE; switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) { case APLIC_IDC_IDELIVERY: aplic->idelivery[idc] = value & 0x1; break; case APLIC_IDC_IFORCE: aplic->iforce[idc] = value & 0x1; break; case APLIC_IDC_ITHRESHOLD: aplic->ithreshold[idc] = value & aplic->iprio_mask; break; default: goto err; }; } else { goto err; } if (aplic->msimode) { for (irq = 1; irq < aplic->num_irqs; irq++) { riscv_aplic_msi_irq_update(aplic, irq); } } else { if (idc == UINT32_MAX) { for (idc = 0; idc < aplic->num_harts; idc++) { riscv_aplic_idc_update(aplic, idc); } } else { riscv_aplic_idc_update(aplic, idc); } } return; err: qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid register write 0x%" HWADDR_PRIx "\n", __func__, addr); } static const MemoryRegionOps riscv_aplic_ops = { .read = riscv_aplic_read, .write = riscv_aplic_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4 } }; static void riscv_aplic_realize(DeviceState *dev, Error **errp) { uint32_t i; RISCVAPLICState *aplic = RISCV_APLIC(dev); if (!is_kvm_aia(aplic->msimode)) { aplic->bitfield_words = (aplic->num_irqs + 31) >> 5; aplic->sourcecfg = g_new0(uint32_t, aplic->num_irqs); aplic->state = g_new0(uint32_t, aplic->num_irqs); aplic->target = g_new0(uint32_t, aplic->num_irqs); if (!aplic->msimode) { for (i = 0; i < aplic->num_irqs; i++) { aplic->target[i] = 1; } } aplic->idelivery = g_new0(uint32_t, aplic->num_harts); aplic->iforce = g_new0(uint32_t, aplic->num_harts); aplic->ithreshold = g_new0(uint32_t, aplic->num_harts); memory_region_init_io(&aplic->mmio, OBJECT(dev), &riscv_aplic_ops, aplic, TYPE_RISCV_APLIC, aplic->aperture_size); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &aplic->mmio); } /* * Only root APLICs have hardware IRQ lines. All non-root APLICs * have IRQ lines delegated by their parent APLIC. */ if (!aplic->parent) { if (kvm_enabled() && is_kvm_aia(aplic->msimode)) { qdev_init_gpio_in(dev, riscv_kvm_aplic_request, aplic->num_irqs); } else { qdev_init_gpio_in(dev, riscv_aplic_request, aplic->num_irqs); } } /* Create output IRQ lines for non-MSI mode */ if (!aplic->msimode) { aplic->external_irqs = g_malloc(sizeof(qemu_irq) * aplic->num_harts); qdev_init_gpio_out(dev, aplic->external_irqs, aplic->num_harts); /* Claim the CPU interrupt to be triggered by this APLIC */ for (i = 0; i < aplic->num_harts; i++) { RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(aplic->hartid_base + i)); if (riscv_cpu_claim_interrupts(cpu, (aplic->mmode) ? MIP_MEIP : MIP_SEIP) < 0) { error_report("%s already claimed", (aplic->mmode) ? "MEIP" : "SEIP"); exit(1); } } } msi_nonbroken = true; } static Property riscv_aplic_properties[] = { DEFINE_PROP_UINT32("aperture-size", RISCVAPLICState, aperture_size, 0), DEFINE_PROP_UINT32("hartid-base", RISCVAPLICState, hartid_base, 0), DEFINE_PROP_UINT32("num-harts", RISCVAPLICState, num_harts, 0), DEFINE_PROP_UINT32("iprio-mask", RISCVAPLICState, iprio_mask, 0), DEFINE_PROP_UINT32("num-irqs", RISCVAPLICState, num_irqs, 0), DEFINE_PROP_BOOL("msimode", RISCVAPLICState, msimode, 0), DEFINE_PROP_BOOL("mmode", RISCVAPLICState, mmode, 0), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vmstate_riscv_aplic = { .name = "riscv_aplic", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(domaincfg, RISCVAPLICState), VMSTATE_UINT32(mmsicfgaddr, RISCVAPLICState), VMSTATE_UINT32(mmsicfgaddrH, RISCVAPLICState), VMSTATE_UINT32(smsicfgaddr, RISCVAPLICState), VMSTATE_UINT32(smsicfgaddrH, RISCVAPLICState), VMSTATE_UINT32(genmsi, RISCVAPLICState), VMSTATE_VARRAY_UINT32(sourcecfg, RISCVAPLICState, num_irqs, 0, vmstate_info_uint32, uint32_t), VMSTATE_VARRAY_UINT32(state, RISCVAPLICState, num_irqs, 0, vmstate_info_uint32, uint32_t), VMSTATE_VARRAY_UINT32(target, RISCVAPLICState, num_irqs, 0, vmstate_info_uint32, uint32_t), VMSTATE_VARRAY_UINT32(idelivery, RISCVAPLICState, num_harts, 0, vmstate_info_uint32, uint32_t), VMSTATE_VARRAY_UINT32(iforce, RISCVAPLICState, num_harts, 0, vmstate_info_uint32, uint32_t), VMSTATE_VARRAY_UINT32(ithreshold, RISCVAPLICState, num_harts, 0, vmstate_info_uint32, uint32_t), VMSTATE_END_OF_LIST() } }; static void riscv_aplic_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_props(dc, riscv_aplic_properties); dc->realize = riscv_aplic_realize; dc->vmsd = &vmstate_riscv_aplic; } static const TypeInfo riscv_aplic_info = { .name = TYPE_RISCV_APLIC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(RISCVAPLICState), .class_init = riscv_aplic_class_init, }; static void riscv_aplic_register_types(void) { type_register_static(&riscv_aplic_info); } type_init(riscv_aplic_register_types) /* * Add a APLIC device to another APLIC device as child for * interrupt delegation. */ void riscv_aplic_add_child(DeviceState *parent, DeviceState *child) { RISCVAPLICState *caplic, *paplic; assert(parent && child); caplic = RISCV_APLIC(child); paplic = RISCV_APLIC(parent); assert(paplic->num_irqs == caplic->num_irqs); assert(paplic->num_children <= QEMU_APLIC_MAX_CHILDREN); caplic->parent = paplic; paplic->children[paplic->num_children] = caplic; paplic->num_children++; } /* * Create APLIC device. */ DeviceState *riscv_aplic_create(hwaddr addr, hwaddr size, uint32_t hartid_base, uint32_t num_harts, uint32_t num_sources, uint32_t iprio_bits, bool msimode, bool mmode, DeviceState *parent) { DeviceState *dev = qdev_new(TYPE_RISCV_APLIC); uint32_t i; assert(num_harts < APLIC_MAX_IDC); assert((APLIC_IDC_BASE + (num_harts * APLIC_IDC_SIZE)) <= size); assert(num_sources < APLIC_MAX_SOURCE); assert(APLIC_MIN_IPRIO_BITS <= iprio_bits); assert(iprio_bits <= APLIC_MAX_IPRIO_BITS); qdev_prop_set_uint32(dev, "aperture-size", size); qdev_prop_set_uint32(dev, "hartid-base", hartid_base); qdev_prop_set_uint32(dev, "num-harts", num_harts); qdev_prop_set_uint32(dev, "iprio-mask", ((1U << iprio_bits) - 1)); qdev_prop_set_uint32(dev, "num-irqs", num_sources + 1); qdev_prop_set_bit(dev, "msimode", msimode); qdev_prop_set_bit(dev, "mmode", mmode); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); if (!is_kvm_aia(msimode)) { sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); } if (parent) { riscv_aplic_add_child(parent, dev); } if (!msimode) { for (i = 0; i < num_harts; i++) { CPUState *cpu = cpu_by_arch_id(hartid_base + i); qdev_connect_gpio_out_named(dev, NULL, i, qdev_get_gpio_in(DEVICE(cpu), (mmode) ? IRQ_M_EXT : IRQ_S_EXT)); } } return dev; }