/* * NeXT Cube System Driver * * Copyright (c) 2011 Bryce Lanham * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published * by the Free Software Foundation; either version 2 of the License, * or (at your option) any later version. */ #include "qemu/osdep.h" #include "exec/hwaddr.h" #include "sysemu/sysemu.h" #include "sysemu/qtest.h" #include "hw/irq.h" #include "hw/m68k/next-cube.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/scsi/esp.h" #include "hw/sysbus.h" #include "qom/object.h" #include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */ #include "hw/block/fdc.h" #include "hw/qdev-properties.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "ui/console.h" #include "target/m68k/cpu.h" #include "migration/vmstate.h" /* #define DEBUG_NEXT */ #ifdef DEBUG_NEXT #define DPRINTF(fmt, ...) \ do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do { } while (0) #endif #define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube") OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE) #define ENTRY 0x0100001e #define RAM_SIZE 0x4000000 #define ROM_FILE "Rev_2.5_v66.bin" typedef struct next_dma { uint32_t csr; uint32_t saved_next; uint32_t saved_limit; uint32_t saved_start; uint32_t saved_stop; uint32_t next; uint32_t limit; uint32_t start; uint32_t stop; uint32_t next_initbuf; uint32_t size; } next_dma; typedef struct NextRtc { int8_t phase; uint8_t ram[32]; uint8_t command; uint8_t value; uint8_t status; uint8_t control; uint8_t retval; } NextRtc; struct NeXTState { MachineState parent; MemoryRegion rom; MemoryRegion rom2; MemoryRegion dmamem; MemoryRegion bmapm1; MemoryRegion bmapm2; next_dma dma[10]; }; #define TYPE_NEXT_PC "next-pc" OBJECT_DECLARE_SIMPLE_TYPE(NeXTPC, NEXT_PC) /* NeXT Peripheral Controller */ struct NeXTPC { SysBusDevice parent_obj; M68kCPU *cpu; MemoryRegion mmiomem; MemoryRegion scrmem; uint32_t scr1; uint32_t scr2; uint32_t old_scr2; uint32_t int_mask; uint32_t int_status; uint32_t led; uint8_t scsi_csr_1; uint8_t scsi_csr_2; qemu_irq scsi_reset; qemu_irq scsi_dma; NextRtc rtc; }; /* Thanks to NeXT forums for this */ /* static const uint8_t rtc_ram3[32] = { 0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00, 0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13 }; */ static const uint8_t rtc_ram2[32] = { 0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00, 0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e, }; #define SCR2_RTCLK 0x2 #define SCR2_RTDATA 0x4 #define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10)) static void next_scr2_led_update(NeXTPC *s) { if (s->scr2 & 0x1) { DPRINTF("fault!\n"); s->led++; if (s->led == 10) { DPRINTF("LED flashing, possible fault!\n"); s->led = 0; } } } static void next_scr2_rtc_update(NeXTPC *s) { uint8_t old_scr2, scr2_2; NextRtc *rtc = &s->rtc; old_scr2 = extract32(s->old_scr2, 8, 8); scr2_2 = extract32(s->scr2, 8, 8); if (scr2_2 & 0x1) { /* DPRINTF("RTC %x phase %i\n", scr2_2, rtc->phase); */ if (rtc->phase == -1) { rtc->phase = 0; } /* If we are in going down clock... do something */ if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) && ((scr2_2 & SCR2_RTCLK) == 0)) { if (rtc->phase < 8) { rtc->command = (rtc->command << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } if (rtc->phase >= 8 && rtc->phase < 16) { rtc->value = (rtc->value << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); /* if we read RAM register, output RT_DATA bit */ if (rtc->command <= 0x1F) { scr2_2 = scr2_2 & (~SCR2_RTDATA); if (rtc->ram[rtc->command] & (0x80 >> (rtc->phase - 8))) { scr2_2 |= SCR2_RTDATA; } rtc->retval = (rtc->retval << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } /* read the status 0x30 */ if (rtc->command == 0x30) { scr2_2 = scr2_2 & (~SCR2_RTDATA); /* for now status = 0x98 (new rtc + FTU) */ if (rtc->status & (0x80 >> (rtc->phase - 8))) { scr2_2 |= SCR2_RTDATA; } rtc->retval = (rtc->retval << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } /* read the status 0x31 */ if (rtc->command == 0x31) { scr2_2 = scr2_2 & (~SCR2_RTDATA); if (rtc->control & (0x80 >> (rtc->phase - 8))) { scr2_2 |= SCR2_RTDATA; } rtc->retval = (rtc->retval << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) { scr2_2 = scr2_2 & (~SCR2_RTDATA); /* for now 0x00 */ time_t time_h = time(NULL); struct tm *info = localtime(&time_h); int ret = 0; switch (rtc->command) { case 0x20: ret = SCR2_TOBCD(info->tm_sec); break; case 0x21: ret = SCR2_TOBCD(info->tm_min); break; case 0x22: ret = SCR2_TOBCD(info->tm_hour); break; case 0x24: ret = SCR2_TOBCD(info->tm_mday); break; case 0x25: ret = SCR2_TOBCD((info->tm_mon + 1)); break; case 0x26: ret = SCR2_TOBCD((info->tm_year - 100)); break; } if (ret & (0x80 >> (rtc->phase - 8))) { scr2_2 |= SCR2_RTDATA; } rtc->retval = (rtc->retval << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } } rtc->phase++; if (rtc->phase == 16) { if (rtc->command >= 0x80 && rtc->command <= 0x9F) { rtc->ram[rtc->command - 0x80] = rtc->value; } /* write to x30 register */ if (rtc->command == 0xB1) { /* clear FTU */ if (rtc->value & 0x04) { rtc->status = rtc->status & (~0x18); s->int_status = s->int_status & (~0x04); } } } } } else { /* else end or abort */ rtc->phase = -1; rtc->command = 0; rtc->value = 0; } s->scr2 = deposit32(s->scr2, 8, 8, scr2_2); } static uint64_t next_mmio_read(void *opaque, hwaddr addr, unsigned size) { NeXTPC *s = NEXT_PC(opaque); uint64_t val; switch (addr) { case 0x7000: /* DPRINTF("Read INT status: %x\n", s->int_status); */ val = s->int_status; break; case 0x7800: DPRINTF("MMIO Read INT mask: %x\n", s->int_mask); val = s->int_mask; break; case 0xc000 ... 0xc003: val = extract32(s->scr1, (4 - (addr - 0xc000) - size) << 3, size << 3); break; case 0xd000 ... 0xd003: val = extract32(s->scr2, (4 - (addr - 0xd000) - size) << 3, size << 3); break; case 0x14020: val = 0x7f; break; default: val = 0; DPRINTF("MMIO Read @ 0x%"HWADDR_PRIx" size %d\n", addr, size); break; } return val; } static void next_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { NeXTPC *s = NEXT_PC(opaque); switch (addr) { case 0x7000: DPRINTF("INT Status old: %x new: %x\n", s->int_status, (unsigned int)val); s->int_status = val; break; case 0x7800: DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, (unsigned int)val); s->int_mask = val; break; case 0xc000 ... 0xc003: DPRINTF("SCR1 Write: %x\n", (unsigned int)val); s->scr1 = deposit32(s->scr1, (4 - (addr - 0xc000) - size) << 3, size << 3, val); break; case 0xd000 ... 0xd003: s->scr2 = deposit32(s->scr2, (4 - (addr - 0xd000) - size) << 3, size << 3, val); next_scr2_led_update(s); next_scr2_rtc_update(s); s->old_scr2 = s->scr2; break; default: DPRINTF("MMIO Write @ 0x%"HWADDR_PRIx " with 0x%x size %u\n", addr, (unsigned int)val, size); } } static const MemoryRegionOps next_mmio_ops = { .read = next_mmio_read, .write = next_mmio_write, .valid.min_access_size = 1, .valid.max_access_size = 4, .endianness = DEVICE_BIG_ENDIAN, }; #define SCSICSR_ENABLE 0x01 #define SCSICSR_RESET 0x02 /* reset scsi dma */ #define SCSICSR_FIFOFL 0x04 #define SCSICSR_DMADIR 0x08 /* if set, scsi to mem */ #define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */ #define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */ static uint64_t next_scr_readfn(void *opaque, hwaddr addr, unsigned size) { NeXTPC *s = NEXT_PC(opaque); uint64_t val; switch (addr) { case 0x14108: DPRINTF("FD read @ %x\n", (unsigned int)addr); val = 0x40 | 0x04 | 0x2 | 0x1; break; case 0x14020: DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1); val = s->scsi_csr_1; break; case 0x14021: DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2); val = 0x40; break; /* * These 4 registers are the hardware timer, not sure which register * is the latch instead of data, but no problems so far. * * Hack: We need to have the LSB change consistently to make it work */ case 0x1a000 ... 0x1a003: val = extract32(clock(), (4 - (addr - 0x1a000) - size) << 3, size << 3); break; /* For now return dummy byte to allow the Ethernet test to timeout */ case 0x6000: val = 0xff; break; default: DPRINTF("BMAP Read @ 0x%x size %u\n", (unsigned int)addr, size); val = 0; break; } return val; } static void next_scr_writefn(void *opaque, hwaddr addr, uint64_t val, unsigned size) { NeXTPC *s = NEXT_PC(opaque); switch (addr) { case 0x14108: DPRINTF("FDCSR Write: %x\n", value); if (val == 0x0) { /* qemu_irq_raise(s->fd_irq[0]); */ } break; case 0x14020: /* SCSI Control Register */ if (val & SCSICSR_FIFOFL) { DPRINTF("SCSICSR FIFO Flush\n"); /* will have to add another irq to the esp if this is needed */ /* esp_puflush_fifo(esp_g); */ } if (val & SCSICSR_ENABLE) { DPRINTF("SCSICSR Enable\n"); /* * qemu_irq_raise(s->scsi_dma); * s->scsi_csr_1 = 0xc0; * s->scsi_csr_1 |= 0x1; * qemu_irq_pulse(s->scsi_dma); */ } /* * else * s->scsi_csr_1 &= ~SCSICSR_ENABLE; */ if (val & SCSICSR_RESET) { DPRINTF("SCSICSR Reset\n"); /* I think this should set DMADIR. CPUDMA and INTMASK to 0 */ qemu_irq_raise(s->scsi_reset); s->scsi_csr_1 &= ~(SCSICSR_INTMASK | 0x80 | 0x1); qemu_irq_lower(s->scsi_reset); } if (val & SCSICSR_DMADIR) { DPRINTF("SCSICSR DMAdir\n"); } if (val & SCSICSR_CPUDMA) { DPRINTF("SCSICSR CPUDMA\n"); /* qemu_irq_raise(s->scsi_dma); */ s->int_status |= 0x4000000; } else { /* fprintf(stderr,"SCSICSR CPUDMA disabled\n"); */ s->int_status &= ~(0x4000000); /* qemu_irq_lower(s->scsi_dma); */ } if (val & SCSICSR_INTMASK) { DPRINTF("SCSICSR INTMASK\n"); /* * int_mask &= ~0x1000; * s->scsi_csr_1 |= val; * s->scsi_csr_1 &= ~SCSICSR_INTMASK; * if (s->scsi_queued) { * s->scsi_queued = 0; * next_irq(s, NEXT_SCSI_I, level); * } */ } else { /* int_mask |= 0x1000; */ } if (val & 0x80) { /* int_mask |= 0x1000; */ /* s->scsi_csr_1 |= 0x80; */ } DPRINTF("SCSICSR Write: %x\n", val); /* s->scsi_csr_1 = val; */ break; /* Hardware timer latch - not implemented yet */ case 0x1a000: default: DPRINTF("BMAP Write @ 0x%x with 0x%x size %u\n", (unsigned int)addr, val, size); } } static const MemoryRegionOps next_scr_ops = { .read = next_scr_readfn, .write = next_scr_writefn, .valid.min_access_size = 1, .valid.max_access_size = 4, .endianness = DEVICE_BIG_ENDIAN, }; #define NEXTDMA_SCSI(x) (0x10 + x) #define NEXTDMA_FD(x) (0x10 + x) #define NEXTDMA_ENTX(x) (0x110 + x) #define NEXTDMA_ENRX(x) (0x150 + x) #define NEXTDMA_CSR 0x0 #define NEXTDMA_NEXT 0x4000 #define NEXTDMA_LIMIT 0x4004 #define NEXTDMA_START 0x4008 #define NEXTDMA_STOP 0x400c #define NEXTDMA_NEXT_INIT 0x4200 #define NEXTDMA_SIZE 0x4204 static void next_dma_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { NeXTState *next_state = NEXT_MACHINE(opaque); switch (addr) { case NEXTDMA_ENRX(NEXTDMA_CSR): if (val & DMA_DEV2M) { next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M; } if (val & DMA_SETENABLE) { /* DPRINTF("SCSI DMA ENABLE\n"); */ next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE; } if (val & DMA_SETSUPDATE) { next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE; } if (val & DMA_CLRCOMPLETE) { next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE; } if (val & DMA_RESET) { next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE | DMA_ENABLE | DMA_DEV2M); } /* DPRINTF("RXCSR \tWrite: %x\n",value); */ break; case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT): next_state->dma[NEXTDMA_ENRX].next_initbuf = val; break; case NEXTDMA_ENRX(NEXTDMA_NEXT): next_state->dma[NEXTDMA_ENRX].next = val; break; case NEXTDMA_ENRX(NEXTDMA_LIMIT): next_state->dma[NEXTDMA_ENRX].limit = val; break; case NEXTDMA_SCSI(NEXTDMA_CSR): if (val & DMA_DEV2M) { next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M; } if (val & DMA_SETENABLE) { /* DPRINTF("SCSI DMA ENABLE\n"); */ next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE; } if (val & DMA_SETSUPDATE) { next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE; } if (val & DMA_CLRCOMPLETE) { next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE; } if (val & DMA_RESET) { next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE | DMA_ENABLE | DMA_DEV2M); /* DPRINTF("SCSI DMA RESET\n"); */ } /* DPRINTF("RXCSR \tWrite: %x\n",value); */ break; case NEXTDMA_SCSI(NEXTDMA_NEXT): next_state->dma[NEXTDMA_SCSI].next = val; break; case NEXTDMA_SCSI(NEXTDMA_LIMIT): next_state->dma[NEXTDMA_SCSI].limit = val; break; case NEXTDMA_SCSI(NEXTDMA_START): next_state->dma[NEXTDMA_SCSI].start = val; break; case NEXTDMA_SCSI(NEXTDMA_STOP): next_state->dma[NEXTDMA_SCSI].stop = val; break; case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT): next_state->dma[NEXTDMA_SCSI].next_initbuf = val; break; default: DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value); } } static uint64_t next_dma_read(void *opaque, hwaddr addr, unsigned int size) { NeXTState *next_state = NEXT_MACHINE(opaque); uint64_t val; switch (addr) { case NEXTDMA_SCSI(NEXTDMA_CSR): DPRINTF("SCSI DMA CSR READ\n"); val = next_state->dma[NEXTDMA_SCSI].csr; break; case NEXTDMA_ENRX(NEXTDMA_CSR): val = next_state->dma[NEXTDMA_ENRX].csr; break; case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT): val = next_state->dma[NEXTDMA_ENRX].next_initbuf; break; case NEXTDMA_ENRX(NEXTDMA_NEXT): val = next_state->dma[NEXTDMA_ENRX].next; break; case NEXTDMA_ENRX(NEXTDMA_LIMIT): val = next_state->dma[NEXTDMA_ENRX].limit; break; case NEXTDMA_SCSI(NEXTDMA_NEXT): val = next_state->dma[NEXTDMA_SCSI].next; break; case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT): val = next_state->dma[NEXTDMA_SCSI].next_initbuf; break; case NEXTDMA_SCSI(NEXTDMA_LIMIT): val = next_state->dma[NEXTDMA_SCSI].limit; break; case NEXTDMA_SCSI(NEXTDMA_START): val = next_state->dma[NEXTDMA_SCSI].start; break; case NEXTDMA_SCSI(NEXTDMA_STOP): val = next_state->dma[NEXTDMA_SCSI].stop; break; default: DPRINTF("DMA read @ %x\n", (unsigned int)addr); val = 0; } /* * once the csr's are done, subtract 0x3FEC from the addr, and that will * normalize the upper registers */ return val; } static const MemoryRegionOps next_dma_ops = { .read = next_dma_read, .write = next_dma_write, .impl.min_access_size = 4, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_BIG_ENDIAN, }; static void next_irq(void *opaque, int number, int level) { NeXTPC *s = NEXT_PC(opaque); M68kCPU *cpu = s->cpu; int shift = 0; /* first switch sets interrupt status */ /* DPRINTF("IRQ %i\n",number); */ switch (number) { /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */ case NEXT_FD_I: shift = 7; break; case NEXT_KBD_I: shift = 3; break; case NEXT_PWR_I: shift = 2; break; case NEXT_ENRX_I: shift = 9; break; case NEXT_ENTX_I: shift = 10; break; case NEXT_SCSI_I: shift = 12; break; case NEXT_CLK_I: shift = 5; break; /* level 5 - scc (serial) */ case NEXT_SCC_I: shift = 17; break; /* level 6 - audio etherrx/tx dma */ case NEXT_ENTX_DMA_I: shift = 28; break; case NEXT_ENRX_DMA_I: shift = 27; break; case NEXT_SCSI_DMA_I: shift = 26; break; case NEXT_SND_I: shift = 23; break; case NEXT_SCC_DMA_I: shift = 21; break; } /* * this HAS to be wrong, the interrupt handlers in mach and together * int_status and int_mask and return if there is a hit */ if (s->int_mask & (1 << shift)) { DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc); /* return; */ } /* second switch triggers the correct interrupt */ if (level) { s->int_status |= 1 << shift; switch (number) { /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */ case NEXT_FD_I: case NEXT_KBD_I: case NEXT_PWR_I: case NEXT_ENRX_I: case NEXT_ENTX_I: case NEXT_SCSI_I: case NEXT_CLK_I: m68k_set_irq_level(cpu, 3, 27); break; /* level 5 - scc (serial) */ case NEXT_SCC_I: m68k_set_irq_level(cpu, 5, 29); break; /* level 6 - audio etherrx/tx dma */ case NEXT_ENTX_DMA_I: case NEXT_ENRX_DMA_I: case NEXT_SCSI_DMA_I: case NEXT_SND_I: case NEXT_SCC_DMA_I: m68k_set_irq_level(cpu, 6, 30); break; } } else { s->int_status &= ~(1 << shift); cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD); } } static void nextdma_write(void *opaque, uint8_t *buf, int size, int type) { uint32_t base_addr; int irq = 0; uint8_t align = 16; NeXTState *next_state = NEXT_MACHINE(qdev_get_machine()); if (type == NEXTDMA_ENRX || type == NEXTDMA_ENTX) { align = 32; } /* Most DMA is supposedly 16 byte aligned */ if ((size % align) != 0) { size -= size % align; size += align; } /* * prom sets the dma start using initbuf while the bootloader uses next * so we check to see if initbuf is 0 */ if (next_state->dma[type].next_initbuf == 0) { base_addr = next_state->dma[type].next; } else { base_addr = next_state->dma[type].next_initbuf; } cpu_physical_memory_write(base_addr, buf, size); next_state->dma[type].next_initbuf = 0; /* saved limit is checked to calculate packet size by both, rom and netbsd */ next_state->dma[type].saved_limit = (next_state->dma[type].next + size); next_state->dma[type].saved_next = (next_state->dma[type].next); /* * 32 bytes under savedbase seems to be some kind of register * of which the purpose is unknown as of yet */ /* stl_phys(s->rx_dma.base-32,0xFFFFFFFF); */ if (!(next_state->dma[type].csr & DMA_SUPDATE)) { next_state->dma[type].next = next_state->dma[type].start; next_state->dma[type].limit = next_state->dma[type].stop; } /* Set dma registers and raise an irq */ next_state->dma[type].csr |= DMA_COMPLETE; /* DON'T CHANGE THIS! */ switch (type) { case NEXTDMA_SCSI: irq = NEXT_SCSI_DMA_I; break; } next_irq(opaque, irq, 1); next_irq(opaque, irq, 0); } static void nextscsi_read(void *opaque, uint8_t *buf, int len) { DPRINTF("SCSI READ: %x\n", len); abort(); } static void nextscsi_write(void *opaque, uint8_t *buf, int size) { DPRINTF("SCSI WRITE: %i\n", size); nextdma_write(opaque, buf, size, NEXTDMA_SCSI); } static void next_scsi_init(DeviceState *pcdev, M68kCPU *cpu) { struct NeXTPC *next_pc = NEXT_PC(pcdev); DeviceState *dev; SysBusDevice *sysbusdev; SysBusESPState *sysbus_esp; ESPState *esp; dev = qdev_new(TYPE_SYSBUS_ESP); sysbus_esp = SYSBUS_ESP(dev); esp = &sysbus_esp->esp; esp->dma_memory_read = nextscsi_read; esp->dma_memory_write = nextscsi_write; esp->dma_opaque = pcdev; sysbus_esp->it_shift = 0; esp->dma_enabled = 1; sysbusdev = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(sysbusdev, &error_fatal); sysbus_connect_irq(sysbusdev, 0, qdev_get_gpio_in(pcdev, NEXT_SCSI_I)); sysbus_mmio_map(sysbusdev, 0, 0x2114000); next_pc->scsi_reset = qdev_get_gpio_in(dev, 0); next_pc->scsi_dma = qdev_get_gpio_in(dev, 1); scsi_bus_legacy_handle_cmdline(&esp->bus); } static void next_escc_init(DeviceState *pcdev) { DeviceState *dev; SysBusDevice *s; dev = qdev_new(TYPE_ESCC); qdev_prop_set_uint32(dev, "disabled", 0); qdev_prop_set_uint32(dev, "frequency", 9600 * 384); qdev_prop_set_uint32(dev, "it_shift", 0); qdev_prop_set_bit(dev, "bit_swap", true); qdev_prop_set_chr(dev, "chrB", serial_hd(1)); qdev_prop_set_chr(dev, "chrA", serial_hd(0)); qdev_prop_set_uint32(dev, "chnBtype", escc_serial); qdev_prop_set_uint32(dev, "chnAtype", escc_serial); s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); sysbus_connect_irq(s, 0, qdev_get_gpio_in(pcdev, NEXT_SCC_I)); sysbus_connect_irq(s, 1, qdev_get_gpio_in(pcdev, NEXT_SCC_DMA_I)); sysbus_mmio_map(s, 0, 0x2118000); } static void next_pc_reset(DeviceState *dev) { NeXTPC *s = NEXT_PC(dev); /* Set internal registers to initial values */ /* 0x0000XX00 << vital bits */ s->scr1 = 0x00011102; s->scr2 = 0x00ff0c80; s->old_scr2 = s->scr2; s->rtc.status = 0x90; /* Load RTC RAM - TODO: provide possibility to load contents from file */ memcpy(s->rtc.ram, rtc_ram2, 32); } static void next_pc_realize(DeviceState *dev, Error **errp) { NeXTPC *s = NEXT_PC(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); qdev_init_gpio_in(dev, next_irq, NEXT_NUM_IRQS); memory_region_init_io(&s->mmiomem, OBJECT(s), &next_mmio_ops, s, "next.mmio", 0xd0000); memory_region_init_io(&s->scrmem, OBJECT(s), &next_scr_ops, s, "next.scr", 0x20000); sysbus_init_mmio(sbd, &s->mmiomem); sysbus_init_mmio(sbd, &s->scrmem); } /* * If the m68k CPU implemented its inbound irq lines as GPIO lines * rather than via the m68k_set_irq_level() function we would not need * this cpu link property and could instead provide outbound IRQ lines * that the board could wire up to the CPU. */ static Property next_pc_properties[] = { DEFINE_PROP_LINK("cpu", NeXTPC, cpu, TYPE_M68K_CPU, M68kCPU *), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription next_rtc_vmstate = { .name = "next-rtc", .version_id = 2, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_INT8(phase, NextRtc), VMSTATE_UINT8_ARRAY(ram, NextRtc, 32), VMSTATE_UINT8(command, NextRtc), VMSTATE_UINT8(value, NextRtc), VMSTATE_UINT8(status, NextRtc), VMSTATE_UINT8(control, NextRtc), VMSTATE_UINT8(retval, NextRtc), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription next_pc_vmstate = { .name = "next-pc", .version_id = 2, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_UINT32(scr1, NeXTPC), VMSTATE_UINT32(scr2, NeXTPC), VMSTATE_UINT32(old_scr2, NeXTPC), VMSTATE_UINT32(int_mask, NeXTPC), VMSTATE_UINT32(int_status, NeXTPC), VMSTATE_UINT32(led, NeXTPC), VMSTATE_UINT8(scsi_csr_1, NeXTPC), VMSTATE_UINT8(scsi_csr_2, NeXTPC), VMSTATE_STRUCT(rtc, NeXTPC, 0, next_rtc_vmstate, NextRtc), VMSTATE_END_OF_LIST() }, }; static void next_pc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->desc = "NeXT Peripheral Controller"; dc->realize = next_pc_realize; dc->reset = next_pc_reset; device_class_set_props(dc, next_pc_properties); dc->vmsd = &next_pc_vmstate; } static const TypeInfo next_pc_info = { .name = TYPE_NEXT_PC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(NeXTPC), .class_init = next_pc_class_init, }; static void next_cube_init(MachineState *machine) { NeXTState *m = NEXT_MACHINE(machine); M68kCPU *cpu; CPUM68KState *env; MemoryRegion *sysmem = get_system_memory(); const char *bios_name = machine->firmware ?: ROM_FILE; DeviceState *pcdev; /* Initialize the cpu core */ cpu = M68K_CPU(cpu_create(machine->cpu_type)); if (!cpu) { error_report("Unable to find m68k CPU definition"); exit(1); } env = &cpu->env; /* Initialize CPU registers. */ env->vbr = 0; env->sr = 0x2700; /* Peripheral Controller */ pcdev = qdev_new(TYPE_NEXT_PC); object_property_set_link(OBJECT(pcdev), "cpu", OBJECT(cpu), &error_abort); sysbus_realize_and_unref(SYS_BUS_DEVICE(pcdev), &error_fatal); /* 64MB RAM starting at 0x04000000 */ memory_region_add_subregion(sysmem, 0x04000000, machine->ram); /* Framebuffer */ sysbus_create_simple(TYPE_NEXTFB, 0x0B000000, NULL); /* MMIO */ sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 0, 0x02000000); /* BMAP IO - acts as a catch-all for now */ sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02100000); /* BMAP memory */ memory_region_init_ram_flags_nomigrate(&m->bmapm1, NULL, "next.bmapmem", 64, RAM_SHARED, &error_fatal); memory_region_add_subregion(sysmem, 0x020c0000, &m->bmapm1); /* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */ memory_region_init_alias(&m->bmapm2, NULL, "next.bmapmem2", &m->bmapm1, 0x0, 64); memory_region_add_subregion(sysmem, 0x820c0000, &m->bmapm2); /* KBD */ sysbus_create_simple(TYPE_NEXTKBD, 0x0200e000, NULL); /* Load ROM here */ memory_region_init_rom(&m->rom, NULL, "next.rom", 0x20000, &error_fatal); memory_region_add_subregion(sysmem, 0x01000000, &m->rom); memory_region_init_alias(&m->rom2, NULL, "next.rom2", &m->rom, 0x0, 0x20000); memory_region_add_subregion(sysmem, 0x0, &m->rom2); if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) { if (!qtest_enabled()) { error_report("Failed to load firmware '%s'.", bios_name); } } else { uint8_t *ptr; /* Initial PC is always at offset 4 in firmware binaries */ ptr = rom_ptr(0x01000004, 4); g_assert(ptr != NULL); env->pc = ldl_p(ptr); if (env->pc >= 0x01020000) { error_report("'%s' does not seem to be a valid firmware image.", bios_name); exit(1); } } /* Serial */ next_escc_init(pcdev); /* TODO: */ /* Network */ /* SCSI */ next_scsi_init(pcdev, cpu); /* DMA */ memory_region_init_io(&m->dmamem, NULL, &next_dma_ops, machine, "next.dma", 0x5000); memory_region_add_subregion(sysmem, 0x02000000, &m->dmamem); } static void next_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "NeXT Cube"; mc->init = next_cube_init; mc->block_default_type = IF_SCSI; mc->default_ram_size = RAM_SIZE; mc->default_ram_id = "next.ram"; mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040"); } static const TypeInfo next_typeinfo = { .name = TYPE_NEXT_MACHINE, .parent = TYPE_MACHINE, .class_init = next_machine_class_init, .instance_size = sizeof(NeXTState), }; static void next_register_type(void) { type_register_static(&next_typeinfo); type_register_static(&next_pc_info); } type_init(next_register_type)