/* * Memory Device Interface * * Copyright ProfitBricks GmbH 2012 * Copyright (C) 2014 Red Hat Inc * Copyright (c) 2018 Red Hat Inc * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "hw/mem/memory-device.h" #include "qapi/error.h" #include "hw/boards.h" #include "qemu/range.h" #include "hw/virtio/vhost.h" #include "sysemu/kvm.h" #include "exec/address-spaces.h" #include "trace.h" static gint memory_device_addr_sort(gconstpointer a, gconstpointer b) { const MemoryDeviceState *md_a = MEMORY_DEVICE(a); const MemoryDeviceState *md_b = MEMORY_DEVICE(b); const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a); const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b); const uint64_t addr_a = mdc_a->get_addr(md_a); const uint64_t addr_b = mdc_b->get_addr(md_b); if (addr_a > addr_b) { return 1; } else if (addr_a < addr_b) { return -1; } return 0; } static int memory_device_build_list(Object *obj, void *opaque) { GSList **list = opaque; if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { DeviceState *dev = DEVICE(obj); if (dev->realized) { /* only realized memory devices matter */ *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort); } } object_child_foreach(obj, memory_device_build_list, opaque); return 0; } static unsigned int memory_device_get_memslots(MemoryDeviceState *md) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); if (mdc->get_memslots) { return mdc->get_memslots(md); } return 1; } /* * Memslots that are reserved by memory devices (required but still reported * as free from KVM / vhost). */ static unsigned int get_reserved_memslots(MachineState *ms) { if (ms->device_memory->used_memslots > ms->device_memory->required_memslots) { /* This is unexpected, and we warned already in the memory notifier. */ return 0; } return ms->device_memory->required_memslots - ms->device_memory->used_memslots; } unsigned int memory_devices_get_reserved_memslots(void) { if (!current_machine->device_memory) { return 0; } return get_reserved_memslots(current_machine); } bool memory_devices_memslot_auto_decision_active(void) { if (!current_machine->device_memory) { return false; } return current_machine->device_memory->memslot_auto_decision_active; } static unsigned int memory_device_memslot_decision_limit(MachineState *ms, MemoryRegion *mr) { const unsigned int reserved = get_reserved_memslots(ms); const uint64_t size = memory_region_size(mr); unsigned int max = vhost_get_max_memslots(); unsigned int free = vhost_get_free_memslots(); uint64_t available_space; unsigned int memslots; if (kvm_enabled()) { max = MIN(max, kvm_get_max_memslots()); free = MIN(free, kvm_get_free_memslots()); } /* * If we only have less overall memslots than what we consider reasonable, * just keep it to a minimum. */ if (max < MEMORY_DEVICES_SAFE_MAX_MEMSLOTS) { return 1; } /* * Consider our soft-limit across all memory devices. We don't really * expect to exceed this limit in reasonable configurations. */ if (MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT <= ms->device_memory->required_memslots) { return 1; } memslots = MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT - ms->device_memory->required_memslots; /* * Consider the actually still free memslots. This is only relevant if * other memslot consumers would consume *significantly* more memslots than * what we prepared for (> 253). Unlikely, but let's just handle it * cleanly. */ memslots = MIN(memslots, free - reserved); if (memslots < 1 || unlikely(free < reserved)) { return 1; } /* We cannot have any other memory devices? So give all to this device. */ if (size == ms->maxram_size - ms->ram_size) { return memslots; } /* * Simple heuristic: equally distribute the memslots over the space * still available for memory devices. */ available_space = ms->maxram_size - ms->ram_size - ms->device_memory->used_region_size; memslots = (double)memslots * size / available_space; return memslots < 1 ? 1 : memslots; } static void memory_device_check_addable(MachineState *ms, MemoryDeviceState *md, MemoryRegion *mr, Error **errp) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); const uint64_t used_region_size = ms->device_memory->used_region_size; const uint64_t size = memory_region_size(mr); const unsigned int reserved_memslots = get_reserved_memslots(ms); unsigned int required_memslots, memslot_limit; /* * Instruct the device to decide how many memslots to use, if applicable, * before we query the number of required memslots the first time. */ if (mdc->decide_memslots) { memslot_limit = memory_device_memslot_decision_limit(ms, mr); mdc->decide_memslots(md, memslot_limit); } required_memslots = memory_device_get_memslots(md); /* we will need memory slots for kvm and vhost */ if (kvm_enabled() && kvm_get_free_memslots() < required_memslots + reserved_memslots) { error_setg(errp, "hypervisor has not enough free memory slots left"); return; } if (vhost_get_free_memslots() < required_memslots + reserved_memslots) { error_setg(errp, "a used vhost backend has not enough free memory slots left"); return; } /* will we exceed the total amount of memory specified */ if (used_region_size + size < used_region_size || used_region_size + size > ms->maxram_size - ms->ram_size) { error_setg(errp, "not enough space, currently 0x%" PRIx64 " in use of total space for memory devices 0x" RAM_ADDR_FMT, used_region_size, ms->maxram_size - ms->ram_size); return; } } static uint64_t memory_device_get_free_addr(MachineState *ms, const uint64_t *hint, uint64_t align, uint64_t size, Error **errp) { GSList *list = NULL, *item; Range as, new = range_empty; range_init_nofail(&as, ms->device_memory->base, memory_region_size(&ms->device_memory->mr)); /* start of address space indicates the maximum alignment we expect */ if (!QEMU_IS_ALIGNED(range_lob(&as), align)) { warn_report("the alignment (0x%" PRIx64 ") exceeds the expected" " maximum alignment, memory will get fragmented and not" " all 'maxmem' might be usable for memory devices.", align); } if (hint && !QEMU_IS_ALIGNED(*hint, align)) { error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes", align); return 0; } if (!QEMU_IS_ALIGNED(size, align)) { error_setg(errp, "backend memory size must be multiple of 0x%" PRIx64, align); return 0; } if (hint) { if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) { error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64 "], usable range for memory devices [0x%" PRIx64 ":0x%" PRIx64 "]", *hint, size, range_lob(&as), range_size(&as)); return 0; } } else { if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) { error_setg(errp, "can't add memory device, device too big"); return 0; } } /* find address range that will fit new memory device */ object_child_foreach(OBJECT(ms), memory_device_build_list, &list); for (item = list; item; item = g_slist_next(item)) { const MemoryDeviceState *md = item->data; const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md)); uint64_t next_addr; Range tmp; range_init_nofail(&tmp, mdc->get_addr(md), memory_device_get_region_size(md, &error_abort)); if (range_overlaps_range(&tmp, &new)) { if (hint) { const DeviceState *d = DEVICE(md); error_setg(errp, "address range conflicts with memory device" " id='%s'", d->id ? d->id : "(unnamed)"); goto out; } next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align); if (!next_addr || range_init(&new, next_addr, range_size(&new))) { range_make_empty(&new); break; } } else if (range_lob(&tmp) > range_upb(&new)) { break; } } if (!range_contains_range(&as, &new)) { error_setg(errp, "could not find position in guest address space for " "memory device - memory fragmented due to alignments"); } out: g_slist_free(list); return range_lob(&new); } MemoryDeviceInfoList *qmp_memory_device_list(void) { GSList *devices = NULL, *item; MemoryDeviceInfoList *list = NULL, **tail = &list; object_child_foreach(qdev_get_machine(), memory_device_build_list, &devices); for (item = devices; item; item = g_slist_next(item)) { const MemoryDeviceState *md = MEMORY_DEVICE(item->data); const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data); MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1); mdc->fill_device_info(md, info); QAPI_LIST_APPEND(tail, info); } g_slist_free(devices); return list; } static int memory_device_plugged_size(Object *obj, void *opaque) { uint64_t *size = opaque; if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { const DeviceState *dev = DEVICE(obj); const MemoryDeviceState *md = MEMORY_DEVICE(obj); const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj); if (dev->realized) { *size += mdc->get_plugged_size(md, &error_abort); } } object_child_foreach(obj, memory_device_plugged_size, opaque); return 0; } uint64_t get_plugged_memory_size(void) { uint64_t size = 0; memory_device_plugged_size(qdev_get_machine(), &size); return size; } void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms, const uint64_t *legacy_align, Error **errp) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); Error *local_err = NULL; uint64_t addr, align = 0; MemoryRegion *mr; if (!ms->device_memory) { error_setg(errp, "the configuration is not prepared for memory devices" " (e.g., for memory hotplug), consider specifying the" " maxmem option"); return; } mr = mdc->get_memory_region(md, &local_err); if (local_err) { goto out; } memory_device_check_addable(ms, md, mr, &local_err); if (local_err) { goto out; } if (legacy_align) { align = *legacy_align; } else { if (mdc->get_min_alignment) { align = mdc->get_min_alignment(md); } align = MAX(align, memory_region_get_alignment(mr)); } addr = mdc->get_addr(md); addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align, memory_region_size(mr), &local_err); if (local_err) { goto out; } mdc->set_addr(md, addr, &local_err); if (!local_err) { trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr); } out: error_propagate(errp, local_err); } void memory_device_plug(MemoryDeviceState *md, MachineState *ms) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); const unsigned int memslots = memory_device_get_memslots(md); const uint64_t addr = mdc->get_addr(md); MemoryRegion *mr; /* * We expect that a previous call to memory_device_pre_plug() succeeded, so * it can't fail at this point. */ mr = mdc->get_memory_region(md, &error_abort); g_assert(ms->device_memory); ms->device_memory->used_region_size += memory_region_size(mr); ms->device_memory->required_memslots += memslots; if (mdc->decide_memslots && memslots > 1) { ms->device_memory->memslot_auto_decision_active++; } memory_region_add_subregion(&ms->device_memory->mr, addr - ms->device_memory->base, mr); trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr); } void memory_device_unplug(MemoryDeviceState *md, MachineState *ms) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); const unsigned int memslots = memory_device_get_memslots(md); MemoryRegion *mr; /* * We expect that a previous call to memory_device_pre_plug() succeeded, so * it can't fail at this point. */ mr = mdc->get_memory_region(md, &error_abort); g_assert(ms->device_memory); memory_region_del_subregion(&ms->device_memory->mr, mr); if (mdc->decide_memslots && memslots > 1) { ms->device_memory->memslot_auto_decision_active--; } ms->device_memory->used_region_size -= memory_region_size(mr); ms->device_memory->required_memslots -= memslots; trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "", mdc->get_addr(md)); } uint64_t memory_device_get_region_size(const MemoryDeviceState *md, Error **errp) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); MemoryRegion *mr; /* dropping const here is fine as we don't touch the memory region */ mr = mdc->get_memory_region((MemoryDeviceState *)md, errp); if (!mr) { return 0; } return memory_region_size(mr); } static void memory_devices_region_mod(MemoryListener *listener, MemoryRegionSection *mrs, bool add) { DeviceMemoryState *dms = container_of(listener, DeviceMemoryState, listener); if (!memory_region_is_ram(mrs->mr)) { warn_report("Unexpected memory region mapped into device memory region."); return; } /* * The expectation is that each distinct RAM memory region section in * our region for memory devices consumes exactly one memslot in KVM * and in vhost. For vhost, this is true, except: * * ROM memory regions don't consume a memslot. These get used very * rarely for memory devices (R/O NVDIMMs). * * Memslots without a fd (memory-backend-ram) don't necessarily * consume a memslot. Such setups are quite rare and possibly bogus: * the memory would be inaccessible by such vhost devices. * * So for vhost, in corner cases we might over-estimate the number of * memslots that are currently used or that might still be reserved * (required - used). */ dms->used_memslots += add ? 1 : -1; if (dms->used_memslots > dms->required_memslots) { warn_report("Memory devices use more memory slots than indicated as required."); } } static void memory_devices_region_add(MemoryListener *listener, MemoryRegionSection *mrs) { return memory_devices_region_mod(listener, mrs, true); } static void memory_devices_region_del(MemoryListener *listener, MemoryRegionSection *mrs) { return memory_devices_region_mod(listener, mrs, false); } void machine_memory_devices_init(MachineState *ms, hwaddr base, uint64_t size) { g_assert(size); g_assert(!ms->device_memory); ms->device_memory = g_new0(DeviceMemoryState, 1); ms->device_memory->base = base; memory_region_init(&ms->device_memory->mr, OBJECT(ms), "device-memory", size); address_space_init(&ms->device_memory->as, &ms->device_memory->mr, "device-memory"); memory_region_add_subregion(get_system_memory(), ms->device_memory->base, &ms->device_memory->mr); /* Track the number of memslots used by memory devices. */ ms->device_memory->listener.region_add = memory_devices_region_add; ms->device_memory->listener.region_del = memory_devices_region_del; memory_listener_register(&ms->device_memory->listener, &ms->device_memory->as); } static const TypeInfo memory_device_info = { .name = TYPE_MEMORY_DEVICE, .parent = TYPE_INTERFACE, .class_size = sizeof(MemoryDeviceClass), }; static void memory_device_register_types(void) { type_register_static(&memory_device_info); } type_init(memory_device_register_types)