/* * CTU CAN FD PCI device emulation * http://canbus.pages.fel.cvut.cz/ * * Copyright (c) 2019 Jan Charvat (jancharvat.charvat@gmail.com) * * Based on Kvaser PCI CAN device (SJA1000 based) emulation implemented by * Jin Yang and Pavel Pisa * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "chardev/char.h" #include "hw/irq.h" #include "migration/vmstate.h" #include "net/can_emu.h" #include "ctucan_core.h" #ifndef DEBUG_CAN #define DEBUG_CAN 0 #endif /*DEBUG_CAN*/ #define DPRINTF(fmt, ...) \ do { \ if (DEBUG_CAN) { \ qemu_log("[ctucan]: " fmt , ## __VA_ARGS__); \ } \ } while (0) static void ctucan_buff2frame(const uint8_t *buff, qemu_can_frame *frame) { frame->can_id = 0; frame->can_dlc = 0; frame->flags = 0; if (buff == NULL) { return; } { union ctu_can_fd_frame_form_w frame_form_w; union ctu_can_fd_identifier_w identifier_w; unsigned int ide; uint32_t w; w = le32_to_cpu(*(uint32_t *)buff); frame_form_w = (union ctu_can_fd_frame_form_w)w; frame->can_dlc = can_dlc2len(frame_form_w.s.dlc); w = le32_to_cpu(*(uint32_t *)(buff + 4)); identifier_w = (union ctu_can_fd_identifier_w)w; ide = frame_form_w.s.ide; if (ide) { frame->can_id = (identifier_w.s.identifier_base << 18) | identifier_w.s.identifier_ext; frame->can_id |= QEMU_CAN_EFF_FLAG; } else { frame->can_id = identifier_w.s.identifier_base; } if (frame_form_w.s.esi_rsv) { frame->flags |= QEMU_CAN_FRMF_ESI; } if (frame_form_w.s.rtr) { frame->can_id |= QEMU_CAN_RTR_FLAG; } if (frame_form_w.s.fdf) { /*CAN FD*/ frame->flags |= QEMU_CAN_FRMF_TYPE_FD; if (frame_form_w.s.brs) { frame->flags |= QEMU_CAN_FRMF_BRS; } } } memcpy(frame->data, buff + 0x10, 0x40); } static int ctucan_frame2buff(const qemu_can_frame *frame, uint8_t *buff) { unsigned int bytes_cnt = -1; memset(buff, 0, CTUCAN_MSG_MAX_LEN * sizeof(*buff)); if (frame == NULL) { return bytes_cnt; } { union ctu_can_fd_frame_form_w frame_form_w; union ctu_can_fd_identifier_w identifier_w; frame_form_w.u32 = 0; identifier_w.u32 = 0; bytes_cnt = frame->can_dlc; bytes_cnt = (bytes_cnt + 3) & ~3; bytes_cnt += 16; frame_form_w.s.rwcnt = (bytes_cnt >> 2) - 1; frame_form_w.s.dlc = can_len2dlc(frame->can_dlc); if (frame->can_id & QEMU_CAN_EFF_FLAG) { frame_form_w.s.ide = 1; identifier_w.s.identifier_base = (frame->can_id & 0x1FFC0000) >> 18; identifier_w.s.identifier_ext = frame->can_id & 0x3FFFF; } else { identifier_w.s.identifier_base = frame->can_id & 0x7FF; } if (frame->flags & QEMU_CAN_FRMF_ESI) { frame_form_w.s.esi_rsv = 1; } if (frame->can_id & QEMU_CAN_RTR_FLAG) { frame_form_w.s.rtr = 1; } if (frame->flags & QEMU_CAN_FRMF_TYPE_FD) { /*CAN FD*/ frame_form_w.s.fdf = 1; if (frame->flags & QEMU_CAN_FRMF_BRS) { frame_form_w.s.brs = 1; } } *(uint32_t *)buff = cpu_to_le32(frame_form_w.u32); *(uint32_t *)(buff + 4) = cpu_to_le32(identifier_w.u32); } memcpy(buff + 0x10, frame->data, 0x40); return bytes_cnt; } static void ctucan_update_irq(CtuCanCoreState *s) { union ctu_can_fd_int_stat int_rq; int_rq.u32 = 0; if (s->rx_status_rx_settings.s.rxfrc) { int_rq.s.rbnei = 1; } int_rq.u32 &= ~s->int_mask.u32; s->int_stat.u32 |= int_rq.u32; if (s->int_stat.u32 & s->int_ena.u32) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static void ctucan_update_txnf(CtuCanCoreState *s) { int i; int txnf; unsigned int buff_st; txnf = 0; for (i = 0; i < CTUCAN_CORE_TXBUF_NUM; i++) { buff_st = (s->tx_status.u32 >> (i * 4)) & 0xf; if (buff_st == TXT_ETY) { txnf = 1; } } s->status.s.txnf = txnf; } void ctucan_hardware_reset(CtuCanCoreState *s) { DPRINTF("Hardware reset in progress!!!\n"); int i; unsigned int buff_st; uint32_t buff_st_mask; s->tx_status.u32 = 0; for (i = 0; i < CTUCAN_CORE_TXBUF_NUM; i++) { buff_st_mask = 0xf << (i * 4); buff_st = TXT_ETY; s->tx_status.u32 = (s->tx_status.u32 & ~buff_st_mask) | (buff_st << (i * 4)); } s->status.s.idle = 1; ctucan_update_txnf(s); s->rx_status_rx_settings.u32 = 0; s->rx_tail_pos = 0; s->rx_cnt = 0; s->rx_frame_rem = 0; /* Flush RX buffer */ s->rx_tail_pos = 0; s->rx_cnt = 0; s->rx_frame_rem = 0; /* Set on progdokum reset value */ s->mode_settings.u32 = 0; s->mode_settings.s.fde = 1; s->int_stat.u32 = 0; s->int_ena.u32 = 0; s->int_mask.u32 = 0; s->rx_status_rx_settings.u32 = 0; s->rx_status_rx_settings.s.rxe = 0; s->rx_fr_ctr.u32 = 0; s->tx_fr_ctr.u32 = 0; s->yolo_reg.s.yolo_val = 3735928559; qemu_irq_lower(s->irq); } static void ctucan_send_ready_buffers(CtuCanCoreState *s) { qemu_can_frame frame; uint8_t *pf; int buff2tx_idx; uint32_t tx_prio_max; if (!s->mode_settings.s.ena) { return; } do { union ctu_can_fd_int_stat int_stat; int i; buff2tx_idx = -1; tx_prio_max = 0; for (i = 0; i < CTUCAN_CORE_TXBUF_NUM; i++) { uint32_t prio; if (extract32(s->tx_status.u32, i * 4, 4) != TXT_RDY) { continue; } prio = (s->tx_priority.u32 >> (i * 4)) & 0x7; if (tx_prio_max < prio) { tx_prio_max = prio; buff2tx_idx = i; } } if (buff2tx_idx == -1) { break; } int_stat.u32 = 0; pf = s->tx_buffer[buff2tx_idx].data; ctucan_buff2frame(pf, &frame); s->status.s.idle = 0; s->status.s.txs = 1; can_bus_client_send(&s->bus_client, &frame, 1); s->status.s.idle = 1; s->status.s.txs = 0; s->tx_fr_ctr.s.tx_fr_ctr_val++; int_stat.s.txi = 1; int_stat.s.txbhci = 1; s->int_stat.u32 |= int_stat.u32 & ~s->int_mask.u32; s->tx_status.u32 = deposit32(s->tx_status.u32, buff2tx_idx * 4, 4, TXT_TOK); } while (1); } #define CTUCAN_CORE_TXBUFF_SPAN \ (CTU_CAN_FD_TXTB2_DATA_1 - CTU_CAN_FD_TXTB1_DATA_1) void ctucan_mem_write(CtuCanCoreState *s, hwaddr addr, uint64_t val, unsigned size) { int i; DPRINTF("write 0x%02llx addr 0x%02x\n", (unsigned long long)val, (unsigned int)addr); if (addr >= CTUCAN_CORE_MEM_SIZE) { return; } if (addr >= CTU_CAN_FD_TXTB1_DATA_1) { int buff_num; addr -= CTU_CAN_FD_TXTB1_DATA_1; buff_num = addr / CTUCAN_CORE_TXBUFF_SPAN; addr %= CTUCAN_CORE_TXBUFF_SPAN; if ((buff_num < CTUCAN_CORE_TXBUF_NUM) && ((addr + size) <= sizeof(s->tx_buffer[buff_num].data))) { stn_le_p(s->tx_buffer[buff_num].data + addr, size, val); } } else { switch (addr & ~3) { case CTU_CAN_FD_MODE: s->mode_settings.u32 = (uint32_t)val; if (s->mode_settings.s.rst) { ctucan_hardware_reset(s); s->mode_settings.s.rst = 0; } break; case CTU_CAN_FD_COMMAND: { union ctu_can_fd_command command; command.u32 = (uint32_t)val; if (command.s.cdo) { s->status.s.dor = 0; } if (command.s.rrb) { s->rx_tail_pos = 0; s->rx_cnt = 0; s->rx_frame_rem = 0; s->rx_status_rx_settings.s.rxfrc = 0; } if (command.s.txfcrst) { s->tx_fr_ctr.s.tx_fr_ctr_val = 0; } if (command.s.rxfcrst) { s->rx_fr_ctr.s.rx_fr_ctr_val = 0; } break; } case CTU_CAN_FD_INT_STAT: s->int_stat.u32 &= ~(uint32_t)val; break; case CTU_CAN_FD_INT_ENA_SET: s->int_ena.u32 |= (uint32_t)val; break; case CTU_CAN_FD_INT_ENA_CLR: s->int_ena.u32 &= ~(uint32_t)val; break; case CTU_CAN_FD_INT_MASK_SET: s->int_mask.u32 |= (uint32_t)val; break; case CTU_CAN_FD_INT_MASK_CLR: s->int_mask.u32 &= ~(uint32_t)val; break; case CTU_CAN_FD_TX_COMMAND: if (s->mode_settings.s.ena) { union ctu_can_fd_tx_command tx_command; union ctu_can_fd_tx_command mask; unsigned int buff_st; uint32_t buff_st_mask; tx_command.u32 = (uint32_t)val; mask.u32 = 0; mask.s.txb1 = 1; for (i = 0; i < CTUCAN_CORE_TXBUF_NUM; i++) { if (!(tx_command.u32 & (mask.u32 << i))) { continue; } buff_st_mask = 0xf << (i * 4); buff_st = (s->tx_status.u32 >> (i * 4)) & 0xf; if (tx_command.s.txca) { if (buff_st == TXT_RDY) { buff_st = TXT_ABT; } } if (tx_command.s.txcr) { if ((buff_st == TXT_TOK) || (buff_st == TXT_ERR) || (buff_st == TXT_ABT) || (buff_st == TXT_ETY)) buff_st = TXT_RDY; } if (tx_command.s.txce) { if ((buff_st == TXT_TOK) || (buff_st == TXT_ERR) || (buff_st == TXT_ABT)) buff_st = TXT_ETY; } s->tx_status.u32 = (s->tx_status.u32 & ~buff_st_mask) | (buff_st << (i * 4)); } ctucan_send_ready_buffers(s); ctucan_update_txnf(s); } break; case CTU_CAN_FD_TX_PRIORITY: s->tx_priority.u32 = (uint32_t)val; break; } ctucan_update_irq(s); } return; } uint64_t ctucan_mem_read(CtuCanCoreState *s, hwaddr addr, unsigned size) { uint32_t val = 0; DPRINTF("read addr 0x%02x ...\n", (unsigned int)addr); if (addr > CTUCAN_CORE_MEM_SIZE) { return 0; } switch (addr & ~3) { case CTU_CAN_FD_DEVICE_ID: { union ctu_can_fd_device_id_version idver; idver.u32 = 0; idver.s.device_id = CTU_CAN_FD_ID; idver.s.ver_major = 2; idver.s.ver_minor = 2; val = idver.u32; } break; case CTU_CAN_FD_MODE: val = s->mode_settings.u32; break; case CTU_CAN_FD_STATUS: val = s->status.u32; break; case CTU_CAN_FD_INT_STAT: val = s->int_stat.u32; break; case CTU_CAN_FD_INT_ENA_SET: case CTU_CAN_FD_INT_ENA_CLR: val = s->int_ena.u32; break; case CTU_CAN_FD_INT_MASK_SET: case CTU_CAN_FD_INT_MASK_CLR: val = s->int_mask.u32; break; case CTU_CAN_FD_RX_MEM_INFO: s->rx_mem_info.u32 = 0; s->rx_mem_info.s.rx_buff_size = CTUCAN_RCV_BUF_LEN >> 2; s->rx_mem_info.s.rx_mem_free = (CTUCAN_RCV_BUF_LEN - s->rx_cnt) >> 2; val = s->rx_mem_info.u32; break; case CTU_CAN_FD_RX_POINTERS: { uint32_t rx_head_pos = s->rx_tail_pos + s->rx_cnt; rx_head_pos %= CTUCAN_RCV_BUF_LEN; s->rx_pointers.s.rx_wpp = rx_head_pos; s->rx_pointers.s.rx_rpp = s->rx_tail_pos; val = s->rx_pointers.u32; break; } case CTU_CAN_FD_RX_STATUS: case CTU_CAN_FD_RX_SETTINGS: if (!s->rx_status_rx_settings.s.rxfrc) { s->rx_status_rx_settings.s.rxe = 1; } else { s->rx_status_rx_settings.s.rxe = 0; } if (((s->rx_cnt + 3) & ~3) == CTUCAN_RCV_BUF_LEN) { s->rx_status_rx_settings.s.rxf = 1; } else { s->rx_status_rx_settings.s.rxf = 0; } val = s->rx_status_rx_settings.u32; break; case CTU_CAN_FD_RX_DATA: if (s->rx_cnt) { memcpy(&val, s->rx_buff + s->rx_tail_pos, 4); val = le32_to_cpu(val); if (!s->rx_frame_rem) { union ctu_can_fd_frame_form_w frame_form_w; frame_form_w.u32 = val; s->rx_frame_rem = frame_form_w.s.rwcnt * 4 + 4; } s->rx_cnt -= 4; s->rx_frame_rem -= 4; if (!s->rx_frame_rem) { s->rx_status_rx_settings.s.rxfrc--; if (!s->rx_status_rx_settings.s.rxfrc) { s->status.s.rxne = 0; s->status.s.idle = 1; s->status.s.rxs = 0; } } s->rx_tail_pos = (s->rx_tail_pos + 4) % CTUCAN_RCV_BUF_LEN; } else { val = 0; } break; case CTU_CAN_FD_TX_STATUS: val = s->tx_status.u32; break; case CTU_CAN_FD_TX_PRIORITY: val = s->tx_priority.u32; break; case CTU_CAN_FD_RX_FR_CTR: val = s->rx_fr_ctr.s.rx_fr_ctr_val; break; case CTU_CAN_FD_TX_FR_CTR: val = s->tx_fr_ctr.s.tx_fr_ctr_val; break; case CTU_CAN_FD_YOLO_REG: val = s->yolo_reg.s.yolo_val; break; } val >>= ((addr & 3) << 3); if (size < 8) { val &= ((uint64_t)1 << (size << 3)) - 1; } return val; } bool ctucan_can_receive(CanBusClientState *client) { CtuCanCoreState *s = container_of(client, CtuCanCoreState, bus_client); if (!s->mode_settings.s.ena) { return false; } return true; /* always return true, when operation mode */ } ssize_t ctucan_receive(CanBusClientState *client, const qemu_can_frame *frames, size_t frames_cnt) { CtuCanCoreState *s = container_of(client, CtuCanCoreState, bus_client); static uint8_t rcv[CTUCAN_MSG_MAX_LEN]; int i; int ret = -1; const qemu_can_frame *frame = frames; union ctu_can_fd_int_stat int_stat; int_stat.u32 = 0; if (frames_cnt <= 0) { return 0; } ret = ctucan_frame2buff(frame, rcv); if (s->rx_cnt + ret > CTUCAN_RCV_BUF_LEN) { /* Data overrun. */ s->status.s.dor = 1; int_stat.s.doi = 1; s->int_stat.u32 |= int_stat.u32 & ~s->int_mask.u32; ctucan_update_irq(s); DPRINTF("Receive FIFO overrun\n"); return ret; } s->status.s.idle = 0; s->status.s.rxs = 1; int_stat.s.rxi = 1; if (((s->rx_cnt + 3) & ~3) == CTUCAN_RCV_BUF_LEN) { int_stat.s.rxfi = 1; } s->int_stat.u32 |= int_stat.u32 & ~s->int_mask.u32; s->rx_fr_ctr.s.rx_fr_ctr_val++; s->rx_status_rx_settings.s.rxfrc++; for (i = 0; i < ret; i++) { s->rx_buff[(s->rx_tail_pos + s->rx_cnt) % CTUCAN_RCV_BUF_LEN] = rcv[i]; s->rx_cnt++; } s->status.s.rxne = 1; ctucan_update_irq(s); return 1; } static CanBusClientInfo ctucan_bus_client_info = { .can_receive = ctucan_can_receive, .receive = ctucan_receive, }; int ctucan_connect_to_bus(CtuCanCoreState *s, CanBusState *bus) { s->bus_client.info = &ctucan_bus_client_info; if (!bus) { return -EINVAL; } if (can_bus_insert_client(bus, &s->bus_client) < 0) { return -1; } return 0; } void ctucan_disconnect(CtuCanCoreState *s) { can_bus_remove_client(&s->bus_client); } int ctucan_init(CtuCanCoreState *s, qemu_irq irq) { s->irq = irq; qemu_irq_lower(s->irq); ctucan_hardware_reset(s); return 0; } const VMStateDescription vmstate_qemu_ctucan_tx_buffer = { .name = "qemu_ctucan_tx_buffer", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT8_ARRAY(data, CtuCanCoreMsgBuffer, CTUCAN_CORE_MSG_MAX_LEN), VMSTATE_END_OF_LIST() } }; static int ctucan_post_load(void *opaque, int version_id) { CtuCanCoreState *s = opaque; ctucan_update_irq(s); return 0; } /* VMState is needed for live migration of QEMU images */ const VMStateDescription vmstate_ctucan = { .name = "ctucan", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .post_load = ctucan_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(mode_settings.u32, CtuCanCoreState), VMSTATE_UINT32(status.u32, CtuCanCoreState), VMSTATE_UINT32(int_stat.u32, CtuCanCoreState), VMSTATE_UINT32(int_ena.u32, CtuCanCoreState), VMSTATE_UINT32(int_mask.u32, CtuCanCoreState), VMSTATE_UINT32(brt.u32, CtuCanCoreState), VMSTATE_UINT32(brt_fd.u32, CtuCanCoreState), VMSTATE_UINT32(ewl_erp_fault_state.u32, CtuCanCoreState), VMSTATE_UINT32(rec_tec.u32, CtuCanCoreState), VMSTATE_UINT32(err_norm_err_fd.u32, CtuCanCoreState), VMSTATE_UINT32(ctr_pres.u32, CtuCanCoreState), VMSTATE_UINT32(filter_a_mask.u32, CtuCanCoreState), VMSTATE_UINT32(filter_a_val.u32, CtuCanCoreState), VMSTATE_UINT32(filter_b_mask.u32, CtuCanCoreState), VMSTATE_UINT32(filter_b_val.u32, CtuCanCoreState), VMSTATE_UINT32(filter_c_mask.u32, CtuCanCoreState), VMSTATE_UINT32(filter_c_val.u32, CtuCanCoreState), VMSTATE_UINT32(filter_ran_low.u32, CtuCanCoreState), VMSTATE_UINT32(filter_ran_high.u32, CtuCanCoreState), VMSTATE_UINT32(filter_control_filter_status.u32, CtuCanCoreState), VMSTATE_UINT32(rx_mem_info.u32, CtuCanCoreState), VMSTATE_UINT32(rx_pointers.u32, CtuCanCoreState), VMSTATE_UINT32(rx_status_rx_settings.u32, CtuCanCoreState), VMSTATE_UINT32(tx_status.u32, CtuCanCoreState), VMSTATE_UINT32(tx_priority.u32, CtuCanCoreState), VMSTATE_UINT32(err_capt_alc.u32, CtuCanCoreState), VMSTATE_UINT32(trv_delay_ssp_cfg.u32, CtuCanCoreState), VMSTATE_UINT32(rx_fr_ctr.u32, CtuCanCoreState), VMSTATE_UINT32(tx_fr_ctr.u32, CtuCanCoreState), VMSTATE_UINT32(debug_register.u32, CtuCanCoreState), VMSTATE_UINT32(yolo_reg.u32, CtuCanCoreState), VMSTATE_UINT32(timestamp_low.u32, CtuCanCoreState), VMSTATE_UINT32(timestamp_high.u32, CtuCanCoreState), VMSTATE_STRUCT_ARRAY(tx_buffer, CtuCanCoreState, CTUCAN_CORE_TXBUF_NUM, 0, vmstate_qemu_ctucan_tx_buffer, CtuCanCoreMsgBuffer), VMSTATE_BUFFER(rx_buff, CtuCanCoreState), VMSTATE_UINT32(rx_tail_pos, CtuCanCoreState), VMSTATE_UINT32(rx_cnt, CtuCanCoreState), VMSTATE_UINT32(rx_frame_rem, CtuCanCoreState), VMSTATE_END_OF_LIST() } };