/* * QEMU e1000(e) emulation - shared code * * Copyright (c) 2008 Qumranet * * Based on work done by: * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. * Copyright (c) 2007 Dan Aloni * Copyright (c) 2004 Antony T Curtis * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "hw/net/mii.h" #include "hw/pci/pci_device.h" #include "net/eth.h" #include "net/net.h" #include "e1000_common.h" #include "e1000x_common.h" #include "trace.h" bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac) { bool link_up = mac[STATUS] & E1000_STATUS_LU; bool rx_enabled = mac[RCTL] & E1000_RCTL_EN; bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER; if (!link_up || !rx_enabled || !pci_master) { trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master); return false; } return true; } bool e1000x_is_vlan_packet(const void *buf, uint16_t vet) { uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto); bool res = (eth_proto == vet); trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet); return res; } bool e1000x_rx_vlan_filter(uint32_t *mac, const struct vlan_header *vhdr) { if (e1000x_vlan_rx_filter_enabled(mac)) { uint16_t vid = lduw_be_p(&vhdr->h_tci); uint32_t vfta = ldl_le_p((uint32_t *)(mac + VFTA) + ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK)); if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) { trace_e1000x_rx_flt_vlan_mismatch(vid); return false; } trace_e1000x_rx_flt_vlan_match(vid); } return true; } bool e1000x_rx_group_filter(uint32_t *mac, const struct eth_header *ehdr) { static const int mta_shift[] = { 4, 3, 2, 0 }; uint32_t f, ra[2], *rp, rctl = mac[RCTL]; if (is_broadcast_ether_addr(ehdr->h_dest)) { if (rctl & E1000_RCTL_BAM) { return true; } } else if (is_multicast_ether_addr(ehdr->h_dest)) { if (rctl & E1000_RCTL_MPE) { return true; } } else { if (rctl & E1000_RCTL_UPE) { return true; } } for (rp = mac + RA; rp < mac + RA + 32; rp += 2) { if (!(rp[1] & E1000_RAH_AV)) { continue; } ra[0] = cpu_to_le32(rp[0]); ra[1] = cpu_to_le32(rp[1]); if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2, MAC_ARG(ehdr->h_dest)); return true; } } trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(ehdr->h_dest)); f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff; if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) { return true; } trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(ehdr->h_dest), (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5, mac[MTA + (f >> 5)]); return false; } bool e1000x_hw_rx_enabled(uint32_t *mac) { if (!(mac[STATUS] & E1000_STATUS_LU)) { trace_e1000x_rx_link_down(mac[STATUS]); return false; } if (!(mac[RCTL] & E1000_RCTL_EN)) { trace_e1000x_rx_disabled(mac[RCTL]); return false; } return true; } bool e1000x_is_oversized(uint32_t *mac, size_t size) { size_t header_size = sizeof(struct eth_header) + sizeof(struct vlan_header); /* this is the size past which hardware will drop packets when setting LPE=0 */ size_t maximum_short_size = header_size + ETH_MTU; /* this is the size past which hardware will drop packets when setting LPE=1 */ size_t maximum_large_size = 16 * KiB - ETH_FCS_LEN; if ((size > maximum_large_size || (size > maximum_short_size && !(mac[RCTL] & E1000_RCTL_LPE))) && !(mac[RCTL] & E1000_RCTL_SBP)) { e1000x_inc_reg_if_not_full(mac, ROC); trace_e1000x_rx_oversized(size); return true; } return false; } void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer) { e1000x_update_regs_on_link_down(mac, phy); trace_e1000x_link_negotiation_start(); timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); } void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs, uint8_t *mac_addr) { int i; mac_regs[RA] = 0; mac_regs[RA + 1] = E1000_RAH_AV; for (i = 0; i < 4; i++) { mac_regs[RA] |= mac_addr[i] << (8 * i); mac_regs[RA + 1] |= (i < 2) ? mac_addr[i + 4] << (8 * i) : 0; } qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr); trace_e1000x_mac_indicate(MAC_ARG(mac_addr)); } void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy) { e1000x_update_regs_on_link_up(mac, phy); phy[MII_ANLPAR] |= MII_ANLPAR_ACK; phy[MII_BMSR] |= MII_BMSR_AN_COMP; trace_e1000x_link_negotiation_done(); } void e1000x_core_prepare_eeprom(uint16_t *eeprom, const uint16_t *templ, uint32_t templ_size, uint16_t dev_id, const uint8_t *macaddr) { uint16_t checksum = 0; int i; memmove(eeprom, templ, templ_size); for (i = 0; i < 3; i++) { eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i]; } eeprom[11] = eeprom[13] = dev_id; for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { checksum += eeprom[i]; } checksum = (uint16_t) EEPROM_SUM - checksum; eeprom[EEPROM_CHECKSUM_REG] = checksum; } uint32_t e1000x_rxbufsize(uint32_t rctl) { rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 | E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 | E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256; switch (rctl) { case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384: return 16384; case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192: return 8192; case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096: return 4096; case E1000_RCTL_SZ_1024: return 1024; case E1000_RCTL_SZ_512: return 512; case E1000_RCTL_SZ_256: return 256; } return 2048; } void e1000x_update_rx_total_stats(uint32_t *mac, eth_pkt_types_e pkt_type, size_t pkt_size, size_t pkt_fcs_size) { static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511, PRC1023, PRC1522 }; e1000x_increase_size_stats(mac, PRCregs, pkt_fcs_size); e1000x_inc_reg_if_not_full(mac, TPR); e1000x_inc_reg_if_not_full(mac, GPRC); /* TOR - Total Octets Received: * This register includes bytes received in a packet from the field through the field, inclusively. * Always include FCS length (4) in size. */ e1000x_grow_8reg_if_not_full(mac, TORL, pkt_size + 4); e1000x_grow_8reg_if_not_full(mac, GORCL, pkt_size + 4); switch (pkt_type) { case ETH_PKT_BCAST: e1000x_inc_reg_if_not_full(mac, BPRC); break; case ETH_PKT_MCAST: e1000x_inc_reg_if_not_full(mac, MPRC); break; default: break; } } void e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size) { if (size > 1023) { e1000x_inc_reg_if_not_full(mac, size_regs[5]); } else if (size > 511) { e1000x_inc_reg_if_not_full(mac, size_regs[4]); } else if (size > 255) { e1000x_inc_reg_if_not_full(mac, size_regs[3]); } else if (size > 127) { e1000x_inc_reg_if_not_full(mac, size_regs[2]); } else if (size > 64) { e1000x_inc_reg_if_not_full(mac, size_regs[1]); } else if (size == 64) { e1000x_inc_reg_if_not_full(mac, size_regs[0]); } } void e1000x_read_tx_ctx_descr(struct e1000_context_desc *d, e1000x_txd_props *props) { uint32_t op = le32_to_cpu(d->cmd_and_length); props->ipcss = d->lower_setup.ip_fields.ipcss; props->ipcso = d->lower_setup.ip_fields.ipcso; props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse); props->tucss = d->upper_setup.tcp_fields.tucss; props->tucso = d->upper_setup.tcp_fields.tucso; props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse); props->paylen = op & 0xfffff; props->hdr_len = d->tcp_seg_setup.fields.hdr_len; props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss); props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0; props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0; props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0; } void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi) { int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint32_t timinca = mac[TIMINCA]; uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK; uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1); int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16); mac[lo] = timestamp & 0xffffffff; mac[hi] = timestamp >> 32; } void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val) { int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint32_t old_val = mac[TIMINCA]; uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK; uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1); uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK; uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1); mac[TIMINCA] = val; *timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16; }