/* * QEMU Intel 82576 SR/IOV Ethernet Controller Emulation * * Datasheet: * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf * * Copyright (c) 2020-2023 Red Hat, Inc. * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) * Developed by Daynix Computing LTD (http://www.daynix.com) * * Authors: * Akihiko Odaki * Gal Hammmer * Marcel Apfelbaum * Dmitry Fleytman * Leonid Bloch * Yan Vugenfirer * * Based on work done by: * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. * Copyright (c) 2008 Qumranet * Based on work done by: * Copyright (c) 2007 Dan Aloni * Copyright (c) 2004 Antony T Curtis * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "net/eth.h" #include "net/net.h" #include "net/tap.h" #include "qemu/module.h" #include "qemu/range.h" #include "sysemu/sysemu.h" #include "hw/hw.h" #include "hw/net/mii.h" #include "hw/pci/pci.h" #include "hw/pci/pcie.h" #include "hw/pci/pcie_sriov.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "igb_common.h" #include "igb_core.h" #include "trace.h" #include "qapi/error.h" #include "qom/object.h" #define TYPE_IGB "igb" OBJECT_DECLARE_SIMPLE_TYPE(IGBState, IGB) struct IGBState { PCIDevice parent_obj; NICState *nic; NICConf conf; MemoryRegion mmio; MemoryRegion flash; MemoryRegion io; MemoryRegion msix; uint32_t ioaddr; IGBCore core; bool has_flr; }; #define IGB_CAP_SRIOV_OFFSET (0x160) #define IGB_VF_OFFSET (0x80) #define IGB_VF_STRIDE (2) #define E1000E_MMIO_IDX 0 #define E1000E_FLASH_IDX 1 #define E1000E_IO_IDX 2 #define E1000E_MSIX_IDX 3 #define E1000E_MMIO_SIZE (128 * KiB) #define E1000E_FLASH_SIZE (128 * KiB) #define E1000E_IO_SIZE (32) #define E1000E_MSIX_SIZE (16 * KiB) static void igb_write_config(PCIDevice *dev, uint32_t addr, uint32_t val, int len) { IGBState *s = IGB(dev); trace_igb_write_config(addr, val, len); pci_default_write_config(dev, addr, val, len); if (s->has_flr) { pcie_cap_flr_write_config(dev, addr, val, len); } if (range_covers_byte(addr, len, PCI_COMMAND) && (dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { igb_start_recv(&s->core); } } uint64_t igb_mmio_read(void *opaque, hwaddr addr, unsigned size) { IGBState *s = opaque; return igb_core_read(&s->core, addr, size); } void igb_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { IGBState *s = opaque; igb_core_write(&s->core, addr, val, size); } void igb_vf_reset(void *opaque, uint16_t vfn) { IGBState *s = opaque; igb_core_vf_reset(&s->core, vfn); } static bool igb_io_get_reg_index(IGBState *s, uint32_t *idx) { if (s->ioaddr < 0x1FFFF) { *idx = s->ioaddr; return true; } if (s->ioaddr < 0x7FFFF) { trace_e1000e_wrn_io_addr_undefined(s->ioaddr); return false; } if (s->ioaddr < 0xFFFFF) { trace_e1000e_wrn_io_addr_flash(s->ioaddr); return false; } trace_e1000e_wrn_io_addr_unknown(s->ioaddr); return false; } static uint64_t igb_io_read(void *opaque, hwaddr addr, unsigned size) { IGBState *s = opaque; uint32_t idx = 0; uint64_t val; switch (addr) { case E1000_IOADDR: trace_e1000e_io_read_addr(s->ioaddr); return s->ioaddr; case E1000_IODATA: if (igb_io_get_reg_index(s, &idx)) { val = igb_core_read(&s->core, idx, sizeof(val)); trace_e1000e_io_read_data(idx, val); return val; } return 0; default: trace_e1000e_wrn_io_read_unknown(addr); return 0; } } static void igb_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { IGBState *s = opaque; uint32_t idx = 0; switch (addr) { case E1000_IOADDR: trace_e1000e_io_write_addr(val); s->ioaddr = (uint32_t) val; return; case E1000_IODATA: if (igb_io_get_reg_index(s, &idx)) { trace_e1000e_io_write_data(idx, val); igb_core_write(&s->core, idx, val, sizeof(val)); } return; default: trace_e1000e_wrn_io_write_unknown(addr); return; } } static const MemoryRegionOps mmio_ops = { .read = igb_mmio_read, .write = igb_mmio_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps io_ops = { .read = igb_io_read, .write = igb_io_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static bool igb_nc_can_receive(NetClientState *nc) { IGBState *s = qemu_get_nic_opaque(nc); return igb_can_receive(&s->core); } static ssize_t igb_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) { IGBState *s = qemu_get_nic_opaque(nc); return igb_receive_iov(&s->core, iov, iovcnt); } static ssize_t igb_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size) { IGBState *s = qemu_get_nic_opaque(nc); return igb_receive(&s->core, buf, size); } static void igb_set_link_status(NetClientState *nc) { IGBState *s = qemu_get_nic_opaque(nc); igb_core_set_link_status(&s->core); } static NetClientInfo net_igb_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = igb_nc_can_receive, .receive = igb_nc_receive, .receive_iov = igb_nc_receive_iov, .link_status_changed = igb_set_link_status, }; /* * EEPROM (NVM) contents documented in section 6.1, table 6-1: * and in 6.10 Software accessed words. */ static const uint16_t igb_eeprom_template[] = { /* Address |Compat.|OEM sp.| ImRev | OEM sp. */ 0x0000, 0x0000, 0x0000, 0x0d34, 0xffff, 0x2010, 0xffff, 0xffff, /* PBA |ICtrl1 | SSID | SVID | DevID |-------|ICtrl2 */ 0x1040, 0xffff, 0x002b, 0x0000, 0x8086, 0x10c9, 0x0000, 0x70c3, /* SwPin0| DevID | EESZ |-------|ICtrl3 |PCI-tc | MSIX | APtr */ 0x0004, 0x10c9, 0x5c00, 0x0000, 0x2880, 0x0014, 0x4a40, 0x0060, /* PCIe Init. Conf 1,2,3 |PCICtrl| LD1,3 |DDevID |DevRev | LD0,2 */ 0x6cfb, 0xc7b0, 0x0abe, 0x0403, 0x0783, 0x10a6, 0x0001, 0x0602, /* SwPin1| FunC |LAN-PWR|ManHwC |ICtrl3 | IOVct |VDevID |-------*/ 0x0004, 0x0020, 0x0000, 0x004a, 0x2080, 0x00f5, 0x10ca, 0x0000, /*---------------| LD1,3 | LD0,2 | ROEnd | ROSta | Wdog | VPD */ 0x0000, 0x0000, 0x4784, 0x4602, 0x0000, 0x0000, 0x1000, 0xffff, /* PCSet0| Ccfg0 |PXEver |IBAcap |PCSet1 | Ccfg1 |iSCVer | ?? */ 0x0100, 0x4000, 0x131f, 0x4013, 0x0100, 0x4000, 0xffff, 0xffff, /* PCSet2| Ccfg2 |PCSet3 | Ccfg3 | ?? |AltMacP| ?? |CHKSUM */ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x00e0, 0xffff, 0x0000, /* NC-SIC */ 0x0003, }; static void igb_core_realize(IGBState *s) { s->core.owner = &s->parent_obj; s->core.owner_nic = s->nic; } static void igb_init_msix(IGBState *s) { int i, res; res = msix_init(PCI_DEVICE(s), IGB_MSIX_VEC_NUM, &s->msix, E1000E_MSIX_IDX, 0, &s->msix, E1000E_MSIX_IDX, 0x2000, 0x70, NULL); if (res < 0) { trace_e1000e_msix_init_fail(res); } else { for (i = 0; i < IGB_MSIX_VEC_NUM; i++) { msix_vector_use(PCI_DEVICE(s), i); } } } static void igb_cleanup_msix(IGBState *s) { msix_unuse_all_vectors(PCI_DEVICE(s)); msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix); } static void igb_init_net_peer(IGBState *s, PCIDevice *pci_dev, uint8_t *macaddr) { DeviceState *dev = DEVICE(pci_dev); NetClientState *nc; int i; s->nic = qemu_new_nic(&net_igb_info, &s->conf, object_get_typename(OBJECT(s)), dev->id, &dev->mem_reentrancy_guard, s); s->core.max_queue_num = s->conf.peers.queues ? s->conf.peers.queues - 1 : 0; trace_e1000e_mac_set_permanent(MAC_ARG(macaddr)); memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac)); qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr); /* Setup virtio headers */ for (i = 0; i < s->conf.peers.queues; i++) { nc = qemu_get_subqueue(s->nic, i); if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) { trace_e1000e_cfg_support_virtio(false); return; } } trace_e1000e_cfg_support_virtio(true); s->core.has_vnet = true; for (i = 0; i < s->conf.peers.queues; i++) { nc = qemu_get_subqueue(s->nic, i); qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr)); qemu_using_vnet_hdr(nc->peer, true); } } static int igb_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc) { Error *local_err = NULL; int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF, &local_err); if (local_err) { error_report_err(local_err); return ret; } pci_set_word(pdev->config + offset + PCI_PM_PMC, PCI_PM_CAP_VER_1_1 | pmc); pci_set_word(pdev->wmask + offset + PCI_PM_CTRL, PCI_PM_CTRL_STATE_MASK | PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_DATA_SEL_MASK); pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL, PCI_PM_CTRL_PME_STATUS); return ret; } static void igb_pci_realize(PCIDevice *pci_dev, Error **errp) { IGBState *s = IGB(pci_dev); uint8_t *macaddr; int ret; trace_e1000e_cb_pci_realize(); pci_dev->config_write = igb_write_config; pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10; pci_dev->config[PCI_INTERRUPT_PIN] = 1; /* Define IO/MMIO regions */ memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s, "igb-mmio", E1000E_MMIO_SIZE); pci_register_bar(pci_dev, E1000E_MMIO_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio); /* * We provide a dummy implementation for the flash BAR * for drivers that may theoretically probe for its presence. */ memory_region_init(&s->flash, OBJECT(s), "igb-flash", E1000E_FLASH_SIZE); pci_register_bar(pci_dev, E1000E_FLASH_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash); memory_region_init_io(&s->io, OBJECT(s), &io_ops, s, "igb-io", E1000E_IO_SIZE); pci_register_bar(pci_dev, E1000E_IO_IDX, PCI_BASE_ADDRESS_SPACE_IO, &s->io); memory_region_init(&s->msix, OBJECT(s), "igb-msix", E1000E_MSIX_SIZE); pci_register_bar(pci_dev, E1000E_MSIX_IDX, PCI_BASE_ADDRESS_MEM_TYPE_64, &s->msix); /* Create networking backend */ qemu_macaddr_default_if_unset(&s->conf.macaddr); macaddr = s->conf.macaddr.a; /* Add PCI capabilities in reverse order */ assert(pcie_endpoint_cap_init(pci_dev, 0xa0) > 0); igb_init_msix(s); ret = msi_init(pci_dev, 0x50, 1, true, true, NULL); if (ret) { trace_e1000e_msi_init_fail(ret); } if (igb_add_pm_capability(pci_dev, 0x40, PCI_PM_CAP_DSI) < 0) { hw_error("Failed to initialize PM capability"); } /* PCIe extended capabilities (in order) */ if (s->has_flr) { pcie_cap_flr_init(pci_dev); } if (pcie_aer_init(pci_dev, 1, 0x100, 0x40, errp) < 0) { hw_error("Failed to initialize AER capability"); } pcie_ari_init(pci_dev, 0x150); pcie_sriov_pf_init(pci_dev, IGB_CAP_SRIOV_OFFSET, TYPE_IGBVF, IGB_82576_VF_DEV_ID, IGB_MAX_VF_FUNCTIONS, IGB_MAX_VF_FUNCTIONS, IGB_VF_OFFSET, IGB_VF_STRIDE); pcie_sriov_pf_init_vf_bar(pci_dev, IGBVF_MMIO_BAR_IDX, PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, IGBVF_MMIO_SIZE); pcie_sriov_pf_init_vf_bar(pci_dev, IGBVF_MSIX_BAR_IDX, PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, IGBVF_MSIX_SIZE); igb_init_net_peer(s, pci_dev, macaddr); /* Initialize core */ igb_core_realize(s); igb_core_pci_realize(&s->core, igb_eeprom_template, sizeof(igb_eeprom_template), macaddr); } static void igb_pci_uninit(PCIDevice *pci_dev) { IGBState *s = IGB(pci_dev); trace_e1000e_cb_pci_uninit(); igb_core_pci_uninit(&s->core); pcie_sriov_pf_exit(pci_dev); pcie_cap_exit(pci_dev); qemu_del_nic(s->nic); igb_cleanup_msix(s); msi_uninit(pci_dev); } static void igb_qdev_reset_hold(Object *obj) { IGBState *s = IGB(obj); trace_e1000e_cb_qdev_reset_hold(); igb_core_reset(&s->core); } static int igb_pre_save(void *opaque) { IGBState *s = opaque; trace_e1000e_cb_pre_save(); igb_core_pre_save(&s->core); return 0; } static int igb_post_load(void *opaque, int version_id) { IGBState *s = opaque; trace_e1000e_cb_post_load(); return igb_core_post_load(&s->core); } static const VMStateDescription igb_vmstate_tx_ctx = { .name = "igb-tx-ctx", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(vlan_macip_lens, struct e1000_adv_tx_context_desc), VMSTATE_UINT32(seqnum_seed, struct e1000_adv_tx_context_desc), VMSTATE_UINT32(type_tucmd_mlhl, struct e1000_adv_tx_context_desc), VMSTATE_UINT32(mss_l4len_idx, struct e1000_adv_tx_context_desc), VMSTATE_END_OF_LIST() } }; static const VMStateDescription igb_vmstate_tx = { .name = "igb-tx", .version_id = 2, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_STRUCT_ARRAY(ctx, struct igb_tx, 2, 0, igb_vmstate_tx_ctx, struct e1000_adv_tx_context_desc), VMSTATE_UINT32(first_cmd_type_len, struct igb_tx), VMSTATE_UINT32(first_olinfo_status, struct igb_tx), VMSTATE_BOOL(first, struct igb_tx), VMSTATE_BOOL(skip_cp, struct igb_tx), VMSTATE_END_OF_LIST() } }; static const VMStateDescription igb_vmstate_intr_timer = { .name = "igb-intr-timer", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_TIMER_PTR(timer, IGBIntrDelayTimer), VMSTATE_BOOL(running, IGBIntrDelayTimer), VMSTATE_END_OF_LIST() } }; #define VMSTATE_IGB_INTR_DELAY_TIMER(_f, _s) \ VMSTATE_STRUCT(_f, _s, 0, \ igb_vmstate_intr_timer, IGBIntrDelayTimer) #define VMSTATE_IGB_INTR_DELAY_TIMER_ARRAY(_f, _s, _num) \ VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0, \ igb_vmstate_intr_timer, IGBIntrDelayTimer) static const VMStateDescription igb_vmstate = { .name = "igb", .version_id = 1, .minimum_version_id = 1, .pre_save = igb_pre_save, .post_load = igb_post_load, .fields = (const VMStateField[]) { VMSTATE_PCI_DEVICE(parent_obj, IGBState), VMSTATE_MSIX(parent_obj, IGBState), VMSTATE_UINT32(ioaddr, IGBState), VMSTATE_UINT8(core.rx_desc_len, IGBState), VMSTATE_UINT16_ARRAY(core.eeprom, IGBState, IGB_EEPROM_SIZE), VMSTATE_UINT16_ARRAY(core.phy, IGBState, MAX_PHY_REG_ADDRESS + 1), VMSTATE_UINT32_ARRAY(core.mac, IGBState, E1000E_MAC_SIZE), VMSTATE_UINT8_ARRAY(core.permanent_mac, IGBState, ETH_ALEN), VMSTATE_IGB_INTR_DELAY_TIMER_ARRAY(core.eitr, IGBState, IGB_INTR_NUM), VMSTATE_UINT32_ARRAY(core.eitr_guest_value, IGBState, IGB_INTR_NUM), VMSTATE_STRUCT_ARRAY(core.tx, IGBState, IGB_NUM_QUEUES, 0, igb_vmstate_tx, struct igb_tx), VMSTATE_INT64(core.timadj, IGBState), VMSTATE_END_OF_LIST() } }; static Property igb_properties[] = { DEFINE_NIC_PROPERTIES(IGBState, conf), DEFINE_PROP_BOOL("x-pcie-flr-init", IGBState, has_flr, true), DEFINE_PROP_END_OF_LIST(), }; static void igb_class_init(ObjectClass *class, void *data) { DeviceClass *dc = DEVICE_CLASS(class); ResettableClass *rc = RESETTABLE_CLASS(class); PCIDeviceClass *c = PCI_DEVICE_CLASS(class); c->realize = igb_pci_realize; c->exit = igb_pci_uninit; c->vendor_id = PCI_VENDOR_ID_INTEL; c->device_id = E1000_DEV_ID_82576; c->revision = 1; c->class_id = PCI_CLASS_NETWORK_ETHERNET; rc->phases.hold = igb_qdev_reset_hold; dc->desc = "Intel 82576 Gigabit Ethernet Controller"; dc->vmsd = &igb_vmstate; device_class_set_props(dc, igb_properties); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); } static void igb_instance_init(Object *obj) { IGBState *s = IGB(obj); device_add_bootindex_property(obj, &s->conf.bootindex, "bootindex", "/ethernet-phy@0", DEVICE(obj)); } static const TypeInfo igb_info = { .name = TYPE_IGB, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(IGBState), .class_init = igb_class_init, .instance_init = igb_instance_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_PCIE_DEVICE }, { } }, }; static void igb_register_types(void) { type_register_static(&igb_info); } type_init(igb_register_types)