/* * Nuvoton NPCM7xx Timer Controller * * Copyright 2020 Google LLC * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/qdev-clock.h" #include "hw/qdev-properties.h" #include "hw/timer/npcm7xx_timer.h" #include "migration/vmstate.h" #include "qemu/bitops.h" #include "qemu/error-report.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/timer.h" #include "qemu/units.h" #include "trace.h" /* 32-bit register indices. */ enum NPCM7xxTimerRegisters { NPCM7XX_TIMER_TCSR0, NPCM7XX_TIMER_TCSR1, NPCM7XX_TIMER_TICR0, NPCM7XX_TIMER_TICR1, NPCM7XX_TIMER_TDR0, NPCM7XX_TIMER_TDR1, NPCM7XX_TIMER_TISR, NPCM7XX_TIMER_WTCR, NPCM7XX_TIMER_TCSR2, NPCM7XX_TIMER_TCSR3, NPCM7XX_TIMER_TICR2, NPCM7XX_TIMER_TICR3, NPCM7XX_TIMER_TDR2, NPCM7XX_TIMER_TDR3, NPCM7XX_TIMER_TCSR4 = 0x0040 / sizeof(uint32_t), NPCM7XX_TIMER_TICR4 = 0x0048 / sizeof(uint32_t), NPCM7XX_TIMER_TDR4 = 0x0050 / sizeof(uint32_t), NPCM7XX_TIMER_REGS_END, }; /* Register field definitions. */ #define NPCM7XX_TCSR_CEN BIT(30) #define NPCM7XX_TCSR_IE BIT(29) #define NPCM7XX_TCSR_PERIODIC BIT(27) #define NPCM7XX_TCSR_CRST BIT(26) #define NPCM7XX_TCSR_CACT BIT(25) #define NPCM7XX_TCSR_RSVD 0x01ffff00 #define NPCM7XX_TCSR_PRESCALE_START 0 #define NPCM7XX_TCSR_PRESCALE_LEN 8 #define NPCM7XX_WTCR_WTCLK(rv) extract32(rv, 10, 2) #define NPCM7XX_WTCR_FREEZE_EN BIT(9) #define NPCM7XX_WTCR_WTE BIT(7) #define NPCM7XX_WTCR_WTIE BIT(6) #define NPCM7XX_WTCR_WTIS(rv) extract32(rv, 4, 2) #define NPCM7XX_WTCR_WTIF BIT(3) #define NPCM7XX_WTCR_WTRF BIT(2) #define NPCM7XX_WTCR_WTRE BIT(1) #define NPCM7XX_WTCR_WTR BIT(0) /* * The number of clock cycles between interrupt and reset in watchdog, used * by the software to handle the interrupt before system is reset. */ #define NPCM7XX_WATCHDOG_INTERRUPT_TO_RESET_CYCLES 1024 /* Start or resume the timer. */ static void npcm7xx_timer_start(NPCM7xxBaseTimer *t) { int64_t now; now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); t->expires_ns = now + t->remaining_ns; timer_mod(&t->qtimer, t->expires_ns); } /* Stop counting. Record the time remaining so we can continue later. */ static void npcm7xx_timer_pause(NPCM7xxBaseTimer *t) { int64_t now; timer_del(&t->qtimer); now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); t->remaining_ns = t->expires_ns - now; } /* Delete the timer and reset it to default state. */ static void npcm7xx_timer_clear(NPCM7xxBaseTimer *t) { timer_del(&t->qtimer); t->expires_ns = 0; t->remaining_ns = 0; } /* * Returns the index of timer in the tc->timer array. This can be used to * locate the registers that belong to this timer. */ static int npcm7xx_timer_index(NPCM7xxTimerCtrlState *tc, NPCM7xxTimer *timer) { int index = timer - tc->timer; g_assert(index >= 0 && index < NPCM7XX_TIMERS_PER_CTRL); return index; } /* Return the value by which to divide the reference clock rate. */ static uint32_t npcm7xx_tcsr_prescaler(uint32_t tcsr) { return extract32(tcsr, NPCM7XX_TCSR_PRESCALE_START, NPCM7XX_TCSR_PRESCALE_LEN) + 1; } /* Convert a timer cycle count to a time interval in nanoseconds. */ static int64_t npcm7xx_timer_count_to_ns(NPCM7xxTimer *t, uint32_t count) { int64_t ticks = count; ticks *= npcm7xx_tcsr_prescaler(t->tcsr); return clock_ticks_to_ns(t->ctrl->clock, ticks); } /* Convert a time interval in nanoseconds to a timer cycle count. */ static uint32_t npcm7xx_timer_ns_to_count(NPCM7xxTimer *t, int64_t ns) { if (ns < 0) { return 0; } return clock_ns_to_ticks(t->ctrl->clock, ns) / npcm7xx_tcsr_prescaler(t->tcsr); } static uint32_t npcm7xx_watchdog_timer_prescaler(const NPCM7xxWatchdogTimer *t) { switch (NPCM7XX_WTCR_WTCLK(t->wtcr)) { case 0: return 1; case 1: return 256; case 2: return 2048; case 3: return 65536; default: g_assert_not_reached(); } } static void npcm7xx_watchdog_timer_reset_cycles(NPCM7xxWatchdogTimer *t, int64_t cycles) { int64_t ticks = cycles * npcm7xx_watchdog_timer_prescaler(t); int64_t ns = clock_ticks_to_ns(t->ctrl->clock, ticks); /* * The reset function always clears the current timer. The caller of the * this needs to decide whether to start the watchdog timer based on * specific flag in WTCR. */ npcm7xx_timer_clear(&t->base_timer); t->base_timer.remaining_ns = ns; } static void npcm7xx_watchdog_timer_reset(NPCM7xxWatchdogTimer *t) { int64_t cycles = 1; uint32_t s = NPCM7XX_WTCR_WTIS(t->wtcr); g_assert(s <= 3); cycles <<= NPCM7XX_WATCHDOG_BASETIME_SHIFT; cycles <<= 2 * s; npcm7xx_watchdog_timer_reset_cycles(t, cycles); } /* * Raise the interrupt line if there's a pending interrupt and interrupts are * enabled for this timer. If not, lower it. */ static void npcm7xx_timer_check_interrupt(NPCM7xxTimer *t) { NPCM7xxTimerCtrlState *tc = t->ctrl; int index = npcm7xx_timer_index(tc, t); bool pending = (t->tcsr & NPCM7XX_TCSR_IE) && (tc->tisr & BIT(index)); qemu_set_irq(t->irq, pending); trace_npcm7xx_timer_irq(DEVICE(tc)->canonical_path, index, pending); } /* * Called when the counter reaches zero. Sets the interrupt flag, and either * restarts or disables the timer. */ static void npcm7xx_timer_reached_zero(NPCM7xxTimer *t) { NPCM7xxTimerCtrlState *tc = t->ctrl; int index = npcm7xx_timer_index(tc, t); tc->tisr |= BIT(index); if (t->tcsr & NPCM7XX_TCSR_PERIODIC) { t->base_timer.remaining_ns = npcm7xx_timer_count_to_ns(t, t->ticr); if (t->tcsr & NPCM7XX_TCSR_CEN) { npcm7xx_timer_start(&t->base_timer); } } else { t->tcsr &= ~(NPCM7XX_TCSR_CEN | NPCM7XX_TCSR_CACT); } npcm7xx_timer_check_interrupt(t); } /* * Restart the timer from its initial value. If the timer was enabled and stays * enabled, adjust the QEMU timer according to the new count. If the timer is * transitioning from disabled to enabled, the caller is expected to start the * timer later. */ static void npcm7xx_timer_restart(NPCM7xxTimer *t, uint32_t old_tcsr) { t->base_timer.remaining_ns = npcm7xx_timer_count_to_ns(t, t->ticr); if (old_tcsr & t->tcsr & NPCM7XX_TCSR_CEN) { npcm7xx_timer_start(&t->base_timer); } } /* Register read and write handlers */ static uint32_t npcm7xx_timer_read_tdr(NPCM7xxTimer *t) { if (t->tcsr & NPCM7XX_TCSR_CEN) { int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); return npcm7xx_timer_ns_to_count(t, t->base_timer.expires_ns - now); } return npcm7xx_timer_ns_to_count(t, t->base_timer.remaining_ns); } static void npcm7xx_timer_write_tcsr(NPCM7xxTimer *t, uint32_t new_tcsr) { uint32_t old_tcsr = t->tcsr; uint32_t tdr; if (new_tcsr & NPCM7XX_TCSR_RSVD) { qemu_log_mask(LOG_GUEST_ERROR, "%s: reserved bits in 0x%08x ignored\n", __func__, new_tcsr); new_tcsr &= ~NPCM7XX_TCSR_RSVD; } if (new_tcsr & NPCM7XX_TCSR_CACT) { qemu_log_mask(LOG_GUEST_ERROR, "%s: read-only bits in 0x%08x ignored\n", __func__, new_tcsr); new_tcsr &= ~NPCM7XX_TCSR_CACT; } if ((new_tcsr & NPCM7XX_TCSR_CRST) && (new_tcsr & NPCM7XX_TCSR_CEN)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: both CRST and CEN set; ignoring CEN.\n", __func__); new_tcsr &= ~NPCM7XX_TCSR_CEN; } /* Calculate the value of TDR before potentially changing the prescaler. */ tdr = npcm7xx_timer_read_tdr(t); t->tcsr = (t->tcsr & NPCM7XX_TCSR_CACT) | new_tcsr; if (npcm7xx_tcsr_prescaler(old_tcsr) != npcm7xx_tcsr_prescaler(new_tcsr)) { /* Recalculate time remaining based on the current TDR value. */ t->base_timer.remaining_ns = npcm7xx_timer_count_to_ns(t, tdr); if (old_tcsr & t->tcsr & NPCM7XX_TCSR_CEN) { npcm7xx_timer_start(&t->base_timer); } } if ((old_tcsr ^ new_tcsr) & NPCM7XX_TCSR_IE) { npcm7xx_timer_check_interrupt(t); } if (new_tcsr & NPCM7XX_TCSR_CRST) { npcm7xx_timer_restart(t, old_tcsr); t->tcsr &= ~NPCM7XX_TCSR_CRST; } if ((old_tcsr ^ new_tcsr) & NPCM7XX_TCSR_CEN) { if (new_tcsr & NPCM7XX_TCSR_CEN) { t->tcsr |= NPCM7XX_TCSR_CACT; npcm7xx_timer_start(&t->base_timer); } else { t->tcsr &= ~NPCM7XX_TCSR_CACT; npcm7xx_timer_pause(&t->base_timer); if (t->base_timer.remaining_ns <= 0) { npcm7xx_timer_reached_zero(t); } } } } static void npcm7xx_timer_write_ticr(NPCM7xxTimer *t, uint32_t new_ticr) { t->ticr = new_ticr; npcm7xx_timer_restart(t, t->tcsr); } static void npcm7xx_timer_write_tisr(NPCM7xxTimerCtrlState *s, uint32_t value) { int i; s->tisr &= ~value; for (i = 0; i < ARRAY_SIZE(s->timer); i++) { if (value & (1U << i)) { npcm7xx_timer_check_interrupt(&s->timer[i]); } } } static void npcm7xx_timer_write_wtcr(NPCM7xxWatchdogTimer *t, uint32_t new_wtcr) { uint32_t old_wtcr = t->wtcr; /* * WTIF and WTRF are cleared by writing 1. Writing 0 makes these bits * unchanged. */ if (new_wtcr & NPCM7XX_WTCR_WTIF) { new_wtcr &= ~NPCM7XX_WTCR_WTIF; } else if (old_wtcr & NPCM7XX_WTCR_WTIF) { new_wtcr |= NPCM7XX_WTCR_WTIF; } if (new_wtcr & NPCM7XX_WTCR_WTRF) { new_wtcr &= ~NPCM7XX_WTCR_WTRF; } else if (old_wtcr & NPCM7XX_WTCR_WTRF) { new_wtcr |= NPCM7XX_WTCR_WTRF; } t->wtcr = new_wtcr; if (new_wtcr & NPCM7XX_WTCR_WTR) { t->wtcr &= ~NPCM7XX_WTCR_WTR; npcm7xx_watchdog_timer_reset(t); if (new_wtcr & NPCM7XX_WTCR_WTE) { npcm7xx_timer_start(&t->base_timer); } } else if ((old_wtcr ^ new_wtcr) & NPCM7XX_WTCR_WTE) { if (new_wtcr & NPCM7XX_WTCR_WTE) { npcm7xx_timer_start(&t->base_timer); } else { npcm7xx_timer_pause(&t->base_timer); } } } static hwaddr npcm7xx_tcsr_index(hwaddr reg) { switch (reg) { case NPCM7XX_TIMER_TCSR0: return 0; case NPCM7XX_TIMER_TCSR1: return 1; case NPCM7XX_TIMER_TCSR2: return 2; case NPCM7XX_TIMER_TCSR3: return 3; case NPCM7XX_TIMER_TCSR4: return 4; default: g_assert_not_reached(); } } static hwaddr npcm7xx_ticr_index(hwaddr reg) { switch (reg) { case NPCM7XX_TIMER_TICR0: return 0; case NPCM7XX_TIMER_TICR1: return 1; case NPCM7XX_TIMER_TICR2: return 2; case NPCM7XX_TIMER_TICR3: return 3; case NPCM7XX_TIMER_TICR4: return 4; default: g_assert_not_reached(); } } static hwaddr npcm7xx_tdr_index(hwaddr reg) { switch (reg) { case NPCM7XX_TIMER_TDR0: return 0; case NPCM7XX_TIMER_TDR1: return 1; case NPCM7XX_TIMER_TDR2: return 2; case NPCM7XX_TIMER_TDR3: return 3; case NPCM7XX_TIMER_TDR4: return 4; default: g_assert_not_reached(); } } static uint64_t npcm7xx_timer_read(void *opaque, hwaddr offset, unsigned size) { NPCM7xxTimerCtrlState *s = opaque; uint64_t value = 0; hwaddr reg; reg = offset / sizeof(uint32_t); switch (reg) { case NPCM7XX_TIMER_TCSR0: case NPCM7XX_TIMER_TCSR1: case NPCM7XX_TIMER_TCSR2: case NPCM7XX_TIMER_TCSR3: case NPCM7XX_TIMER_TCSR4: value = s->timer[npcm7xx_tcsr_index(reg)].tcsr; break; case NPCM7XX_TIMER_TICR0: case NPCM7XX_TIMER_TICR1: case NPCM7XX_TIMER_TICR2: case NPCM7XX_TIMER_TICR3: case NPCM7XX_TIMER_TICR4: value = s->timer[npcm7xx_ticr_index(reg)].ticr; break; case NPCM7XX_TIMER_TDR0: case NPCM7XX_TIMER_TDR1: case NPCM7XX_TIMER_TDR2: case NPCM7XX_TIMER_TDR3: case NPCM7XX_TIMER_TDR4: value = npcm7xx_timer_read_tdr(&s->timer[npcm7xx_tdr_index(reg)]); break; case NPCM7XX_TIMER_TISR: value = s->tisr; break; case NPCM7XX_TIMER_WTCR: value = s->watchdog_timer.wtcr; break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid offset 0x%04" HWADDR_PRIx "\n", __func__, offset); break; } trace_npcm7xx_timer_read(DEVICE(s)->canonical_path, offset, value); return value; } static void npcm7xx_timer_write(void *opaque, hwaddr offset, uint64_t v, unsigned size) { uint32_t reg = offset / sizeof(uint32_t); NPCM7xxTimerCtrlState *s = opaque; uint32_t value = v; trace_npcm7xx_timer_write(DEVICE(s)->canonical_path, offset, value); switch (reg) { case NPCM7XX_TIMER_TCSR0: case NPCM7XX_TIMER_TCSR1: case NPCM7XX_TIMER_TCSR2: case NPCM7XX_TIMER_TCSR3: case NPCM7XX_TIMER_TCSR4: npcm7xx_timer_write_tcsr(&s->timer[npcm7xx_tcsr_index(reg)], value); return; case NPCM7XX_TIMER_TICR0: case NPCM7XX_TIMER_TICR1: case NPCM7XX_TIMER_TICR2: case NPCM7XX_TIMER_TICR3: case NPCM7XX_TIMER_TICR4: npcm7xx_timer_write_ticr(&s->timer[npcm7xx_ticr_index(reg)], value); return; case NPCM7XX_TIMER_TDR0: case NPCM7XX_TIMER_TDR1: case NPCM7XX_TIMER_TDR2: case NPCM7XX_TIMER_TDR3: case NPCM7XX_TIMER_TDR4: qemu_log_mask(LOG_GUEST_ERROR, "%s: register @ 0x%04" HWADDR_PRIx " is read-only\n", __func__, offset); return; case NPCM7XX_TIMER_TISR: npcm7xx_timer_write_tisr(s, value); return; case NPCM7XX_TIMER_WTCR: npcm7xx_timer_write_wtcr(&s->watchdog_timer, value); return; } qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid offset 0x%04" HWADDR_PRIx "\n", __func__, offset); } static const struct MemoryRegionOps npcm7xx_timer_ops = { .read = npcm7xx_timer_read, .write = npcm7xx_timer_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, }; /* Called when the QEMU timer expires. */ static void npcm7xx_timer_expired(void *opaque) { NPCM7xxTimer *t = opaque; if (t->tcsr & NPCM7XX_TCSR_CEN) { npcm7xx_timer_reached_zero(t); } } static void npcm7xx_timer_enter_reset(Object *obj, ResetType type) { NPCM7xxTimerCtrlState *s = NPCM7XX_TIMER(obj); int i; for (i = 0; i < NPCM7XX_TIMERS_PER_CTRL; i++) { NPCM7xxTimer *t = &s->timer[i]; npcm7xx_timer_clear(&t->base_timer); t->tcsr = 0x00000005; t->ticr = 0x00000000; } s->tisr = 0x00000000; /* * Set WTCLK to 1(default) and reset all flags except WTRF. * WTRF is not reset during a core domain reset. */ s->watchdog_timer.wtcr = 0x00000400 | (s->watchdog_timer.wtcr & NPCM7XX_WTCR_WTRF); } static void npcm7xx_watchdog_timer_expired(void *opaque) { NPCM7xxWatchdogTimer *t = opaque; if (t->wtcr & NPCM7XX_WTCR_WTE) { if (t->wtcr & NPCM7XX_WTCR_WTIF) { if (t->wtcr & NPCM7XX_WTCR_WTRE) { t->wtcr |= NPCM7XX_WTCR_WTRF; /* send reset signal to CLK module*/ qemu_irq_raise(t->reset_signal); } } else { t->wtcr |= NPCM7XX_WTCR_WTIF; if (t->wtcr & NPCM7XX_WTCR_WTIE) { /* send interrupt */ qemu_irq_raise(t->irq); } npcm7xx_watchdog_timer_reset_cycles(t, NPCM7XX_WATCHDOG_INTERRUPT_TO_RESET_CYCLES); npcm7xx_timer_start(&t->base_timer); } } } static void npcm7xx_timer_hold_reset(Object *obj) { NPCM7xxTimerCtrlState *s = NPCM7XX_TIMER(obj); int i; for (i = 0; i < NPCM7XX_TIMERS_PER_CTRL; i++) { qemu_irq_lower(s->timer[i].irq); } qemu_irq_lower(s->watchdog_timer.irq); } static void npcm7xx_timer_init(Object *obj) { NPCM7xxTimerCtrlState *s = NPCM7XX_TIMER(obj); DeviceState *dev = DEVICE(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); int i; NPCM7xxWatchdogTimer *w; for (i = 0; i < NPCM7XX_TIMERS_PER_CTRL; i++) { NPCM7xxTimer *t = &s->timer[i]; t->ctrl = s; timer_init_ns(&t->base_timer.qtimer, QEMU_CLOCK_VIRTUAL, npcm7xx_timer_expired, t); sysbus_init_irq(sbd, &t->irq); } w = &s->watchdog_timer; w->ctrl = s; timer_init_ns(&w->base_timer.qtimer, QEMU_CLOCK_VIRTUAL, npcm7xx_watchdog_timer_expired, w); sysbus_init_irq(sbd, &w->irq); memory_region_init_io(&s->iomem, obj, &npcm7xx_timer_ops, s, TYPE_NPCM7XX_TIMER, 4 * KiB); sysbus_init_mmio(sbd, &s->iomem); qdev_init_gpio_out_named(dev, &w->reset_signal, NPCM7XX_WATCHDOG_RESET_GPIO_OUT, 1); s->clock = qdev_init_clock_in(dev, "clock", NULL, NULL, 0); } static const VMStateDescription vmstate_npcm7xx_base_timer = { .name = "npcm7xx-base-timer", .version_id = 0, .minimum_version_id = 0, .fields = (VMStateField[]) { VMSTATE_TIMER(qtimer, NPCM7xxBaseTimer), VMSTATE_INT64(expires_ns, NPCM7xxBaseTimer), VMSTATE_INT64(remaining_ns, NPCM7xxBaseTimer), VMSTATE_END_OF_LIST(), }, }; static const VMStateDescription vmstate_npcm7xx_timer = { .name = "npcm7xx-timer", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT(base_timer, NPCM7xxTimer, 0, vmstate_npcm7xx_base_timer, NPCM7xxBaseTimer), VMSTATE_UINT32(tcsr, NPCM7xxTimer), VMSTATE_UINT32(ticr, NPCM7xxTimer), VMSTATE_END_OF_LIST(), }, }; static const VMStateDescription vmstate_npcm7xx_watchdog_timer = { .name = "npcm7xx-watchdog-timer", .version_id = 0, .minimum_version_id = 0, .fields = (VMStateField[]) { VMSTATE_STRUCT(base_timer, NPCM7xxWatchdogTimer, 0, vmstate_npcm7xx_base_timer, NPCM7xxBaseTimer), VMSTATE_UINT32(wtcr, NPCM7xxWatchdogTimer), VMSTATE_END_OF_LIST(), }, }; static const VMStateDescription vmstate_npcm7xx_timer_ctrl = { .name = "npcm7xx-timer-ctrl", .version_id = 2, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_UINT32(tisr, NPCM7xxTimerCtrlState), VMSTATE_CLOCK(clock, NPCM7xxTimerCtrlState), VMSTATE_STRUCT_ARRAY(timer, NPCM7xxTimerCtrlState, NPCM7XX_TIMERS_PER_CTRL, 0, vmstate_npcm7xx_timer, NPCM7xxTimer), VMSTATE_STRUCT(watchdog_timer, NPCM7xxTimerCtrlState, 0, vmstate_npcm7xx_watchdog_timer, NPCM7xxWatchdogTimer), VMSTATE_END_OF_LIST(), }, }; static void npcm7xx_timer_class_init(ObjectClass *klass, void *data) { ResettableClass *rc = RESETTABLE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); QEMU_BUILD_BUG_ON(NPCM7XX_TIMER_REGS_END > NPCM7XX_TIMER_NR_REGS); dc->desc = "NPCM7xx Timer Controller"; dc->vmsd = &vmstate_npcm7xx_timer_ctrl; rc->phases.enter = npcm7xx_timer_enter_reset; rc->phases.hold = npcm7xx_timer_hold_reset; } static const TypeInfo npcm7xx_timer_info = { .name = TYPE_NPCM7XX_TIMER, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(NPCM7xxTimerCtrlState), .class_init = npcm7xx_timer_class_init, .instance_init = npcm7xx_timer_init, }; static void npcm7xx_timer_register_type(void) { type_register_static(&npcm7xx_timer_info); } type_init(npcm7xx_timer_register_type);