/* * QEMU Universal Flash Storage (UFS) Controller * * Copyright (c) 2023 Samsung Electronics Co., Ltd. All rights reserved. * * Written by Jeuk Kim * * SPDX-License-Identifier: GPL-2.0-or-later */ /** * Reference Specs: https://www.jedec.org/, 3.1 * * Usage * ----- * * Add options: * -drive file=,if=none,id= * -device ufs,serial=,id=, \ * nutrs=,nutmrs= * -device ufs-lu,drive=,bus= */ #include "qemu/osdep.h" #include "qapi/error.h" #include "migration/vmstate.h" #include "trace.h" #include "ufs.h" /* The QEMU-UFS device follows spec version 3.1 */ #define UFS_SPEC_VER 0x0310 #define UFS_MAX_NUTRS 32 #define UFS_MAX_NUTMRS 8 static MemTxResult ufs_addr_read(UfsHc *u, hwaddr addr, void *buf, int size) { hwaddr hi = addr + size - 1; if (hi < addr) { return MEMTX_DECODE_ERROR; } if (!FIELD_EX32(u->reg.cap, CAP, 64AS) && (hi >> 32)) { return MEMTX_DECODE_ERROR; } return pci_dma_read(PCI_DEVICE(u), addr, buf, size); } static MemTxResult ufs_addr_write(UfsHc *u, hwaddr addr, const void *buf, int size) { hwaddr hi = addr + size - 1; if (hi < addr) { return MEMTX_DECODE_ERROR; } if (!FIELD_EX32(u->reg.cap, CAP, 64AS) && (hi >> 32)) { return MEMTX_DECODE_ERROR; } return pci_dma_write(PCI_DEVICE(u), addr, buf, size); } static void ufs_complete_req(UfsRequest *req, UfsReqResult req_result); static inline hwaddr ufs_get_utrd_addr(UfsHc *u, uint32_t slot) { hwaddr utrl_base_addr = (((hwaddr)u->reg.utrlbau) << 32) + u->reg.utrlba; hwaddr utrd_addr = utrl_base_addr + slot * sizeof(UtpTransferReqDesc); return utrd_addr; } static inline hwaddr ufs_get_req_upiu_base_addr(const UtpTransferReqDesc *utrd) { uint32_t cmd_desc_base_addr_lo = le32_to_cpu(utrd->command_desc_base_addr_lo); uint32_t cmd_desc_base_addr_hi = le32_to_cpu(utrd->command_desc_base_addr_hi); return (((hwaddr)cmd_desc_base_addr_hi) << 32) + cmd_desc_base_addr_lo; } static inline hwaddr ufs_get_rsp_upiu_base_addr(const UtpTransferReqDesc *utrd) { hwaddr req_upiu_base_addr = ufs_get_req_upiu_base_addr(utrd); uint32_t rsp_upiu_byte_off = le16_to_cpu(utrd->response_upiu_offset) * sizeof(uint32_t); return req_upiu_base_addr + rsp_upiu_byte_off; } static MemTxResult ufs_dma_read_utrd(UfsRequest *req) { UfsHc *u = req->hc; hwaddr utrd_addr = ufs_get_utrd_addr(u, req->slot); MemTxResult ret; ret = ufs_addr_read(u, utrd_addr, &req->utrd, sizeof(req->utrd)); if (ret) { trace_ufs_err_dma_read_utrd(req->slot, utrd_addr); } return ret; } static MemTxResult ufs_dma_read_req_upiu(UfsRequest *req) { UfsHc *u = req->hc; hwaddr req_upiu_base_addr = ufs_get_req_upiu_base_addr(&req->utrd); UtpUpiuReq *req_upiu = &req->req_upiu; uint32_t copy_size; uint16_t data_segment_length; MemTxResult ret; /* * To know the size of the req_upiu, we need to read the * data_segment_length in the header first. */ ret = ufs_addr_read(u, req_upiu_base_addr, &req_upiu->header, sizeof(UtpUpiuHeader)); if (ret) { trace_ufs_err_dma_read_req_upiu(req->slot, req_upiu_base_addr); return ret; } data_segment_length = be16_to_cpu(req_upiu->header.data_segment_length); copy_size = sizeof(UtpUpiuHeader) + UFS_TRANSACTION_SPECIFIC_FIELD_SIZE + data_segment_length; ret = ufs_addr_read(u, req_upiu_base_addr, &req->req_upiu, copy_size); if (ret) { trace_ufs_err_dma_read_req_upiu(req->slot, req_upiu_base_addr); } return ret; } static MemTxResult ufs_dma_read_prdt(UfsRequest *req) { UfsHc *u = req->hc; uint16_t prdt_len = le16_to_cpu(req->utrd.prd_table_length); uint16_t prdt_byte_off = le16_to_cpu(req->utrd.prd_table_offset) * sizeof(uint32_t); uint32_t prdt_size = prdt_len * sizeof(UfshcdSgEntry); g_autofree UfshcdSgEntry *prd_entries = NULL; hwaddr req_upiu_base_addr, prdt_base_addr; int err; assert(!req->sg); if (prdt_size == 0) { return MEMTX_OK; } prd_entries = g_new(UfshcdSgEntry, prdt_size); req_upiu_base_addr = ufs_get_req_upiu_base_addr(&req->utrd); prdt_base_addr = req_upiu_base_addr + prdt_byte_off; err = ufs_addr_read(u, prdt_base_addr, prd_entries, prdt_size); if (err) { trace_ufs_err_dma_read_prdt(req->slot, prdt_base_addr); return err; } req->sg = g_malloc0(sizeof(QEMUSGList)); pci_dma_sglist_init(req->sg, PCI_DEVICE(u), prdt_len); for (uint16_t i = 0; i < prdt_len; ++i) { hwaddr data_dma_addr = le64_to_cpu(prd_entries[i].addr); uint32_t data_byte_count = le32_to_cpu(prd_entries[i].size) + 1; qemu_sglist_add(req->sg, data_dma_addr, data_byte_count); } return MEMTX_OK; } static MemTxResult ufs_dma_read_upiu(UfsRequest *req) { MemTxResult ret; ret = ufs_dma_read_utrd(req); if (ret) { return ret; } ret = ufs_dma_read_req_upiu(req); if (ret) { return ret; } ret = ufs_dma_read_prdt(req); if (ret) { return ret; } return 0; } static MemTxResult ufs_dma_write_utrd(UfsRequest *req) { UfsHc *u = req->hc; hwaddr utrd_addr = ufs_get_utrd_addr(u, req->slot); MemTxResult ret; ret = ufs_addr_write(u, utrd_addr, &req->utrd, sizeof(req->utrd)); if (ret) { trace_ufs_err_dma_write_utrd(req->slot, utrd_addr); } return ret; } static MemTxResult ufs_dma_write_rsp_upiu(UfsRequest *req) { UfsHc *u = req->hc; hwaddr rsp_upiu_base_addr = ufs_get_rsp_upiu_base_addr(&req->utrd); uint32_t rsp_upiu_byte_len = le16_to_cpu(req->utrd.response_upiu_length) * sizeof(uint32_t); uint16_t data_segment_length = be16_to_cpu(req->rsp_upiu.header.data_segment_length); uint32_t copy_size = sizeof(UtpUpiuHeader) + UFS_TRANSACTION_SPECIFIC_FIELD_SIZE + data_segment_length; MemTxResult ret; if (copy_size > rsp_upiu_byte_len) { copy_size = rsp_upiu_byte_len; } ret = ufs_addr_write(u, rsp_upiu_base_addr, &req->rsp_upiu, copy_size); if (ret) { trace_ufs_err_dma_write_rsp_upiu(req->slot, rsp_upiu_base_addr); } return ret; } static MemTxResult ufs_dma_write_upiu(UfsRequest *req) { MemTxResult ret; ret = ufs_dma_write_rsp_upiu(req); if (ret) { return ret; } return ufs_dma_write_utrd(req); } static void ufs_irq_check(UfsHc *u) { PCIDevice *pci = PCI_DEVICE(u); if ((u->reg.is & UFS_INTR_MASK) & u->reg.ie) { trace_ufs_irq_raise(); pci_irq_assert(pci); } else { trace_ufs_irq_lower(); pci_irq_deassert(pci); } } static void ufs_process_db(UfsHc *u, uint32_t val) { unsigned long doorbell; uint32_t slot; uint32_t nutrs = u->params.nutrs; UfsRequest *req; val &= ~u->reg.utrldbr; if (!val) { return; } doorbell = val; slot = find_first_bit(&doorbell, nutrs); while (slot < nutrs) { req = &u->req_list[slot]; if (req->state == UFS_REQUEST_ERROR) { trace_ufs_err_utrl_slot_error(req->slot); return; } if (req->state != UFS_REQUEST_IDLE) { trace_ufs_err_utrl_slot_busy(req->slot); return; } trace_ufs_process_db(slot); req->state = UFS_REQUEST_READY; slot = find_next_bit(&doorbell, nutrs, slot + 1); } qemu_bh_schedule(u->doorbell_bh); } static void ufs_process_uiccmd(UfsHc *u, uint32_t val) { trace_ufs_process_uiccmd(val, u->reg.ucmdarg1, u->reg.ucmdarg2, u->reg.ucmdarg3); /* * Only the essential uic commands for running drivers on Linux and Windows * are implemented. */ switch (val) { case UFS_UIC_CMD_DME_LINK_STARTUP: u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, DP, 1); u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UTRLRDY, 1); u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UTMRLRDY, 1); u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS; break; /* TODO: Revisit it when Power Management is implemented */ case UFS_UIC_CMD_DME_HIBER_ENTER: u->reg.is = FIELD_DP32(u->reg.is, IS, UHES, 1); u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UPMCRS, UFS_PWR_LOCAL); u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS; break; case UFS_UIC_CMD_DME_HIBER_EXIT: u->reg.is = FIELD_DP32(u->reg.is, IS, UHXS, 1); u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UPMCRS, UFS_PWR_LOCAL); u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS; break; default: u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_FAILURE; } u->reg.is = FIELD_DP32(u->reg.is, IS, UCCS, 1); ufs_irq_check(u); } static void ufs_write_reg(UfsHc *u, hwaddr offset, uint32_t data, unsigned size) { switch (offset) { case A_IS: u->reg.is &= ~data; ufs_irq_check(u); break; case A_IE: u->reg.ie = data; ufs_irq_check(u); break; case A_HCE: if (!FIELD_EX32(u->reg.hce, HCE, HCE) && FIELD_EX32(data, HCE, HCE)) { u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UCRDY, 1); u->reg.hce = FIELD_DP32(u->reg.hce, HCE, HCE, 1); } else if (FIELD_EX32(u->reg.hce, HCE, HCE) && !FIELD_EX32(data, HCE, HCE)) { u->reg.hcs = 0; u->reg.hce = FIELD_DP32(u->reg.hce, HCE, HCE, 0); } break; case A_UTRLBA: u->reg.utrlba = data & R_UTRLBA_UTRLBA_MASK; break; case A_UTRLBAU: u->reg.utrlbau = data; break; case A_UTRLDBR: ufs_process_db(u, data); u->reg.utrldbr |= data; break; case A_UTRLRSR: u->reg.utrlrsr = data; break; case A_UTRLCNR: u->reg.utrlcnr &= ~data; break; case A_UTMRLBA: u->reg.utmrlba = data & R_UTMRLBA_UTMRLBA_MASK; break; case A_UTMRLBAU: u->reg.utmrlbau = data; break; case A_UICCMD: ufs_process_uiccmd(u, data); break; case A_UCMDARG1: u->reg.ucmdarg1 = data; break; case A_UCMDARG2: u->reg.ucmdarg2 = data; break; case A_UCMDARG3: u->reg.ucmdarg3 = data; break; case A_UTRLCLR: case A_UTMRLDBR: case A_UTMRLCLR: case A_UTMRLRSR: trace_ufs_err_unsupport_register_offset(offset); break; default: trace_ufs_err_invalid_register_offset(offset); break; } } static uint64_t ufs_mmio_read(void *opaque, hwaddr addr, unsigned size) { UfsHc *u = (UfsHc *)opaque; uint8_t *ptr = (uint8_t *)&u->reg; uint64_t value; if (addr > sizeof(u->reg) - size) { trace_ufs_err_invalid_register_offset(addr); return 0; } value = *(uint32_t *)(ptr + addr); trace_ufs_mmio_read(addr, value, size); return value; } static void ufs_mmio_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { UfsHc *u = (UfsHc *)opaque; if (addr > sizeof(u->reg) - size) { trace_ufs_err_invalid_register_offset(addr); return; } trace_ufs_mmio_write(addr, data, size); ufs_write_reg(u, addr, data, size); } static const MemoryRegionOps ufs_mmio_ops = { .read = ufs_mmio_read, .write = ufs_mmio_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static QEMUSGList *ufs_get_sg_list(SCSIRequest *scsi_req) { UfsRequest *req = scsi_req->hba_private; return req->sg; } static void ufs_build_upiu_sense_data(UfsRequest *req, SCSIRequest *scsi_req) { req->rsp_upiu.sr.sense_data_len = cpu_to_be16(scsi_req->sense_len); assert(scsi_req->sense_len <= SCSI_SENSE_LEN); memcpy(req->rsp_upiu.sr.sense_data, scsi_req->sense, scsi_req->sense_len); } static void ufs_build_upiu_header(UfsRequest *req, uint8_t trans_type, uint8_t flags, uint8_t response, uint8_t scsi_status, uint16_t data_segment_length) { memcpy(&req->rsp_upiu.header, &req->req_upiu.header, sizeof(UtpUpiuHeader)); req->rsp_upiu.header.trans_type = trans_type; req->rsp_upiu.header.flags = flags; req->rsp_upiu.header.response = response; req->rsp_upiu.header.scsi_status = scsi_status; req->rsp_upiu.header.data_segment_length = cpu_to_be16(data_segment_length); } static void ufs_scsi_command_complete(SCSIRequest *scsi_req, size_t resid) { UfsRequest *req = scsi_req->hba_private; int16_t status = scsi_req->status; uint32_t expected_len = be32_to_cpu(req->req_upiu.sc.exp_data_transfer_len); uint32_t transfered_len = scsi_req->cmd.xfer - resid; uint8_t flags = 0, response = UFS_COMMAND_RESULT_SUCESS; uint16_t data_segment_length; if (expected_len > transfered_len) { req->rsp_upiu.sr.residual_transfer_count = cpu_to_be32(expected_len - transfered_len); flags |= UFS_UPIU_FLAG_UNDERFLOW; } else if (expected_len < transfered_len) { req->rsp_upiu.sr.residual_transfer_count = cpu_to_be32(transfered_len - expected_len); flags |= UFS_UPIU_FLAG_OVERFLOW; } if (status != 0) { ufs_build_upiu_sense_data(req, scsi_req); response = UFS_COMMAND_RESULT_FAIL; } data_segment_length = cpu_to_be16(scsi_req->sense_len + sizeof(req->rsp_upiu.sr.sense_data_len)); ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_RESPONSE, flags, response, status, data_segment_length); ufs_complete_req(req, UFS_REQUEST_SUCCESS); scsi_req->hba_private = NULL; scsi_req_unref(scsi_req); } static const struct SCSIBusInfo ufs_scsi_info = { .tcq = true, .max_target = 0, .max_lun = UFS_MAX_LUS, .max_channel = 0, .get_sg_list = ufs_get_sg_list, .complete = ufs_scsi_command_complete, }; static UfsReqResult ufs_exec_scsi_cmd(UfsRequest *req) { UfsHc *u = req->hc; uint8_t lun = req->req_upiu.header.lun; uint8_t task_tag = req->req_upiu.header.task_tag; SCSIDevice *dev = NULL; trace_ufs_exec_scsi_cmd(req->slot, lun, req->req_upiu.sc.cdb[0]); if (!is_wlun(lun)) { if (lun >= u->device_desc.number_lu) { trace_ufs_err_scsi_cmd_invalid_lun(lun); return UFS_REQUEST_FAIL; } else if (u->lus[lun] == NULL) { trace_ufs_err_scsi_cmd_invalid_lun(lun); return UFS_REQUEST_FAIL; } } switch (lun) { case UFS_UPIU_REPORT_LUNS_WLUN: dev = &u->report_wlu->qdev; break; case UFS_UPIU_UFS_DEVICE_WLUN: dev = &u->dev_wlu->qdev; break; case UFS_UPIU_BOOT_WLUN: dev = &u->boot_wlu->qdev; break; case UFS_UPIU_RPMB_WLUN: dev = &u->rpmb_wlu->qdev; break; default: dev = &u->lus[lun]->qdev; } SCSIRequest *scsi_req = scsi_req_new( dev, task_tag, lun, req->req_upiu.sc.cdb, UFS_CDB_SIZE, req); uint32_t len = scsi_req_enqueue(scsi_req); if (len) { scsi_req_continue(scsi_req); } return UFS_REQUEST_NO_COMPLETE; } static UfsReqResult ufs_exec_nop_cmd(UfsRequest *req) { trace_ufs_exec_nop_cmd(req->slot); ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_NOP_IN, 0, 0, 0, 0); return UFS_REQUEST_SUCCESS; } /* * This defines the permission of flags based on their IDN. There are some * things that are declared read-only, which is inconsistent with the ufs spec, * because we want to return an error for features that are not yet supported. */ static const int flag_permission[UFS_QUERY_FLAG_IDN_COUNT] = { [UFS_QUERY_FLAG_IDN_FDEVICEINIT] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET, /* Write protection is not supported */ [UFS_QUERY_FLAG_IDN_PERMANENT_WPE] = UFS_QUERY_FLAG_READ, [UFS_QUERY_FLAG_IDN_PWR_ON_WPE] = UFS_QUERY_FLAG_READ, [UFS_QUERY_FLAG_IDN_BKOPS_EN] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET | UFS_QUERY_FLAG_CLEAR | UFS_QUERY_FLAG_TOGGLE, [UFS_QUERY_FLAG_IDN_LIFE_SPAN_MODE_ENABLE] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET | UFS_QUERY_FLAG_CLEAR | UFS_QUERY_FLAG_TOGGLE, /* Purge Operation is not supported */ [UFS_QUERY_FLAG_IDN_PURGE_ENABLE] = UFS_QUERY_FLAG_NONE, /* Refresh Operation is not supported */ [UFS_QUERY_FLAG_IDN_REFRESH_ENABLE] = UFS_QUERY_FLAG_NONE, /* Physical Resource Removal is not supported */ [UFS_QUERY_FLAG_IDN_FPHYRESOURCEREMOVAL] = UFS_QUERY_FLAG_READ, [UFS_QUERY_FLAG_IDN_BUSY_RTC] = UFS_QUERY_FLAG_READ, [UFS_QUERY_FLAG_IDN_PERMANENTLY_DISABLE_FW_UPDATE] = UFS_QUERY_FLAG_READ, /* Write Booster is not supported */ [UFS_QUERY_FLAG_IDN_WB_EN] = UFS_QUERY_FLAG_READ, [UFS_QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN] = UFS_QUERY_FLAG_READ, [UFS_QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8] = UFS_QUERY_FLAG_READ, }; static inline QueryRespCode ufs_flag_check_idn_valid(uint8_t idn, int op) { if (idn >= UFS_QUERY_FLAG_IDN_COUNT) { return UFS_QUERY_RESULT_INVALID_IDN; } if (!(flag_permission[idn] & op)) { if (op == UFS_QUERY_FLAG_READ) { trace_ufs_err_query_flag_not_readable(idn); return UFS_QUERY_RESULT_NOT_READABLE; } trace_ufs_err_query_flag_not_writable(idn); return UFS_QUERY_RESULT_NOT_WRITEABLE; } return UFS_QUERY_RESULT_SUCCESS; } static const int attr_permission[UFS_QUERY_ATTR_IDN_COUNT] = { /* booting is not supported */ [UFS_QUERY_ATTR_IDN_BOOT_LU_EN] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_POWER_MODE] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_OOO_DATA_EN] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_BKOPS_STATUS] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_PURGE_STATUS] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_MAX_DATA_IN] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_MAX_DATA_OUT] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_DYN_CAP_NEEDED] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_REF_CLK_FREQ] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_CONF_DESC_LOCK] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_EE_CONTROL] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_EE_STATUS] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_SECONDS_PASSED] = UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_CNTX_CONF] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_FFU_STATUS] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_PSA_STATE] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE, [UFS_QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_CASE_ROUGH_TEMP] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_HIGH_TEMP_BOUND] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_LOW_TEMP_BOUND] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_THROTTLING_STATUS] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_WB_FLUSH_STATUS] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE] = UFS_QUERY_ATTR_READ, /* refresh operation is not supported */ [UFS_QUERY_ATTR_IDN_REFRESH_STATUS] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_REFRESH_FREQ] = UFS_QUERY_ATTR_READ, [UFS_QUERY_ATTR_IDN_REFRESH_UNIT] = UFS_QUERY_ATTR_READ, }; static inline QueryRespCode ufs_attr_check_idn_valid(uint8_t idn, int op) { if (idn >= UFS_QUERY_ATTR_IDN_COUNT) { return UFS_QUERY_RESULT_INVALID_IDN; } if (!(attr_permission[idn] & op)) { if (op == UFS_QUERY_ATTR_READ) { trace_ufs_err_query_attr_not_readable(idn); return UFS_QUERY_RESULT_NOT_READABLE; } trace_ufs_err_query_attr_not_writable(idn); return UFS_QUERY_RESULT_NOT_WRITEABLE; } return UFS_QUERY_RESULT_SUCCESS; } static QueryRespCode ufs_exec_query_flag(UfsRequest *req, int op) { UfsHc *u = req->hc; uint8_t idn = req->req_upiu.qr.idn; uint32_t value; QueryRespCode ret; ret = ufs_flag_check_idn_valid(idn, op); if (ret) { return ret; } if (idn == UFS_QUERY_FLAG_IDN_FDEVICEINIT) { value = 0; } else if (op == UFS_QUERY_FLAG_READ) { value = *(((uint8_t *)&u->flags) + idn); } else if (op == UFS_QUERY_FLAG_SET) { value = 1; } else if (op == UFS_QUERY_FLAG_CLEAR) { value = 0; } else if (op == UFS_QUERY_FLAG_TOGGLE) { value = *(((uint8_t *)&u->flags) + idn); value = !value; } else { trace_ufs_err_query_invalid_opcode(op); return UFS_QUERY_RESULT_INVALID_OPCODE; } *(((uint8_t *)&u->flags) + idn) = value; req->rsp_upiu.qr.value = cpu_to_be32(value); return UFS_QUERY_RESULT_SUCCESS; } static uint32_t ufs_read_attr_value(UfsHc *u, uint8_t idn) { switch (idn) { case UFS_QUERY_ATTR_IDN_BOOT_LU_EN: return u->attributes.boot_lun_en; case UFS_QUERY_ATTR_IDN_POWER_MODE: return u->attributes.current_power_mode; case UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL: return u->attributes.active_icc_level; case UFS_QUERY_ATTR_IDN_OOO_DATA_EN: return u->attributes.out_of_order_data_en; case UFS_QUERY_ATTR_IDN_BKOPS_STATUS: return u->attributes.background_op_status; case UFS_QUERY_ATTR_IDN_PURGE_STATUS: return u->attributes.purge_status; case UFS_QUERY_ATTR_IDN_MAX_DATA_IN: return u->attributes.max_data_in_size; case UFS_QUERY_ATTR_IDN_MAX_DATA_OUT: return u->attributes.max_data_out_size; case UFS_QUERY_ATTR_IDN_DYN_CAP_NEEDED: return be32_to_cpu(u->attributes.dyn_cap_needed); case UFS_QUERY_ATTR_IDN_REF_CLK_FREQ: return u->attributes.ref_clk_freq; case UFS_QUERY_ATTR_IDN_CONF_DESC_LOCK: return u->attributes.config_descr_lock; case UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT: return u->attributes.max_num_of_rtt; case UFS_QUERY_ATTR_IDN_EE_CONTROL: return be16_to_cpu(u->attributes.exception_event_control); case UFS_QUERY_ATTR_IDN_EE_STATUS: return be16_to_cpu(u->attributes.exception_event_status); case UFS_QUERY_ATTR_IDN_SECONDS_PASSED: return be32_to_cpu(u->attributes.seconds_passed); case UFS_QUERY_ATTR_IDN_CNTX_CONF: return be16_to_cpu(u->attributes.context_conf); case UFS_QUERY_ATTR_IDN_FFU_STATUS: return u->attributes.device_ffu_status; case UFS_QUERY_ATTR_IDN_PSA_STATE: return be32_to_cpu(u->attributes.psa_state); case UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE: return be32_to_cpu(u->attributes.psa_data_size); case UFS_QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME: return u->attributes.ref_clk_gating_wait_time; case UFS_QUERY_ATTR_IDN_CASE_ROUGH_TEMP: return u->attributes.device_case_rough_temperaure; case UFS_QUERY_ATTR_IDN_HIGH_TEMP_BOUND: return u->attributes.device_too_high_temp_boundary; case UFS_QUERY_ATTR_IDN_LOW_TEMP_BOUND: return u->attributes.device_too_low_temp_boundary; case UFS_QUERY_ATTR_IDN_THROTTLING_STATUS: return u->attributes.throttling_status; case UFS_QUERY_ATTR_IDN_WB_FLUSH_STATUS: return u->attributes.wb_buffer_flush_status; case UFS_QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE: return u->attributes.available_wb_buffer_size; case UFS_QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST: return u->attributes.wb_buffer_life_time_est; case UFS_QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE: return be32_to_cpu(u->attributes.current_wb_buffer_size); case UFS_QUERY_ATTR_IDN_REFRESH_STATUS: return u->attributes.refresh_status; case UFS_QUERY_ATTR_IDN_REFRESH_FREQ: return u->attributes.refresh_freq; case UFS_QUERY_ATTR_IDN_REFRESH_UNIT: return u->attributes.refresh_unit; } return 0; } static void ufs_write_attr_value(UfsHc *u, uint8_t idn, uint32_t value) { switch (idn) { case UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL: u->attributes.active_icc_level = value; break; case UFS_QUERY_ATTR_IDN_MAX_DATA_IN: u->attributes.max_data_in_size = value; break; case UFS_QUERY_ATTR_IDN_MAX_DATA_OUT: u->attributes.max_data_out_size = value; break; case UFS_QUERY_ATTR_IDN_REF_CLK_FREQ: u->attributes.ref_clk_freq = value; break; case UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT: u->attributes.max_num_of_rtt = value; break; case UFS_QUERY_ATTR_IDN_EE_CONTROL: u->attributes.exception_event_control = cpu_to_be16(value); break; case UFS_QUERY_ATTR_IDN_SECONDS_PASSED: u->attributes.seconds_passed = cpu_to_be32(value); break; case UFS_QUERY_ATTR_IDN_PSA_STATE: u->attributes.psa_state = value; break; case UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE: u->attributes.psa_data_size = cpu_to_be32(value); break; } } static QueryRespCode ufs_exec_query_attr(UfsRequest *req, int op) { UfsHc *u = req->hc; uint8_t idn = req->req_upiu.qr.idn; uint32_t value; QueryRespCode ret; ret = ufs_attr_check_idn_valid(idn, op); if (ret) { return ret; } if (op == UFS_QUERY_ATTR_READ) { value = ufs_read_attr_value(u, idn); } else { value = be32_to_cpu(req->req_upiu.qr.value); ufs_write_attr_value(u, idn, value); } req->rsp_upiu.qr.value = cpu_to_be32(value); return UFS_QUERY_RESULT_SUCCESS; } static const RpmbUnitDescriptor rpmb_unit_desc = { .length = sizeof(RpmbUnitDescriptor), .descriptor_idn = 2, .unit_index = UFS_UPIU_RPMB_WLUN, .lu_enable = 0, }; static QueryRespCode ufs_read_unit_desc(UfsRequest *req) { UfsHc *u = req->hc; uint8_t lun = req->req_upiu.qr.index; if (lun != UFS_UPIU_RPMB_WLUN && (lun > UFS_MAX_LUS || u->lus[lun] == NULL)) { trace_ufs_err_query_invalid_index(req->req_upiu.qr.opcode, lun); return UFS_QUERY_RESULT_INVALID_INDEX; } if (lun == UFS_UPIU_RPMB_WLUN) { memcpy(&req->rsp_upiu.qr.data, &rpmb_unit_desc, rpmb_unit_desc.length); } else { memcpy(&req->rsp_upiu.qr.data, &u->lus[lun]->unit_desc, sizeof(u->lus[lun]->unit_desc)); } return UFS_QUERY_RESULT_SUCCESS; } static inline StringDescriptor manufacturer_str_desc(void) { StringDescriptor desc = { .length = 0x12, .descriptor_idn = UFS_QUERY_DESC_IDN_STRING, }; desc.UC[0] = cpu_to_be16('R'); desc.UC[1] = cpu_to_be16('E'); desc.UC[2] = cpu_to_be16('D'); desc.UC[3] = cpu_to_be16('H'); desc.UC[4] = cpu_to_be16('A'); desc.UC[5] = cpu_to_be16('T'); return desc; } static inline StringDescriptor product_name_str_desc(void) { StringDescriptor desc = { .length = 0x22, .descriptor_idn = UFS_QUERY_DESC_IDN_STRING, }; desc.UC[0] = cpu_to_be16('Q'); desc.UC[1] = cpu_to_be16('E'); desc.UC[2] = cpu_to_be16('M'); desc.UC[3] = cpu_to_be16('U'); desc.UC[4] = cpu_to_be16(' '); desc.UC[5] = cpu_to_be16('U'); desc.UC[6] = cpu_to_be16('F'); desc.UC[7] = cpu_to_be16('S'); return desc; } static inline StringDescriptor product_rev_level_str_desc(void) { StringDescriptor desc = { .length = 0x0a, .descriptor_idn = UFS_QUERY_DESC_IDN_STRING, }; desc.UC[0] = cpu_to_be16('0'); desc.UC[1] = cpu_to_be16('0'); desc.UC[2] = cpu_to_be16('0'); desc.UC[3] = cpu_to_be16('1'); return desc; } static const StringDescriptor null_str_desc = { .length = 0x02, .descriptor_idn = UFS_QUERY_DESC_IDN_STRING, }; static QueryRespCode ufs_read_string_desc(UfsRequest *req) { UfsHc *u = req->hc; uint8_t index = req->req_upiu.qr.index; StringDescriptor desc; if (index == u->device_desc.manufacturer_name) { desc = manufacturer_str_desc(); memcpy(&req->rsp_upiu.qr.data, &desc, desc.length); } else if (index == u->device_desc.product_name) { desc = product_name_str_desc(); memcpy(&req->rsp_upiu.qr.data, &desc, desc.length); } else if (index == u->device_desc.serial_number) { memcpy(&req->rsp_upiu.qr.data, &null_str_desc, null_str_desc.length); } else if (index == u->device_desc.oem_id) { memcpy(&req->rsp_upiu.qr.data, &null_str_desc, null_str_desc.length); } else if (index == u->device_desc.product_revision_level) { desc = product_rev_level_str_desc(); memcpy(&req->rsp_upiu.qr.data, &desc, desc.length); } else { trace_ufs_err_query_invalid_index(req->req_upiu.qr.opcode, index); return UFS_QUERY_RESULT_INVALID_INDEX; } return UFS_QUERY_RESULT_SUCCESS; } static inline InterconnectDescriptor interconnect_desc(void) { InterconnectDescriptor desc = { .length = sizeof(InterconnectDescriptor), .descriptor_idn = UFS_QUERY_DESC_IDN_INTERCONNECT, }; desc.bcd_unipro_version = cpu_to_be16(0x180); desc.bcd_mphy_version = cpu_to_be16(0x410); return desc; } static QueryRespCode ufs_read_desc(UfsRequest *req) { UfsHc *u = req->hc; QueryRespCode status; uint8_t idn = req->req_upiu.qr.idn; uint16_t length = be16_to_cpu(req->req_upiu.qr.length); InterconnectDescriptor desc; switch (idn) { case UFS_QUERY_DESC_IDN_DEVICE: memcpy(&req->rsp_upiu.qr.data, &u->device_desc, sizeof(u->device_desc)); status = UFS_QUERY_RESULT_SUCCESS; break; case UFS_QUERY_DESC_IDN_UNIT: status = ufs_read_unit_desc(req); break; case UFS_QUERY_DESC_IDN_GEOMETRY: memcpy(&req->rsp_upiu.qr.data, &u->geometry_desc, sizeof(u->geometry_desc)); status = UFS_QUERY_RESULT_SUCCESS; break; case UFS_QUERY_DESC_IDN_INTERCONNECT: { desc = interconnect_desc(); memcpy(&req->rsp_upiu.qr.data, &desc, sizeof(InterconnectDescriptor)); status = UFS_QUERY_RESULT_SUCCESS; break; } case UFS_QUERY_DESC_IDN_STRING: status = ufs_read_string_desc(req); break; case UFS_QUERY_DESC_IDN_POWER: /* mocking of power descriptor is not supported */ memset(&req->rsp_upiu.qr.data, 0, sizeof(PowerParametersDescriptor)); req->rsp_upiu.qr.data[0] = sizeof(PowerParametersDescriptor); req->rsp_upiu.qr.data[1] = UFS_QUERY_DESC_IDN_POWER; status = UFS_QUERY_RESULT_SUCCESS; break; case UFS_QUERY_DESC_IDN_HEALTH: /* mocking of health descriptor is not supported */ memset(&req->rsp_upiu.qr.data, 0, sizeof(DeviceHealthDescriptor)); req->rsp_upiu.qr.data[0] = sizeof(DeviceHealthDescriptor); req->rsp_upiu.qr.data[1] = UFS_QUERY_DESC_IDN_HEALTH; status = UFS_QUERY_RESULT_SUCCESS; break; default: length = 0; trace_ufs_err_query_invalid_idn(req->req_upiu.qr.opcode, idn); status = UFS_QUERY_RESULT_INVALID_IDN; } if (length > req->rsp_upiu.qr.data[0]) { length = req->rsp_upiu.qr.data[0]; } req->rsp_upiu.qr.opcode = req->req_upiu.qr.opcode; req->rsp_upiu.qr.idn = req->req_upiu.qr.idn; req->rsp_upiu.qr.index = req->req_upiu.qr.index; req->rsp_upiu.qr.selector = req->req_upiu.qr.selector; req->rsp_upiu.qr.length = cpu_to_be16(length); return status; } static QueryRespCode ufs_exec_query_read(UfsRequest *req) { QueryRespCode status; switch (req->req_upiu.qr.opcode) { case UFS_UPIU_QUERY_OPCODE_NOP: status = UFS_QUERY_RESULT_SUCCESS; break; case UFS_UPIU_QUERY_OPCODE_READ_DESC: status = ufs_read_desc(req); break; case UFS_UPIU_QUERY_OPCODE_READ_ATTR: status = ufs_exec_query_attr(req, UFS_QUERY_ATTR_READ); break; case UFS_UPIU_QUERY_OPCODE_READ_FLAG: status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_READ); break; default: trace_ufs_err_query_invalid_opcode(req->req_upiu.qr.opcode); status = UFS_QUERY_RESULT_INVALID_OPCODE; break; } return status; } static QueryRespCode ufs_exec_query_write(UfsRequest *req) { QueryRespCode status; switch (req->req_upiu.qr.opcode) { case UFS_UPIU_QUERY_OPCODE_NOP: status = UFS_QUERY_RESULT_SUCCESS; break; case UFS_UPIU_QUERY_OPCODE_WRITE_DESC: /* write descriptor is not supported */ status = UFS_QUERY_RESULT_NOT_WRITEABLE; break; case UFS_UPIU_QUERY_OPCODE_WRITE_ATTR: status = ufs_exec_query_attr(req, UFS_QUERY_ATTR_WRITE); break; case UFS_UPIU_QUERY_OPCODE_SET_FLAG: status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_SET); break; case UFS_UPIU_QUERY_OPCODE_CLEAR_FLAG: status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_CLEAR); break; case UFS_UPIU_QUERY_OPCODE_TOGGLE_FLAG: status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_TOGGLE); break; default: trace_ufs_err_query_invalid_opcode(req->req_upiu.qr.opcode); status = UFS_QUERY_RESULT_INVALID_OPCODE; break; } return status; } static UfsReqResult ufs_exec_query_cmd(UfsRequest *req) { uint8_t query_func = req->req_upiu.header.query_func; uint16_t data_segment_length; QueryRespCode status; trace_ufs_exec_query_cmd(req->slot, req->req_upiu.qr.opcode); if (query_func == UFS_UPIU_QUERY_FUNC_STANDARD_READ_REQUEST) { status = ufs_exec_query_read(req); } else if (query_func == UFS_UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST) { status = ufs_exec_query_write(req); } else { status = UFS_QUERY_RESULT_GENERAL_FAILURE; } data_segment_length = be16_to_cpu(req->rsp_upiu.qr.length); ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_QUERY_RSP, 0, status, 0, data_segment_length); if (status != UFS_QUERY_RESULT_SUCCESS) { return UFS_REQUEST_FAIL; } return UFS_REQUEST_SUCCESS; } static void ufs_exec_req(UfsRequest *req) { UfsReqResult req_result; if (ufs_dma_read_upiu(req)) { return; } switch (req->req_upiu.header.trans_type) { case UFS_UPIU_TRANSACTION_NOP_OUT: req_result = ufs_exec_nop_cmd(req); break; case UFS_UPIU_TRANSACTION_COMMAND: req_result = ufs_exec_scsi_cmd(req); break; case UFS_UPIU_TRANSACTION_QUERY_REQ: req_result = ufs_exec_query_cmd(req); break; default: trace_ufs_err_invalid_trans_code(req->slot, req->req_upiu.header.trans_type); req_result = UFS_REQUEST_FAIL; } /* * The ufs_complete_req for scsi commands is handled by the * ufs_scsi_command_complete() callback function. Therefore, to avoid * duplicate processing, ufs_complete_req() is not called for scsi commands. */ if (req_result != UFS_REQUEST_NO_COMPLETE) { ufs_complete_req(req, req_result); } } static void ufs_process_req(void *opaque) { UfsHc *u = opaque; UfsRequest *req; int slot; for (slot = 0; slot < u->params.nutrs; slot++) { req = &u->req_list[slot]; if (req->state != UFS_REQUEST_READY) { continue; } trace_ufs_process_req(slot); req->state = UFS_REQUEST_RUNNING; ufs_exec_req(req); } } static void ufs_complete_req(UfsRequest *req, UfsReqResult req_result) { UfsHc *u = req->hc; assert(req->state == UFS_REQUEST_RUNNING); if (req_result == UFS_REQUEST_SUCCESS) { req->utrd.header.dword_2 = cpu_to_le32(UFS_OCS_SUCCESS); } else { req->utrd.header.dword_2 = cpu_to_le32(UFS_OCS_INVALID_CMD_TABLE_ATTR); } trace_ufs_complete_req(req->slot); req->state = UFS_REQUEST_COMPLETE; qemu_bh_schedule(u->complete_bh); } static void ufs_clear_req(UfsRequest *req) { if (req->sg != NULL) { qemu_sglist_destroy(req->sg); g_free(req->sg); req->sg = NULL; } memset(&req->utrd, 0, sizeof(req->utrd)); memset(&req->req_upiu, 0, sizeof(req->req_upiu)); memset(&req->rsp_upiu, 0, sizeof(req->rsp_upiu)); } static void ufs_sendback_req(void *opaque) { UfsHc *u = opaque; UfsRequest *req; int slot; for (slot = 0; slot < u->params.nutrs; slot++) { req = &u->req_list[slot]; if (req->state != UFS_REQUEST_COMPLETE) { continue; } if (ufs_dma_write_upiu(req)) { req->state = UFS_REQUEST_ERROR; continue; } /* * TODO: UTP Transfer Request Interrupt Aggregation Control is not yet * supported */ if (le32_to_cpu(req->utrd.header.dword_2) != UFS_OCS_SUCCESS || le32_to_cpu(req->utrd.header.dword_0) & UFS_UTP_REQ_DESC_INT_CMD) { u->reg.is = FIELD_DP32(u->reg.is, IS, UTRCS, 1); } u->reg.utrldbr &= ~(1 << slot); u->reg.utrlcnr |= (1 << slot); trace_ufs_sendback_req(req->slot); ufs_clear_req(req); req->state = UFS_REQUEST_IDLE; } ufs_irq_check(u); } static bool ufs_check_constraints(UfsHc *u, Error **errp) { if (u->params.nutrs > UFS_MAX_NUTRS) { error_setg(errp, "nutrs must be less than or equal to %d", UFS_MAX_NUTRS); return false; } if (u->params.nutmrs > UFS_MAX_NUTMRS) { error_setg(errp, "nutmrs must be less than or equal to %d", UFS_MAX_NUTMRS); return false; } return true; } static void ufs_init_pci(UfsHc *u, PCIDevice *pci_dev) { uint8_t *pci_conf = pci_dev->config; pci_conf[PCI_INTERRUPT_PIN] = 1; pci_config_set_prog_interface(pci_conf, 0x1); memory_region_init_io(&u->iomem, OBJECT(u), &ufs_mmio_ops, u, "ufs", u->reg_size); pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &u->iomem); u->irq = pci_allocate_irq(pci_dev); } static void ufs_init_state(UfsHc *u) { u->req_list = g_new0(UfsRequest, u->params.nutrs); for (int i = 0; i < u->params.nutrs; i++) { u->req_list[i].hc = u; u->req_list[i].slot = i; u->req_list[i].sg = NULL; u->req_list[i].state = UFS_REQUEST_IDLE; } u->doorbell_bh = qemu_bh_new_guarded(ufs_process_req, u, &DEVICE(u)->mem_reentrancy_guard); u->complete_bh = qemu_bh_new_guarded(ufs_sendback_req, u, &DEVICE(u)->mem_reentrancy_guard); } static void ufs_init_hc(UfsHc *u) { uint32_t cap = 0; u->reg_size = pow2ceil(sizeof(UfsReg)); memset(&u->reg, 0, sizeof(u->reg)); cap = FIELD_DP32(cap, CAP, NUTRS, (u->params.nutrs - 1)); cap = FIELD_DP32(cap, CAP, RTT, 2); cap = FIELD_DP32(cap, CAP, NUTMRS, (u->params.nutmrs - 1)); cap = FIELD_DP32(cap, CAP, AUTOH8, 0); cap = FIELD_DP32(cap, CAP, 64AS, 1); cap = FIELD_DP32(cap, CAP, OODDS, 0); cap = FIELD_DP32(cap, CAP, UICDMETMS, 0); cap = FIELD_DP32(cap, CAP, CS, 0); u->reg.cap = cap; u->reg.ver = UFS_SPEC_VER; memset(&u->device_desc, 0, sizeof(DeviceDescriptor)); u->device_desc.length = sizeof(DeviceDescriptor); u->device_desc.descriptor_idn = UFS_QUERY_DESC_IDN_DEVICE; u->device_desc.device_sub_class = 0x01; u->device_desc.number_lu = 0x00; u->device_desc.number_wlu = 0x04; /* TODO: Revisit it when Power Management is implemented */ u->device_desc.init_power_mode = 0x01; /* Active Mode */ u->device_desc.high_priority_lun = 0x7F; /* Same Priority */ u->device_desc.spec_version = cpu_to_be16(UFS_SPEC_VER); u->device_desc.manufacturer_name = 0x00; u->device_desc.product_name = 0x01; u->device_desc.serial_number = 0x02; u->device_desc.oem_id = 0x03; u->device_desc.ud_0_base_offset = 0x16; u->device_desc.ud_config_p_length = 0x1A; u->device_desc.device_rtt_cap = 0x02; u->device_desc.queue_depth = u->params.nutrs; u->device_desc.product_revision_level = 0x04; memset(&u->geometry_desc, 0, sizeof(GeometryDescriptor)); u->geometry_desc.length = sizeof(GeometryDescriptor); u->geometry_desc.descriptor_idn = UFS_QUERY_DESC_IDN_GEOMETRY; u->geometry_desc.max_number_lu = (UFS_MAX_LUS == 32) ? 0x1 : 0x0; u->geometry_desc.segment_size = cpu_to_be32(0x2000); /* 4KB */ u->geometry_desc.allocation_unit_size = 0x1; /* 4KB */ u->geometry_desc.min_addr_block_size = 0x8; /* 4KB */ u->geometry_desc.max_in_buffer_size = 0x8; u->geometry_desc.max_out_buffer_size = 0x8; u->geometry_desc.rpmb_read_write_size = 0x40; u->geometry_desc.data_ordering = 0x0; /* out-of-order data transfer is not supported */ u->geometry_desc.max_context_id_number = 0x5; u->geometry_desc.supported_memory_types = cpu_to_be16(0x8001); memset(&u->attributes, 0, sizeof(u->attributes)); u->attributes.max_data_in_size = 0x08; u->attributes.max_data_out_size = 0x08; u->attributes.ref_clk_freq = 0x01; /* 26 MHz */ /* configure descriptor is not supported */ u->attributes.config_descr_lock = 0x01; u->attributes.max_num_of_rtt = 0x02; memset(&u->flags, 0, sizeof(u->flags)); u->flags.permanently_disable_fw_update = 1; } static bool ufs_init_wlu(UfsHc *u, UfsWLu **wlu, uint8_t wlun, Error **errp) { UfsWLu *new_wlu = UFSWLU(qdev_new(TYPE_UFS_WLU)); qdev_prop_set_uint32(DEVICE(new_wlu), "lun", wlun); /* * The well-known lu shares the same bus as the normal lu. If the well-known * lu writes the same channel value as the normal lu, the report will be * made not only for the normal lu but also for the well-known lu at * REPORT_LUN time. To prevent this, the channel value of normal lu is fixed * to 0 and the channel value of well-known lu is fixed to 1. */ qdev_prop_set_uint32(DEVICE(new_wlu), "channel", 1); if (!qdev_realize_and_unref(DEVICE(new_wlu), BUS(&u->bus), errp)) { return false; } *wlu = new_wlu; return true; } static void ufs_realize(PCIDevice *pci_dev, Error **errp) { UfsHc *u = UFS(pci_dev); if (!ufs_check_constraints(u, errp)) { return; } qbus_init(&u->bus, sizeof(UfsBus), TYPE_UFS_BUS, &pci_dev->qdev, u->parent_obj.qdev.id); u->bus.parent_bus.info = &ufs_scsi_info; ufs_init_state(u); ufs_init_hc(u); ufs_init_pci(u, pci_dev); if (!ufs_init_wlu(u, &u->report_wlu, UFS_UPIU_REPORT_LUNS_WLUN, errp)) { return; } if (!ufs_init_wlu(u, &u->dev_wlu, UFS_UPIU_UFS_DEVICE_WLUN, errp)) { return; } if (!ufs_init_wlu(u, &u->boot_wlu, UFS_UPIU_BOOT_WLUN, errp)) { return; } if (!ufs_init_wlu(u, &u->rpmb_wlu, UFS_UPIU_RPMB_WLUN, errp)) { return; } } static void ufs_exit(PCIDevice *pci_dev) { UfsHc *u = UFS(pci_dev); if (u->dev_wlu) { object_unref(OBJECT(u->dev_wlu)); u->dev_wlu = NULL; } if (u->report_wlu) { object_unref(OBJECT(u->report_wlu)); u->report_wlu = NULL; } if (u->rpmb_wlu) { object_unref(OBJECT(u->rpmb_wlu)); u->rpmb_wlu = NULL; } if (u->boot_wlu) { object_unref(OBJECT(u->boot_wlu)); u->boot_wlu = NULL; } qemu_bh_delete(u->doorbell_bh); qemu_bh_delete(u->complete_bh); for (int i = 0; i < u->params.nutrs; i++) { ufs_clear_req(&u->req_list[i]); } g_free(u->req_list); } static Property ufs_props[] = { DEFINE_PROP_STRING("serial", UfsHc, params.serial), DEFINE_PROP_UINT8("nutrs", UfsHc, params.nutrs, 32), DEFINE_PROP_UINT8("nutmrs", UfsHc, params.nutmrs, 8), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription ufs_vmstate = { .name = "ufs", .unmigratable = 1, }; static void ufs_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); pc->realize = ufs_realize; pc->exit = ufs_exit; pc->vendor_id = PCI_VENDOR_ID_REDHAT; pc->device_id = PCI_DEVICE_ID_REDHAT_UFS; pc->class_id = PCI_CLASS_STORAGE_UFS; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); dc->desc = "Universal Flash Storage"; device_class_set_props(dc, ufs_props); dc->vmsd = &ufs_vmstate; } static bool ufs_bus_check_address(BusState *qbus, DeviceState *qdev, Error **errp) { SCSIDevice *dev = SCSI_DEVICE(qdev); UfsBusClass *ubc = UFS_BUS_GET_CLASS(qbus); UfsHc *u = UFS(qbus->parent); if (strcmp(object_get_typename(OBJECT(dev)), TYPE_UFS_WLU) == 0) { if (dev->lun != UFS_UPIU_REPORT_LUNS_WLUN && dev->lun != UFS_UPIU_UFS_DEVICE_WLUN && dev->lun != UFS_UPIU_BOOT_WLUN && dev->lun != UFS_UPIU_RPMB_WLUN) { error_setg(errp, "bad well-known lun: %d", dev->lun); return false; } if ((dev->lun == UFS_UPIU_REPORT_LUNS_WLUN && u->report_wlu != NULL) || (dev->lun == UFS_UPIU_UFS_DEVICE_WLUN && u->dev_wlu != NULL) || (dev->lun == UFS_UPIU_BOOT_WLUN && u->boot_wlu != NULL) || (dev->lun == UFS_UPIU_RPMB_WLUN && u->rpmb_wlu != NULL)) { error_setg(errp, "well-known lun %d already exists", dev->lun); return false; } return true; } if (strcmp(object_get_typename(OBJECT(dev)), TYPE_UFS_LU) != 0) { error_setg(errp, "%s cannot be connected to ufs-bus", object_get_typename(OBJECT(dev))); return false; } return ubc->parent_check_address(qbus, qdev, errp); } static void ufs_bus_class_init(ObjectClass *class, void *data) { BusClass *bc = BUS_CLASS(class); UfsBusClass *ubc = UFS_BUS_CLASS(class); ubc->parent_check_address = bc->check_address; bc->check_address = ufs_bus_check_address; } static const TypeInfo ufs_info = { .name = TYPE_UFS, .parent = TYPE_PCI_DEVICE, .class_init = ufs_class_init, .instance_size = sizeof(UfsHc), .interfaces = (InterfaceInfo[]){ { INTERFACE_PCIE_DEVICE }, {} }, }; static const TypeInfo ufs_bus_info = { .name = TYPE_UFS_BUS, .parent = TYPE_SCSI_BUS, .class_init = ufs_bus_class_init, .class_size = sizeof(UfsBusClass), .instance_size = sizeof(UfsBus), }; static void ufs_register_types(void) { type_register_static(&ufs_info); type_register_static(&ufs_bus_info); } type_init(ufs_register_types)