/* * TCG CPU-specific operations * * Copyright 2021 SUSE LLC * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #ifndef TCG_CPU_OPS_H #define TCG_CPU_OPS_H #include "hw/core/cpu.h" struct TCGCPUOps { /** * @initialize: Initalize TCG state * * Called when the first CPU is realized. */ void (*initialize)(void); /** * @synchronize_from_tb: Synchronize state from a TCG #TranslationBlock * * This is called when we abandon execution of a TB before starting it, * and must set all parts of the CPU state which the previous TB in the * chain may not have updated. * By default, when this is NULL, a call is made to @set_pc(tb->pc). * * If more state needs to be restored, the target must implement a * function to restore all the state, and register it here. */ void (*synchronize_from_tb)(CPUState *cpu, const TranslationBlock *tb); /** @cpu_exec_enter: Callback for cpu_exec preparation */ void (*cpu_exec_enter)(CPUState *cpu); /** @cpu_exec_exit: Callback for cpu_exec cleanup */ void (*cpu_exec_exit)(CPUState *cpu); /** @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec */ bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); /** * @do_interrupt: Callback for interrupt handling. * * note that this is in general SOFTMMU only, but it actually isn't * because of an x86 hack (accel/tcg/cpu-exec.c), so we cannot put it * in the SOFTMMU section in general. */ void (*do_interrupt)(CPUState *cpu); /** * @tlb_fill: Handle a softmmu tlb miss or user-only address fault * * For system mode, if the access is valid, call tlb_set_page * and return true; if the access is invalid, and probe is * true, return false; otherwise raise an exception and do * not return. For user-only mode, always raise an exception * and do not return. */ bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); /** @debug_excp_handler: Callback for handling debug exceptions */ void (*debug_excp_handler)(CPUState *cpu); #ifdef NEED_CPU_H #ifdef CONFIG_SOFTMMU /** * @do_transaction_failed: Callback for handling failed memory transactions * (ie bus faults or external aborts; not MMU faults) */ void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr); /** * @do_unaligned_access: Callback for unaligned access handling */ void (*do_unaligned_access)(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); /** * @adjust_watchpoint_address: hack for cpu_check_watchpoint used by ARM */ vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); /** * @debug_check_watchpoint: return true if the architectural * watchpoint whose address has matched should really fire, used by ARM */ bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); /** * @io_recompile_replay_branch: Callback for cpu_io_recompile. * * The cpu has been stopped, and cpu_restore_state_from_tb has been * called. If the faulting instruction is in a delay slot, and the * target architecture requires re-execution of the branch, then * adjust the cpu state as required and return true. */ bool (*io_recompile_replay_branch)(CPUState *cpu, const TranslationBlock *tb); #endif /* CONFIG_SOFTMMU */ #endif /* NEED_CPU_H */ }; #endif /* TCG_CPU_OPS_H */