/* * ARM GIC support * * Copyright (c) 2012 Linaro Limited * Copyright (c) 2015 Huawei. * Copyright (c) 2015 Samsung Electronics Co., Ltd. * Written by Peter Maydell * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #ifndef HW_ARM_GICV3_COMMON_H #define HW_ARM_GICV3_COMMON_H #include "hw/sysbus.h" #include "hw/intc/arm_gic_common.h" #include "qom/object.h" /* * Maximum number of possible interrupts, determined by the GIC architecture. * Note that this does not include LPIs. When implemented, these should be * dealt with separately. */ #define GICV3_MAXIRQ 1020 #define GICV3_MAXSPI (GICV3_MAXIRQ - GIC_INTERNAL) #define GICV3_LPI_INTID_START 8192 /* * The redistributor in GICv3 has two 64KB frames per CPU; in * GICv4 it has four 64KB frames per CPU. */ #define GICV3_REDIST_SIZE 0x20000 #define GICV4_REDIST_SIZE 0x40000 /* Number of SGI target-list bits */ #define GICV3_TARGETLIST_BITS 16 /* Maximum number of list registers (architectural limit) */ #define GICV3_LR_MAX 16 /* For some distributor fields we want to model the array of 32-bit * register values which hold various bitmaps corresponding to enabled, * pending, etc bits. These macros and functions facilitate that; the * APIs are generally modelled on the generic bitmap.h functions * (which are unsuitable here because they use 'unsigned long' as the * underlying storage type, which is very awkward when you need to * access the data as 32-bit values.) * Each bitmap contains a bit for each interrupt. Although there is * space for the PPIs and SGIs, those bits (the first 32) are never * used as that state lives in the redistributor. The unused bits are * provided purely so that interrupt X's state is always in bit X; this * avoids bugs where we forget to subtract GIC_INTERNAL from an * interrupt number. */ #define GICV3_BMP_SIZE DIV_ROUND_UP(GICV3_MAXIRQ, 32) #define GIC_DECLARE_BITMAP(name) \ uint32_t name[GICV3_BMP_SIZE] #define GIC_BIT_MASK(nr) (1U << ((nr) % 32)) #define GIC_BIT_WORD(nr) ((nr) / 32) static inline void gic_bmp_set_bit(int nr, uint32_t *addr) { uint32_t mask = GIC_BIT_MASK(nr); uint32_t *p = addr + GIC_BIT_WORD(nr); *p |= mask; } static inline void gic_bmp_clear_bit(int nr, uint32_t *addr) { uint32_t mask = GIC_BIT_MASK(nr); uint32_t *p = addr + GIC_BIT_WORD(nr); *p &= ~mask; } static inline int gic_bmp_test_bit(int nr, const uint32_t *addr) { return 1U & (addr[GIC_BIT_WORD(nr)] >> (nr & 31)); } static inline void gic_bmp_replace_bit(int nr, uint32_t *addr, int val) { uint32_t mask = GIC_BIT_MASK(nr); uint32_t *p = addr + GIC_BIT_WORD(nr); *p &= ~mask; *p |= (val & 1U) << (nr % 32); } /* Return a pointer to the 32-bit word containing the specified bit. */ static inline uint32_t *gic_bmp_ptr32(uint32_t *addr, int nr) { return addr + GIC_BIT_WORD(nr); } typedef struct GICv3State GICv3State; typedef struct GICv3CPUState GICv3CPUState; /* Some CPU interface registers come in three flavours: * Group0, Group1 (Secure) and Group1 (NonSecure) * (where the latter two are exposed as a single banked system register). * In the state struct they are implemented as a 3-element array which * can be indexed into by the GICV3_G0, GICV3_G1 and GICV3_G1NS constants. * If the CPU doesn't support EL3 then the G1 element is unused. * * These constants are also used to communicate the group to use for * an interrupt or SGI when it is passed between the cpu interface and * the redistributor or distributor. For those purposes the receiving end * must be prepared to cope with a Group 1 Secure interrupt even if it does * not have security support enabled, because security can be disabled * independently in the CPU and in the GIC. In that case the receiver should * treat an incoming Group 1 Secure interrupt as if it were Group 0. * (This architectural requirement is why the _G1 element is the unused one * in a no-EL3 CPU: we would otherwise have to translate back and forth * between (G0, G1NS) from the distributor and (G0, G1) in the CPU i/f.) */ #define GICV3_G0 0 #define GICV3_G1 1 #define GICV3_G1NS 2 /* ICC_CTLR_EL1, GICD_STATUSR and GICR_STATUSR are banked but not * group-related, so those indices are just 0 for S and 1 for NS. * (If the CPU or the GIC, respectively, don't support the Security * extensions then the S element is unused.) */ #define GICV3_S 0 #define GICV3_NS 1 typedef struct { int irq; uint8_t prio; int grp; bool nmi; } PendingIrq; struct GICv3CPUState { GICv3State *gic; CPUState *cpu; qemu_irq parent_irq; qemu_irq parent_fiq; qemu_irq parent_virq; qemu_irq parent_vfiq; qemu_irq parent_nmi; qemu_irq parent_vnmi; /* Redistributor */ uint32_t level; /* Current IRQ level */ /* RD_base page registers */ uint32_t gicr_ctlr; uint64_t gicr_typer; uint32_t gicr_statusr[2]; uint32_t gicr_waker; uint64_t gicr_propbaser; uint64_t gicr_pendbaser; /* SGI_base page registers */ uint32_t gicr_igroupr0; uint32_t gicr_ienabler0; uint32_t gicr_ipendr0; uint32_t gicr_iactiver0; uint32_t gicr_inmir0; uint32_t edge_trigger; /* ICFGR0 and ICFGR1 even bits */ uint32_t gicr_igrpmodr0; uint32_t gicr_nsacr; uint8_t gicr_ipriorityr[GIC_INTERNAL]; /* VLPI_base page registers */ uint64_t gicr_vpropbaser; uint64_t gicr_vpendbaser; /* CPU interface */ uint64_t icc_sre_el1; uint64_t icc_ctlr_el1[2]; uint64_t icc_pmr_el1; uint64_t icc_bpr[3]; uint64_t icc_apr[3][4]; uint64_t icc_igrpen[3]; uint64_t icc_ctlr_el3; /* Virtualization control interface */ uint64_t ich_apr[3][4]; /* ich_apr[GICV3_G1][x] never used */ uint64_t ich_hcr_el2; uint64_t ich_lr_el2[GICV3_LR_MAX]; uint64_t ich_vmcr_el2; /* Properties of the CPU interface. These are initialized from * the settings in the CPU proper. * If the number of implemented list registers is 0 then the * virtualization support is not implemented. */ int num_list_regs; int vpribits; /* number of virtual priority bits */ int vprebits; /* number of virtual preemption bits */ int pribits; /* number of physical priority bits */ int prebits; /* number of physical preemption bits */ /* Current highest priority pending interrupt for this CPU. * This is cached information that can be recalculated from the * real state above; it doesn't need to be migrated. */ PendingIrq hppi; /* * Cached information recalculated from LPI tables * in guest memory */ PendingIrq hpplpi; /* Cached information recalculated from vLPI tables in guest memory */ PendingIrq hppvlpi; /* This is temporary working state, to avoid a malloc in gicv3_update() */ bool seenbetter; /* * Whether the CPU interface has NMI support (FEAT_GICv3_NMI). The * CPU interface may support NMIs even when the GIC proper (what the * spec calls the IRI; the redistributors and distributor) does not. */ bool nmi_support; }; /* * The redistributor pages might be split into more than one region * on some machine types if there are many CPUs. */ typedef struct GICv3RedistRegion { GICv3State *gic; MemoryRegion iomem; uint32_t cpuidx; /* index of first CPU this region covers */ } GICv3RedistRegion; struct GICv3State { /*< private >*/ SysBusDevice parent_obj; /*< public >*/ MemoryRegion iomem_dist; /* Distributor */ GICv3RedistRegion *redist_regions; /* Redistributor Regions */ uint32_t *redist_region_count; /* redistributor count within each region */ uint32_t nb_redist_regions; /* number of redist regions */ uint32_t num_cpu; uint32_t num_irq; uint32_t revision; bool lpi_enable; bool nmi_support; bool security_extn; bool force_8bit_prio; bool irq_reset_nonsecure; bool gicd_no_migration_shift_bug; int dev_fd; /* kvm device fd if backed by kvm vgic support */ Error *migration_blocker; MemoryRegion *dma; AddressSpace dma_as; /* Distributor */ /* for a GIC with the security extensions the NS banked version of this * register is just an alias of bit 1 of the S banked version. */ uint32_t gicd_ctlr; uint32_t gicd_statusr[2]; GIC_DECLARE_BITMAP(group); /* GICD_IGROUPR */ GIC_DECLARE_BITMAP(grpmod); /* GICD_IGRPMODR */ GIC_DECLARE_BITMAP(enabled); /* GICD_ISENABLER */ GIC_DECLARE_BITMAP(pending); /* GICD_ISPENDR */ GIC_DECLARE_BITMAP(active); /* GICD_ISACTIVER */ GIC_DECLARE_BITMAP(level); /* Current level */ GIC_DECLARE_BITMAP(edge_trigger); /* GICD_ICFGR even bits */ GIC_DECLARE_BITMAP(nmi); /* GICD_INMIR */ uint8_t gicd_ipriority[GICV3_MAXIRQ]; uint64_t gicd_irouter[GICV3_MAXIRQ]; /* Cached information: pointer to the cpu i/f for the CPUs specified * in the IROUTER registers */ GICv3CPUState *gicd_irouter_target[GICV3_MAXIRQ]; uint32_t gicd_nsacr[DIV_ROUND_UP(GICV3_MAXIRQ, 16)]; GICv3CPUState *cpu; /* List of all ITSes connected to this GIC */ GPtrArray *itslist; }; #define GICV3_BITMAP_ACCESSORS(BMP) \ static inline void gicv3_gicd_##BMP##_set(GICv3State *s, int irq) \ { \ gic_bmp_set_bit(irq, s->BMP); \ } \ static inline int gicv3_gicd_##BMP##_test(GICv3State *s, int irq) \ { \ return gic_bmp_test_bit(irq, s->BMP); \ } \ static inline void gicv3_gicd_##BMP##_clear(GICv3State *s, int irq) \ { \ gic_bmp_clear_bit(irq, s->BMP); \ } \ static inline void gicv3_gicd_##BMP##_replace(GICv3State *s, \ int irq, int value) \ { \ gic_bmp_replace_bit(irq, s->BMP, value); \ } GICV3_BITMAP_ACCESSORS(group) GICV3_BITMAP_ACCESSORS(grpmod) GICV3_BITMAP_ACCESSORS(enabled) GICV3_BITMAP_ACCESSORS(pending) GICV3_BITMAP_ACCESSORS(active) GICV3_BITMAP_ACCESSORS(level) GICV3_BITMAP_ACCESSORS(edge_trigger) GICV3_BITMAP_ACCESSORS(nmi) #define TYPE_ARM_GICV3_COMMON "arm-gicv3-common" typedef struct ARMGICv3CommonClass ARMGICv3CommonClass; DECLARE_OBJ_CHECKERS(GICv3State, ARMGICv3CommonClass, ARM_GICV3_COMMON, TYPE_ARM_GICV3_COMMON) struct ARMGICv3CommonClass { /*< private >*/ SysBusDeviceClass parent_class; /*< public >*/ void (*pre_save)(GICv3State *s); void (*post_load)(GICv3State *s); }; void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, const MemoryRegionOps *ops); /** * gicv3_class_name * * Return name of GICv3 class to use depending on whether KVM acceleration is * in use. May throw an error if the chosen implementation is not available. * * Returns: class name to use */ const char *gicv3_class_name(void); #endif