/* * QEMU PowerPC XIVE internal structure definitions * * * The XIVE structures are accessed by the HW and their format is * architected to be big-endian. Some macros are provided to ease * access to the different fields. * * * Copyright (c) 2016-2018, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #ifndef PPC_XIVE_REGS_H #define PPC_XIVE_REGS_H #include "qemu/bswap.h" #include "qemu/host-utils.h" /* * Interrupt source number encoding on PowerBUS */ /* * Trigger data definition * * The trigger definition is used for triggers both for HW source * interrupts (PHB, PSI), as well as for rerouting interrupts between * Interrupt Controller. * * HW source controllers set bit0 of word0 to ‘0’ as they provide EAS * information (EAS block + EAS index) in the 8 byte data and not END * information, which is use for rerouting interrupts. * * bit1 of word0 to ‘1’ signals that the state bit check has been * performed. */ #define XIVE_TRIGGER_END PPC_BIT(0) #define XIVE_TRIGGER_PQ PPC_BIT(1) /* * QEMU macros to manipulate the trigger payload in native endian */ #define XIVE_EAS_BLOCK(n) (((n) >> 28) & 0xf) #define XIVE_EAS_INDEX(n) ((n) & 0x0fffffff) #define XIVE_EAS(blk, idx) ((uint32_t)(blk) << 28 | (idx)) #define TM_SHIFT 16 /* TM register offsets */ #define TM_QW0_USER 0x000 /* All rings */ #define TM_QW1_OS 0x010 /* Ring 0..2 */ #define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */ #define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */ /* Byte offsets inside a QW QW0 QW1 QW2 QW3 */ #define TM_NSR 0x0 /* + + - + */ #define TM_CPPR 0x1 /* - + - + */ #define TM_IPB 0x2 /* - + + + */ #define TM_LSMFB 0x3 /* - + + + */ #define TM_ACK_CNT 0x4 /* - + - - */ #define TM_INC 0x5 /* - + - + */ #define TM_AGE 0x6 /* - + - + */ #define TM_PIPR 0x7 /* - + - + */ #define TM_WORD0 0x0 #define TM_WORD1 0x4 /* * QW word 2 contains the valid bit at the top and other fields * depending on the QW. */ #define TM_WORD2 0x8 #define TM_QW0W2_VU PPC_BIT32(0) #define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1, 31) /* XX 2,31 ? */ #define TM_QW1W2_VO PPC_BIT32(0) #define TM_QW1W2_OS_CAM PPC_BITMASK32(8, 31) #define TM_QW2W2_VP PPC_BIT32(0) #define TM_QW2W2_POOL_CAM PPC_BITMASK32(8, 31) #define TM_QW3W2_VT PPC_BIT32(0) #define TM_QW3W2_LP PPC_BIT32(6) #define TM_QW3W2_LE PPC_BIT32(7) #define TM_QW3W2_T PPC_BIT32(31) /* * In addition to normal loads to "peek" and writes (only when invalid) * using 4 and 8 bytes accesses, the above registers support these * "special" byte operations: * * - Byte load from QW0[NSR] - User level NSR (EBB) * - Byte store to QW0[NSR] - User level NSR (EBB) * - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access * - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0 * otherwise VT||0000000 * - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present) * * Then we have all these "special" CI ops at these offset that trigger * all sorts of side effects: */ #define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/ #define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */ #define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */ #define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user * context */ #define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */ #define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS * context to reg */ #define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool * context to reg*/ #define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */ #define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd * line */ #define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */ #define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even * line */ #define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */ /* XXX more... */ /* NSR fields for the various QW ack types */ #define TM_QW0_NSR_EB PPC_BIT8(0) #define TM_QW1_NSR_EO PPC_BIT8(0) #define TM_QW3_NSR_HE PPC_BITMASK8(0, 1) #define TM_QW3_NSR_HE_NONE 0 #define TM_QW3_NSR_HE_POOL 1 #define TM_QW3_NSR_HE_PHYS 2 #define TM_QW3_NSR_HE_LSI 3 #define TM_QW3_NSR_I PPC_BIT8(2) #define TM_QW3_NSR_GRP_LVL PPC_BIT8(3, 7) /* * EAS (Event Assignment Structure) * * One per interrupt source. Targets an interrupt to a given Event * Notification Descriptor (END) and provides the corresponding * logical interrupt number (END data) */ typedef struct XiveEAS { /* * Use a single 64-bit definition to make it easier to perform * atomic updates */ uint64_t w; #define EAS_VALID PPC_BIT(0) #define EAS_END_BLOCK PPC_BITMASK(4, 7) /* Destination END block# */ #define EAS_END_INDEX PPC_BITMASK(8, 31) /* Destination END index */ #define EAS_MASKED PPC_BIT(32) /* Masked */ #define EAS_END_DATA PPC_BITMASK(33, 63) /* Data written to the END */ } XiveEAS; #define xive_eas_is_valid(eas) (be64_to_cpu((eas)->w) & EAS_VALID) #define xive_eas_is_masked(eas) (be64_to_cpu((eas)->w) & EAS_MASKED) void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon); static inline uint64_t xive_get_field64(uint64_t mask, uint64_t word) { return (be64_to_cpu(word) & mask) >> ctz64(mask); } static inline uint64_t xive_set_field64(uint64_t mask, uint64_t word, uint64_t value) { uint64_t tmp = (be64_to_cpu(word) & ~mask) | ((value << ctz64(mask)) & mask); return cpu_to_be64(tmp); } static inline uint32_t xive_get_field32(uint32_t mask, uint32_t word) { return (be32_to_cpu(word) & mask) >> ctz32(mask); } static inline uint32_t xive_set_field32(uint32_t mask, uint32_t word, uint32_t value) { uint32_t tmp = (be32_to_cpu(word) & ~mask) | ((value << ctz32(mask)) & mask); return cpu_to_be32(tmp); } /* Event Notification Descriptor (END) */ typedef struct XiveEND { uint32_t w0; #define END_W0_VALID PPC_BIT32(0) /* "v" bit */ #define END_W0_ENQUEUE PPC_BIT32(1) /* "q" bit */ #define END_W0_UCOND_NOTIFY PPC_BIT32(2) /* "n" bit */ #define END_W0_BACKLOG PPC_BIT32(3) /* "b" bit */ #define END_W0_PRECL_ESC_CTL PPC_BIT32(4) /* "p" bit */ #define END_W0_ESCALATE_CTL PPC_BIT32(5) /* "e" bit */ #define END_W0_UNCOND_ESCALATE PPC_BIT32(6) /* "u" bit - DD2.0 */ #define END_W0_SILENT_ESCALATE PPC_BIT32(7) /* "s" bit - DD2.0 */ #define END_W0_QSIZE PPC_BITMASK32(12, 15) #define END_W0_SW0 PPC_BIT32(16) #define END_W0_FIRMWARE END_W0_SW0 /* Owned by FW */ #define END_QSIZE_4K 0 #define END_QSIZE_64K 4 #define END_W0_HWDEP PPC_BITMASK32(24, 31) uint32_t w1; #define END_W1_ESn PPC_BITMASK32(0, 1) #define END_W1_ESn_P PPC_BIT32(0) #define END_W1_ESn_Q PPC_BIT32(1) #define END_W1_ESe PPC_BITMASK32(2, 3) #define END_W1_ESe_P PPC_BIT32(2) #define END_W1_ESe_Q PPC_BIT32(3) #define END_W1_GENERATION PPC_BIT32(9) #define END_W1_PAGE_OFF PPC_BITMASK32(10, 31) uint32_t w2; #define END_W2_MIGRATION_REG PPC_BITMASK32(0, 3) #define END_W2_OP_DESC_HI PPC_BITMASK32(4, 31) uint32_t w3; #define END_W3_OP_DESC_LO PPC_BITMASK32(0, 31) uint32_t w4; #define END_W4_ESC_END_BLOCK PPC_BITMASK32(4, 7) #define END_W4_ESC_END_INDEX PPC_BITMASK32(8, 31) uint32_t w5; #define END_W5_ESC_END_DATA PPC_BITMASK32(1, 31) uint32_t w6; #define END_W6_FORMAT_BIT PPC_BIT32(8) #define END_W6_NVT_BLOCK PPC_BITMASK32(9, 12) #define END_W6_NVT_INDEX PPC_BITMASK32(13, 31) uint32_t w7; #define END_W7_F0_IGNORE PPC_BIT32(0) #define END_W7_F0_BLK_GROUPING PPC_BIT32(1) #define END_W7_F0_PRIORITY PPC_BITMASK32(8, 15) #define END_W7_F1_WAKEZ PPC_BIT32(0) #define END_W7_F1_LOG_SERVER_ID PPC_BITMASK32(1, 31) } XiveEND; #define xive_end_is_valid(end) (be32_to_cpu((end)->w0) & END_W0_VALID) #define xive_end_is_enqueue(end) (be32_to_cpu((end)->w0) & END_W0_ENQUEUE) #define xive_end_is_notify(end) (be32_to_cpu((end)->w0) & END_W0_UCOND_NOTIFY) #define xive_end_is_backlog(end) (be32_to_cpu((end)->w0) & END_W0_BACKLOG) #define xive_end_is_escalate(end) (be32_to_cpu((end)->w0) & END_W0_ESCALATE_CTL) #define xive_end_is_uncond_escalation(end) \ (be32_to_cpu((end)->w0) & END_W0_UNCOND_ESCALATE) #define xive_end_is_silent_escalation(end) \ (be32_to_cpu((end)->w0) & END_W0_SILENT_ESCALATE) #define xive_end_is_firmware(end) \ (be32_to_cpu((end)->w0) & END_W0_FIRMWARE) static inline uint64_t xive_end_qaddr(XiveEND *end) { return ((uint64_t) be32_to_cpu(end->w2) & 0x0fffffff) << 32 | be32_to_cpu(end->w3); } void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon); void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon); void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon); /* Notification Virtual Target (NVT) */ typedef struct XiveNVT { uint32_t w0; #define NVT_W0_VALID PPC_BIT32(0) uint32_t w1; #define NVT_W1_EQ_BLOCK PPC_BITMASK32(0, 3) #define NVT_W1_EQ_INDEX PPC_BITMASK32(4, 31) uint32_t w2; uint32_t w3; uint32_t w4; #define NVT_W4_IPB PPC_BITMASK32(16, 23) uint32_t w5; uint32_t w6; uint32_t w7; uint32_t w8; #define NVT_W8_GRP_VALID PPC_BIT32(0) uint32_t w9; uint32_t wa; uint32_t wb; uint32_t wc; uint32_t wd; uint32_t we; uint32_t wf; } XiveNVT; #define xive_nvt_is_valid(nvt) (be32_to_cpu((nvt)->w0) & NVT_W0_VALID) /* * The VP number space in a block is defined by the END_W6_NVT_INDEX * field of the XIVE END */ #define XIVE_NVT_SHIFT 19 #define XIVE_NVT_COUNT (1 << XIVE_NVT_SHIFT) static inline uint32_t xive_nvt_cam_line(uint8_t nvt_blk, uint32_t nvt_idx) { return (nvt_blk << XIVE_NVT_SHIFT) | nvt_idx; } static inline uint32_t xive_nvt_idx(uint32_t cam_line) { return cam_line & ((1 << XIVE_NVT_SHIFT) - 1); } static inline uint32_t xive_nvt_blk(uint32_t cam_line) { return (cam_line >> XIVE_NVT_SHIFT) & 0xf; } #endif /* PPC_XIVE_REGS_H */