/* * Simple interface for atomic operations. * * Copyright (C) 2013 Red Hat, Inc. * * Author: Paolo Bonzini * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * See docs/devel/atomics.rst for discussion about the guarantees each * atomic primitive is meant to provide. */ #ifndef QEMU_ATOMIC_H #define QEMU_ATOMIC_H #include "compiler.h" /* Compiler barrier */ #define barrier() ({ asm volatile("" ::: "memory"); (void)0; }) /* The variable that receives the old value of an atomically-accessed * variable must be non-qualified, because atomic builtins return values * through a pointer-type argument as in __atomic_load(&var, &old, MODEL). * * This macro has to handle types smaller than int manually, because of * implicit promotion. int and larger types, as well as pointers, can be * converted to a non-qualified type just by applying a binary operator. */ #define typeof_strip_qual(expr) \ typeof( \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(expr), bool) || \ __builtin_types_compatible_p(typeof(expr), const bool) || \ __builtin_types_compatible_p(typeof(expr), volatile bool) || \ __builtin_types_compatible_p(typeof(expr), const volatile bool), \ (bool)1, \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(expr), signed char) || \ __builtin_types_compatible_p(typeof(expr), const signed char) || \ __builtin_types_compatible_p(typeof(expr), volatile signed char) || \ __builtin_types_compatible_p(typeof(expr), const volatile signed char), \ (signed char)1, \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(expr), unsigned char) || \ __builtin_types_compatible_p(typeof(expr), const unsigned char) || \ __builtin_types_compatible_p(typeof(expr), volatile unsigned char) || \ __builtin_types_compatible_p(typeof(expr), const volatile unsigned char), \ (unsigned char)1, \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(expr), signed short) || \ __builtin_types_compatible_p(typeof(expr), const signed short) || \ __builtin_types_compatible_p(typeof(expr), volatile signed short) || \ __builtin_types_compatible_p(typeof(expr), const volatile signed short), \ (signed short)1, \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(expr), unsigned short) || \ __builtin_types_compatible_p(typeof(expr), const unsigned short) || \ __builtin_types_compatible_p(typeof(expr), volatile unsigned short) || \ __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \ (unsigned short)1, \ (expr)+0)))))) #ifndef __ATOMIC_RELAXED #error "Expecting C11 atomic ops" #endif /* Manual memory barriers * *__atomic_thread_fence does not include a compiler barrier; instead, * the barrier is part of __atomic_load/__atomic_store's "volatile-like" * semantics. If smp_wmb() is a no-op, absence of the barrier means that * the compiler is free to reorder stores on each side of the barrier. * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends(). */ #define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); }) #define smp_mb_release() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); }) #define smp_mb_acquire() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); }) /* Most compilers currently treat consume and acquire the same, but really * no processors except Alpha need a barrier here. Leave it in if * using Thread Sanitizer to avoid warnings, otherwise optimize it away. */ #ifdef QEMU_SANITIZE_THREAD #define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); }) #elif defined(__alpha__) #define smp_read_barrier_depends() asm volatile("mb":::"memory") #else #define smp_read_barrier_depends() barrier() #endif /* * A signal barrier forces all pending local memory ops to be observed before * a SIGSEGV is delivered to the *same* thread. In practice this is exactly * the same as barrier(), but since we have the correct builtin, use it. */ #define signal_barrier() __atomic_signal_fence(__ATOMIC_SEQ_CST) /* Sanity check that the size of an atomic operation isn't "overly large". * Despite the fact that e.g. i686 has 64-bit atomic operations, we do not * want to use them because we ought not need them, and this lets us do a * bit of sanity checking that other 32-bit hosts might build. * * That said, we have a problem on 64-bit ILP32 hosts in that in order to * sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS. * We'd prefer not want to pull in everything else TCG related, so handle * those few cases by hand. * * Note that x32 is fully detected with __x86_64__ + _ILP32, and that for * Sparc we always force the use of sparcv9 in configure. MIPS n32 (ILP32) & * n64 (LP64) ABIs are both detected using __mips64. */ #if defined(__x86_64__) || defined(__sparc__) || defined(__mips64) # define ATOMIC_REG_SIZE 8 #else # define ATOMIC_REG_SIZE sizeof(void *) #endif /* Weak atomic operations prevent the compiler moving other * loads/stores past the atomic operation load/store. However there is * no explicit memory barrier for the processor. * * The C11 memory model says that variables that are accessed from * different threads should at least be done with __ATOMIC_RELAXED * primitives or the result is undefined. Generally this has little to * no effect on the generated code but not using the atomic primitives * will get flagged by sanitizers as a violation. */ #define qatomic_read__nocheck(ptr) \ __atomic_load_n(ptr, __ATOMIC_RELAXED) #define qatomic_read(ptr) \ ({ \ qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ qatomic_read__nocheck(ptr); \ }) #define qatomic_set__nocheck(ptr, i) \ __atomic_store_n(ptr, i, __ATOMIC_RELAXED) #define qatomic_set(ptr, i) do { \ qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ qatomic_set__nocheck(ptr, i); \ } while(0) /* See above: most compilers currently treat consume and acquire the * same, but this slows down qatomic_rcu_read unnecessarily. */ #ifdef QEMU_SANITIZE_THREAD #define qatomic_rcu_read__nocheck(ptr, valptr) \ __atomic_load(ptr, valptr, __ATOMIC_CONSUME); #else #define qatomic_rcu_read__nocheck(ptr, valptr) \ __atomic_load(ptr, valptr, __ATOMIC_RELAXED); \ smp_read_barrier_depends(); #endif /* * Preprocessor sorcery ahead: use a different identifier for the * local variable in each expansion, so we can nest macro calls * without shadowing variables. */ #define qatomic_rcu_read_internal(ptr, _val) \ ({ \ qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ typeof_strip_qual(*ptr) _val; \ qatomic_rcu_read__nocheck(ptr, &_val); \ _val; \ }) #define qatomic_rcu_read(ptr) \ qatomic_rcu_read_internal((ptr), MAKE_IDENTFIER(_val)) #define qatomic_rcu_set(ptr, i) do { \ qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ __atomic_store_n(ptr, i, __ATOMIC_RELEASE); \ } while(0) #define qatomic_load_acquire(ptr) \ ({ \ qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ typeof_strip_qual(*ptr) _val; \ __atomic_load(ptr, &_val, __ATOMIC_ACQUIRE); \ _val; \ }) #define qatomic_store_release(ptr, i) do { \ qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ __atomic_store_n(ptr, i, __ATOMIC_RELEASE); \ } while(0) /* All the remaining operations are fully sequentially consistent */ #define qatomic_xchg__nocheck(ptr, i) ({ \ __atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST); \ }) #define qatomic_xchg(ptr, i) ({ \ qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ qatomic_xchg__nocheck(ptr, i); \ }) /* Returns the old value of '*ptr' (whether the cmpxchg failed or not) */ #define qatomic_cmpxchg__nocheck(ptr, old, new) ({ \ typeof_strip_qual(*ptr) _old = (old); \ (void)__atomic_compare_exchange_n(ptr, &_old, new, false, \ __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \ _old; \ }) #define qatomic_cmpxchg(ptr, old, new) ({ \ qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ qatomic_cmpxchg__nocheck(ptr, old, new); \ }) /* Provide shorter names for GCC atomic builtins, return old value */ #define qatomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST) #define qatomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST) #define qatomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_inc_fetch(ptr) __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST) #define qatomic_dec_fetch(ptr) __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST) #define qatomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_or_fetch(ptr, n) __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST) #define qatomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST) /* And even shorter names that return void. */ #define qatomic_inc(ptr) \ ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)) #define qatomic_dec(ptr) \ ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)) #define qatomic_add(ptr, n) \ ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)) #define qatomic_sub(ptr, n) \ ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)) #define qatomic_and(ptr, n) \ ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)) #define qatomic_or(ptr, n) \ ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)) #define qatomic_xor(ptr, n) \ ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)) #define smp_wmb() smp_mb_release() #define smp_rmb() smp_mb_acquire() /* * SEQ_CST is weaker than the older __sync_* builtins and Linux * kernel read-modify-write atomics. Provide a macro to obtain * the same semantics. */ #if !defined(QEMU_SANITIZE_THREAD) && \ (defined(__i386__) || defined(__x86_64__) || defined(__s390x__)) # define smp_mb__before_rmw() signal_barrier() # define smp_mb__after_rmw() signal_barrier() #else # define smp_mb__before_rmw() smp_mb() # define smp_mb__after_rmw() smp_mb() #endif /* * On some architectures, qatomic_set_mb is more efficient than a store * plus a fence. */ #if !defined(QEMU_SANITIZE_THREAD) && \ (defined(__i386__) || defined(__x86_64__) || defined(__s390x__)) # define qatomic_set_mb(ptr, i) \ ({ (void)qatomic_xchg(ptr, i); smp_mb__after_rmw(); }) #else # define qatomic_set_mb(ptr, i) \ ({ qatomic_store_release(ptr, i); smp_mb(); }) #endif #define qatomic_fetch_inc_nonzero(ptr) ({ \ typeof_strip_qual(*ptr) _oldn = qatomic_read(ptr); \ while (_oldn && qatomic_cmpxchg(ptr, _oldn, _oldn + 1) != _oldn) { \ _oldn = qatomic_read(ptr); \ } \ _oldn; \ }) /* * Abstractions to access atomically (i.e. "once") i64/u64 variables. * * The i386 abi is odd in that by default members are only aligned to * 4 bytes, which means that 8-byte types can wind up mis-aligned. * Clang will then warn about this, and emit a call into libatomic. * * Use of these types in structures when they will be used with atomic * operations can avoid this. */ typedef int64_t aligned_int64_t __attribute__((aligned(8))); typedef uint64_t aligned_uint64_t __attribute__((aligned(8))); #ifdef CONFIG_ATOMIC64 /* Use __nocheck because sizeof(void *) might be < sizeof(u64) */ #define qatomic_read_i64(P) \ _Generic(*(P), int64_t: qatomic_read__nocheck(P)) #define qatomic_read_u64(P) \ _Generic(*(P), uint64_t: qatomic_read__nocheck(P)) #define qatomic_set_i64(P, V) \ _Generic(*(P), int64_t: qatomic_set__nocheck(P, V)) #define qatomic_set_u64(P, V) \ _Generic(*(P), uint64_t: qatomic_set__nocheck(P, V)) static inline void qatomic64_init(void) { } #else /* !CONFIG_ATOMIC64 */ int64_t qatomic_read_i64(const int64_t *ptr); uint64_t qatomic_read_u64(const uint64_t *ptr); void qatomic_set_i64(int64_t *ptr, int64_t val); void qatomic_set_u64(uint64_t *ptr, uint64_t val); void qatomic64_init(void); #endif /* !CONFIG_ATOMIC64 */ #endif /* QEMU_ATOMIC_H */