/* * Utility compute operations used by translated code. * * Copyright (c) 2007 Thiemo Seufer * Copyright (c) 2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* Portions of this work are licensed under the terms of the GNU GPL, * version 2 or later. See the COPYING file in the top-level directory. */ #ifndef HOST_UTILS_H #define HOST_UTILS_H #include "qemu/bswap.h" #include "qemu/int128.h" #ifdef CONFIG_INT128 static inline void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b) { __uint128_t r = (__uint128_t)a * b; *plow = r; *phigh = r >> 64; } static inline void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b) { __int128_t r = (__int128_t)a * b; *plow = r; *phigh = r >> 64; } /* compute with 96 bit intermediate result: (a*b)/c */ static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { return (__int128_t)a * b / c; } static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c) { return ((__int128_t)a * b + c - 1) / c; } static inline uint64_t divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor) { __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow; __uint128_t result = dividend / divisor; *plow = result; *phigh = result >> 64; return dividend % divisor; } static inline int64_t divs128(uint64_t *plow, int64_t *phigh, int64_t divisor) { __int128_t dividend = ((__int128_t)*phigh << 64) | *plow; __int128_t result = dividend / divisor; *plow = result; *phigh = result >> 64; return dividend % divisor; } #else void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b); void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b); uint64_t divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor); int64_t divs128(uint64_t *plow, int64_t *phigh, int64_t divisor); static inline uint64_t muldiv64_rounding(uint64_t a, uint32_t b, uint32_t c, bool round_up) { union { uint64_t ll; struct { #if HOST_BIG_ENDIAN uint32_t high, low; #else uint32_t low, high; #endif } l; } u, res; uint64_t rl, rh; u.ll = a; rl = (uint64_t)u.l.low * (uint64_t)b; if (round_up) { rl += c - 1; } rh = (uint64_t)u.l.high * (uint64_t)b; rh += (rl >> 32); res.l.high = rh / c; res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; return res.ll; } static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { return muldiv64_rounding(a, b, c, false); } static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c) { return muldiv64_rounding(a, b, c, true); } #endif /** * clz8 - count leading zeros in a 8-bit value. * @val: The value to search * * Returns 8 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. * * Note that the GCC builtin will upcast its argument to an `unsigned int` * so this function subtracts off the number of prepended zeroes. */ static inline int clz8(uint8_t val) { return val ? __builtin_clz(val) - 24 : 8; } /** * clz16 - count leading zeros in a 16-bit value. * @val: The value to search * * Returns 16 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. * * Note that the GCC builtin will upcast its argument to an `unsigned int` * so this function subtracts off the number of prepended zeroes. */ static inline int clz16(uint16_t val) { return val ? __builtin_clz(val) - 16 : 16; } /** * clz32 - count leading zeros in a 32-bit value. * @val: The value to search * * Returns 32 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int clz32(uint32_t val) { return val ? __builtin_clz(val) : 32; } /** * clo32 - count leading ones in a 32-bit value. * @val: The value to search * * Returns 32 if the value is -1. */ static inline int clo32(uint32_t val) { return clz32(~val); } /** * clz64 - count leading zeros in a 64-bit value. * @val: The value to search * * Returns 64 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int clz64(uint64_t val) { return val ? __builtin_clzll(val) : 64; } /** * clo64 - count leading ones in a 64-bit value. * @val: The value to search * * Returns 64 if the value is -1. */ static inline int clo64(uint64_t val) { return clz64(~val); } /** * ctz8 - count trailing zeros in a 8-bit value. * @val: The value to search * * Returns 8 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int ctz8(uint8_t val) { return val ? __builtin_ctz(val) : 8; } /** * ctz16 - count trailing zeros in a 16-bit value. * @val: The value to search * * Returns 16 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int ctz16(uint16_t val) { return val ? __builtin_ctz(val) : 16; } /** * ctz32 - count trailing zeros in a 32-bit value. * @val: The value to search * * Returns 32 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int ctz32(uint32_t val) { return val ? __builtin_ctz(val) : 32; } /** * cto32 - count trailing ones in a 32-bit value. * @val: The value to search * * Returns 32 if the value is -1. */ static inline int cto32(uint32_t val) { return ctz32(~val); } /** * ctz64 - count trailing zeros in a 64-bit value. * @val: The value to search * * Returns 64 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int ctz64(uint64_t val) { return val ? __builtin_ctzll(val) : 64; } /** * cto64 - count trailing ones in a 64-bit value. * @val: The value to search * * Returns 64 if the value is -1. */ static inline int cto64(uint64_t val) { return ctz64(~val); } /** * clrsb32 - count leading redundant sign bits in a 32-bit value. * @val: The value to search * * Returns the number of bits following the sign bit that are equal to it. * No special cases; output range is [0-31]. */ static inline int clrsb32(uint32_t val) { #if __has_builtin(__builtin_clrsb) || !defined(__clang__) return __builtin_clrsb(val); #else return clz32(val ^ ((int32_t)val >> 1)) - 1; #endif } /** * clrsb64 - count leading redundant sign bits in a 64-bit value. * @val: The value to search * * Returns the number of bits following the sign bit that are equal to it. * No special cases; output range is [0-63]. */ static inline int clrsb64(uint64_t val) { #if __has_builtin(__builtin_clrsbll) || !defined(__clang__) return __builtin_clrsbll(val); #else return clz64(val ^ ((int64_t)val >> 1)) - 1; #endif } /** * ctpop8 - count the population of one bits in an 8-bit value. * @val: The value to search */ static inline int ctpop8(uint8_t val) { return __builtin_popcount(val); } /** * ctpop16 - count the population of one bits in a 16-bit value. * @val: The value to search */ static inline int ctpop16(uint16_t val) { return __builtin_popcount(val); } /** * ctpop32 - count the population of one bits in a 32-bit value. * @val: The value to search */ static inline int ctpop32(uint32_t val) { return __builtin_popcount(val); } /** * ctpop64 - count the population of one bits in a 64-bit value. * @val: The value to search */ static inline int ctpop64(uint64_t val) { return __builtin_popcountll(val); } /** * revbit8 - reverse the bits in an 8-bit value. * @x: The value to modify. */ static inline uint8_t revbit8(uint8_t x) { #if __has_builtin(__builtin_bitreverse8) return __builtin_bitreverse8(x); #else /* Assign the correct nibble position. */ x = ((x & 0xf0) >> 4) | ((x & 0x0f) << 4); /* Assign the correct bit position. */ x = ((x & 0x88) >> 3) | ((x & 0x44) >> 1) | ((x & 0x22) << 1) | ((x & 0x11) << 3); return x; #endif } /** * revbit16 - reverse the bits in a 16-bit value. * @x: The value to modify. */ static inline uint16_t revbit16(uint16_t x) { #if __has_builtin(__builtin_bitreverse16) return __builtin_bitreverse16(x); #else /* Assign the correct byte position. */ x = bswap16(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0) >> 4) | ((x & 0x0f0f) << 4); /* Assign the correct bit position. */ x = ((x & 0x8888) >> 3) | ((x & 0x4444) >> 1) | ((x & 0x2222) << 1) | ((x & 0x1111) << 3); return x; #endif } /** * revbit32 - reverse the bits in a 32-bit value. * @x: The value to modify. */ static inline uint32_t revbit32(uint32_t x) { #if __has_builtin(__builtin_bitreverse32) return __builtin_bitreverse32(x); #else /* Assign the correct byte position. */ x = bswap32(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0f0f0u) >> 4) | ((x & 0x0f0f0f0fu) << 4); /* Assign the correct bit position. */ x = ((x & 0x88888888u) >> 3) | ((x & 0x44444444u) >> 1) | ((x & 0x22222222u) << 1) | ((x & 0x11111111u) << 3); return x; #endif } /** * revbit64 - reverse the bits in a 64-bit value. * @x: The value to modify. */ static inline uint64_t revbit64(uint64_t x) { #if __has_builtin(__builtin_bitreverse64) return __builtin_bitreverse64(x); #else /* Assign the correct byte position. */ x = bswap64(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4) | ((x & 0x0f0f0f0f0f0f0f0full) << 4); /* Assign the correct bit position. */ x = ((x & 0x8888888888888888ull) >> 3) | ((x & 0x4444444444444444ull) >> 1) | ((x & 0x2222222222222222ull) << 1) | ((x & 0x1111111111111111ull) << 3); return x; #endif } /** * Return the absolute value of a 64-bit integer as an unsigned 64-bit value */ static inline uint64_t uabs64(int64_t v) { return v < 0 ? -v : v; } /** * sadd32_overflow - addition with overflow indication * @x, @y: addends * @ret: Output for sum * * Computes *@ret = @x + @y, and returns true if and only if that * value has been truncated. */ static inline bool sadd32_overflow(int32_t x, int32_t y, int32_t *ret) { return __builtin_add_overflow(x, y, ret); } /** * sadd64_overflow - addition with overflow indication * @x, @y: addends * @ret: Output for sum * * Computes *@ret = @x + @y, and returns true if and only if that * value has been truncated. */ static inline bool sadd64_overflow(int64_t x, int64_t y, int64_t *ret) { return __builtin_add_overflow(x, y, ret); } /** * uadd32_overflow - addition with overflow indication * @x, @y: addends * @ret: Output for sum * * Computes *@ret = @x + @y, and returns true if and only if that * value has been truncated. */ static inline bool uadd32_overflow(uint32_t x, uint32_t y, uint32_t *ret) { return __builtin_add_overflow(x, y, ret); } /** * uadd64_overflow - addition with overflow indication * @x, @y: addends * @ret: Output for sum * * Computes *@ret = @x + @y, and returns true if and only if that * value has been truncated. */ static inline bool uadd64_overflow(uint64_t x, uint64_t y, uint64_t *ret) { return __builtin_add_overflow(x, y, ret); } /** * ssub32_overflow - subtraction with overflow indication * @x: Minuend * @y: Subtrahend * @ret: Output for difference * * Computes *@ret = @x - @y, and returns true if and only if that * value has been truncated. */ static inline bool ssub32_overflow(int32_t x, int32_t y, int32_t *ret) { return __builtin_sub_overflow(x, y, ret); } /** * ssub64_overflow - subtraction with overflow indication * @x: Minuend * @y: Subtrahend * @ret: Output for sum * * Computes *@ret = @x - @y, and returns true if and only if that * value has been truncated. */ static inline bool ssub64_overflow(int64_t x, int64_t y, int64_t *ret) { return __builtin_sub_overflow(x, y, ret); } /** * usub32_overflow - subtraction with overflow indication * @x: Minuend * @y: Subtrahend * @ret: Output for sum * * Computes *@ret = @x - @y, and returns true if and only if that * value has been truncated. */ static inline bool usub32_overflow(uint32_t x, uint32_t y, uint32_t *ret) { return __builtin_sub_overflow(x, y, ret); } /** * usub64_overflow - subtraction with overflow indication * @x: Minuend * @y: Subtrahend * @ret: Output for sum * * Computes *@ret = @x - @y, and returns true if and only if that * value has been truncated. */ static inline bool usub64_overflow(uint64_t x, uint64_t y, uint64_t *ret) { return __builtin_sub_overflow(x, y, ret); } /** * smul32_overflow - multiplication with overflow indication * @x, @y: Input multipliers * @ret: Output for product * * Computes *@ret = @x * @y, and returns true if and only if that * value has been truncated. */ static inline bool smul32_overflow(int32_t x, int32_t y, int32_t *ret) { return __builtin_mul_overflow(x, y, ret); } /** * smul64_overflow - multiplication with overflow indication * @x, @y: Input multipliers * @ret: Output for product * * Computes *@ret = @x * @y, and returns true if and only if that * value has been truncated. */ static inline bool smul64_overflow(int64_t x, int64_t y, int64_t *ret) { return __builtin_mul_overflow(x, y, ret); } /** * umul32_overflow - multiplication with overflow indication * @x, @y: Input multipliers * @ret: Output for product * * Computes *@ret = @x * @y, and returns true if and only if that * value has been truncated. */ static inline bool umul32_overflow(uint32_t x, uint32_t y, uint32_t *ret) { return __builtin_mul_overflow(x, y, ret); } /** * umul64_overflow - multiplication with overflow indication * @x, @y: Input multipliers * @ret: Output for product * * Computes *@ret = @x * @y, and returns true if and only if that * value has been truncated. */ static inline bool umul64_overflow(uint64_t x, uint64_t y, uint64_t *ret) { return __builtin_mul_overflow(x, y, ret); } /* * Unsigned 128x64 multiplication. * Returns true if the result got truncated to 128 bits. * Otherwise, returns false and the multiplication result via plow and phigh. */ static inline bool mulu128(uint64_t *plow, uint64_t *phigh, uint64_t factor) { #if defined(CONFIG_INT128) bool res; __uint128_t r; __uint128_t f = ((__uint128_t)*phigh << 64) | *plow; res = __builtin_mul_overflow(f, factor, &r); *plow = r; *phigh = r >> 64; return res; #else uint64_t dhi = *phigh; uint64_t dlo = *plow; uint64_t ahi; uint64_t blo, bhi; if (dhi == 0) { mulu64(plow, phigh, dlo, factor); return false; } mulu64(plow, &ahi, dlo, factor); mulu64(&blo, &bhi, dhi, factor); return uadd64_overflow(ahi, blo, phigh) || bhi != 0; #endif } /** * uadd64_carry - addition with carry-in and carry-out * @x, @y: addends * @pcarry: in-out carry value * * Computes @x + @y + *@pcarry, placing the carry-out back * into *@pcarry and returning the 64-bit sum. */ static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry) { #if __has_builtin(__builtin_addcll) unsigned long long c = *pcarry; x = __builtin_addcll(x, y, c, &c); *pcarry = c & 1; return x; #else bool c = *pcarry; /* This is clang's internal expansion of __builtin_addc. */ c = uadd64_overflow(x, c, &x); c |= uadd64_overflow(x, y, &x); *pcarry = c; return x; #endif } /** * usub64_borrow - subtraction with borrow-in and borrow-out * @x, @y: addends * @pborrow: in-out borrow value * * Computes @x - @y - *@pborrow, placing the borrow-out back * into *@pborrow and returning the 64-bit sum. */ static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow) { #if __has_builtin(__builtin_subcll) && !defined(BUILTIN_SUBCLL_BROKEN) unsigned long long b = *pborrow; x = __builtin_subcll(x, y, b, &b); *pborrow = b & 1; return x; #else bool b = *pborrow; b = usub64_overflow(x, b, &x); b |= usub64_overflow(x, y, &x); *pborrow = b; return x; #endif } /* Host type specific sizes of these routines. */ #if ULONG_MAX == UINT32_MAX # define clzl clz32 # define ctzl ctz32 # define clol clo32 # define ctol cto32 # define ctpopl ctpop32 # define revbitl revbit32 #elif ULONG_MAX == UINT64_MAX # define clzl clz64 # define ctzl ctz64 # define clol clo64 # define ctol cto64 # define ctpopl ctpop64 # define revbitl revbit64 #else # error Unknown sizeof long #endif static inline bool is_power_of_2(uint64_t value) { if (!value) { return false; } return !(value & (value - 1)); } /** * Return @value rounded down to the nearest power of two or zero. */ static inline uint64_t pow2floor(uint64_t value) { if (!value) { /* Avoid undefined shift by 64 */ return 0; } return 0x8000000000000000ull >> clz64(value); } /* * Return @value rounded up to the nearest power of two modulo 2^64. * This is *zero* for @value > 2^63, so be careful. */ static inline uint64_t pow2ceil(uint64_t value) { int n = clz64(value - 1); if (!n) { /* * @value - 1 has no leading zeroes, thus @value - 1 >= 2^63 * Therefore, either @value == 0 or @value > 2^63. * If it's 0, return 1, else return 0. */ return !value; } return 0x8000000000000000ull >> (n - 1); } static inline uint32_t pow2roundup32(uint32_t x) { x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); return x + 1; } /** * urshift - 128-bit Unsigned Right Shift. * @plow: in/out - lower 64-bit integer. * @phigh: in/out - higher 64-bit integer. * @shift: in - bytes to shift, between 0 and 127. * * Result is zero-extended and stored in plow/phigh, which are * input/output variables. Shift values outside the range will * be mod to 128. In other words, the caller is responsible to * verify/assert both the shift range and plow/phigh pointers. */ void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift); /** * ulshift - 128-bit Unsigned Left Shift. * @plow: in/out - lower 64-bit integer. * @phigh: in/out - higher 64-bit integer. * @shift: in - bytes to shift, between 0 and 127. * @overflow: out - true if any 1-bit is shifted out. * * Result is zero-extended and stored in plow/phigh, which are * input/output variables. Shift values outside the range will * be mod to 128. In other words, the caller is responsible to * verify/assert both the shift range and plow/phigh pointers. */ void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow); /* From the GNU Multi Precision Library - longlong.h __udiv_qrnnd * (https://gmplib.org/repo/gmp/file/tip/longlong.h) * * Licensed under the GPLv2/LGPLv3 */ static inline uint64_t udiv_qrnnd(uint64_t *r, uint64_t n1, uint64_t n0, uint64_t d) { #if defined(__x86_64__) uint64_t q; asm("divq %4" : "=a"(q), "=d"(*r) : "0"(n0), "1"(n1), "rm"(d)); return q; #elif defined(__s390x__) && !defined(__clang__) /* Need to use a TImode type to get an even register pair for DLGR. */ unsigned __int128 n = (unsigned __int128)n1 << 64 | n0; asm("dlgr %0, %1" : "+r"(n) : "r"(d)); *r = n >> 64; return n; #elif defined(_ARCH_PPC64) && defined(_ARCH_PWR7) /* From Power ISA 2.06, programming note for divdeu. */ uint64_t q1, q2, Q, r1, r2, R; asm("divdeu %0,%2,%4; divdu %1,%3,%4" : "=&r"(q1), "=r"(q2) : "r"(n1), "r"(n0), "r"(d)); r1 = -(q1 * d); /* low part of (n1<<64) - (q1 * d) */ r2 = n0 - (q2 * d); Q = q1 + q2; R = r1 + r2; if (R >= d || R < r2) { /* overflow implies R > d */ Q += 1; R -= d; } *r = R; return Q; #else uint64_t d0, d1, q0, q1, r1, r0, m; d0 = (uint32_t)d; d1 = d >> 32; r1 = n1 % d1; q1 = n1 / d1; m = q1 * d0; r1 = (r1 << 32) | (n0 >> 32); if (r1 < m) { q1 -= 1; r1 += d; if (r1 >= d) { if (r1 < m) { q1 -= 1; r1 += d; } } } r1 -= m; r0 = r1 % d1; q0 = r1 / d1; m = q0 * d0; r0 = (r0 << 32) | (uint32_t)n0; if (r0 < m) { q0 -= 1; r0 += d; if (r0 >= d) { if (r0 < m) { q0 -= 1; r0 += d; } } } r0 -= m; *r = r0; return (q1 << 32) | q0; #endif } Int128 divu256(Int128 *plow, Int128 *phigh, Int128 divisor); Int128 divs256(Int128 *plow, Int128 *phigh, Int128 divisor); #endif