/* * Emulation of Linux signals * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu.h" #include "user-internals.h" #include "signal-common.h" #include "linux-user/trace.h" /* from the Linux kernel - /arch/x86/include/uapi/asm/sigcontext.h */ #define TARGET_FP_XSTATE_MAGIC1 0x46505853U /* FPXS */ #define TARGET_FP_XSTATE_MAGIC2 0x46505845U /* FPXE */ #define TARGET_FP_XSTATE_MAGIC2_SIZE 4 struct target_fpreg { uint16_t significand[4]; uint16_t exponent; }; struct target_fpxreg { uint16_t significand[4]; uint16_t exponent; uint16_t padding[3]; }; struct target_xmmreg { uint32_t element[4]; }; struct target_fpx_sw_bytes { uint32_t magic1; uint32_t extended_size; uint64_t xfeatures; uint32_t xstate_size; uint32_t reserved[7]; }; QEMU_BUILD_BUG_ON(sizeof(struct target_fpx_sw_bytes) != 12*4); struct target_fpstate_fxsave { /* FXSAVE format */ uint16_t cw; uint16_t sw; uint16_t twd; uint16_t fop; uint64_t rip; uint64_t rdp; uint32_t mxcsr; uint32_t mxcsr_mask; uint32_t st_space[32]; uint32_t xmm_space[64]; uint32_t hw_reserved[12]; struct target_fpx_sw_bytes sw_reserved; uint8_t xfeatures[]; }; #define TARGET_FXSAVE_SIZE sizeof(struct target_fpstate_fxsave) QEMU_BUILD_BUG_ON(TARGET_FXSAVE_SIZE != 512); QEMU_BUILD_BUG_ON(offsetof(struct target_fpstate_fxsave, sw_reserved) != 464); struct target_fpstate_32 { /* Regular FPU environment */ uint32_t cw; uint32_t sw; uint32_t tag; uint32_t ipoff; uint32_t cssel; uint32_t dataoff; uint32_t datasel; struct target_fpreg st[8]; uint16_t status; uint16_t magic; /* 0xffff = regular FPU data only */ struct target_fpstate_fxsave fxsave; }; /* * For simplicity, setup_frame aligns struct target_fpstate_32 to * 16 bytes, so ensure that the FXSAVE area is also aligned. */ QEMU_BUILD_BUG_ON(offsetof(struct target_fpstate_32, fxsave) & 15); #ifndef TARGET_X86_64 # define target_fpstate target_fpstate_32 # define TARGET_FPSTATE_FXSAVE_OFFSET offsetof(struct target_fpstate_32, fxsave) #else # define target_fpstate target_fpstate_fxsave # define TARGET_FPSTATE_FXSAVE_OFFSET 0 #endif struct target_sigcontext_32 { uint16_t gs, __gsh; uint16_t fs, __fsh; uint16_t es, __esh; uint16_t ds, __dsh; uint32_t edi; uint32_t esi; uint32_t ebp; uint32_t esp; uint32_t ebx; uint32_t edx; uint32_t ecx; uint32_t eax; uint32_t trapno; uint32_t err; uint32_t eip; uint16_t cs, __csh; uint32_t eflags; uint32_t esp_at_signal; uint16_t ss, __ssh; uint32_t fpstate; /* pointer */ uint32_t oldmask; uint32_t cr2; }; struct target_sigcontext_64 { uint64_t r8; uint64_t r9; uint64_t r10; uint64_t r11; uint64_t r12; uint64_t r13; uint64_t r14; uint64_t r15; uint64_t rdi; uint64_t rsi; uint64_t rbp; uint64_t rbx; uint64_t rdx; uint64_t rax; uint64_t rcx; uint64_t rsp; uint64_t rip; uint64_t eflags; uint16_t cs; uint16_t gs; uint16_t fs; uint16_t ss; uint64_t err; uint64_t trapno; uint64_t oldmask; uint64_t cr2; uint64_t fpstate; /* pointer */ uint64_t padding[8]; }; #ifndef TARGET_X86_64 # define target_sigcontext target_sigcontext_32 #else # define target_sigcontext target_sigcontext_64 #endif /* see Linux/include/uapi/asm-generic/ucontext.h */ struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; #ifndef TARGET_X86_64 struct sigframe { abi_ulong pretcode; int sig; struct target_sigcontext sc; /* * The actual fpstate is placed after retcode[] below, to make * room for the variable-sized xsave data. The older unused fpstate * has to be kept to avoid changing the offset of extramask[], which * is part of the ABI. */ struct target_fpstate fpstate_unused; abi_ulong extramask[TARGET_NSIG_WORDS-1]; char retcode[8]; /* * This field will be 16-byte aligned in memory. Applying QEMU_ALIGNED * to it ensures that the base of the frame has an appropriate alignment * too. */ struct target_fpstate fpstate QEMU_ALIGNED(8); }; #define TARGET_SIGFRAME_FXSAVE_OFFSET ( \ offsetof(struct sigframe, fpstate) + TARGET_FPSTATE_FXSAVE_OFFSET) struct rt_sigframe { abi_ulong pretcode; int sig; abi_ulong pinfo; abi_ulong puc; struct target_siginfo info; struct target_ucontext uc; char retcode[8]; struct target_fpstate fpstate QEMU_ALIGNED(8); }; #define TARGET_RT_SIGFRAME_FXSAVE_OFFSET ( \ offsetof(struct rt_sigframe, fpstate) + TARGET_FPSTATE_FXSAVE_OFFSET) /* * Verify that vdso-asmoffset.h constants match. */ #include "i386/vdso-asmoffset.h" QEMU_BUILD_BUG_ON(offsetof(struct sigframe, sc.eip) != SIGFRAME_SIGCONTEXT_eip); QEMU_BUILD_BUG_ON(offsetof(struct rt_sigframe, uc.tuc_mcontext.eip) != RT_SIGFRAME_SIGCONTEXT_eip); #else struct rt_sigframe { abi_ulong pretcode; struct target_ucontext uc; struct target_siginfo info; struct target_fpstate fpstate QEMU_ALIGNED(16); }; #define TARGET_RT_SIGFRAME_FXSAVE_OFFSET ( \ offsetof(struct rt_sigframe, fpstate) + TARGET_FPSTATE_FXSAVE_OFFSET) #endif /* * Set up a signal frame. */ static void xsave_sigcontext(CPUX86State *env, struct target_fpstate_fxsave *fxsave, abi_ulong fxsave_addr) { if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) { /* fxsave_addr must be 16 byte aligned for fxsave */ assert(!(fxsave_addr & 0xf)); cpu_x86_fxsave(env, fxsave_addr); __put_user(0, &fxsave->sw_reserved.magic1); } else { uint32_t xstate_size = xsave_area_size(env->xcr0, false); uint32_t xfeatures_size = xstate_size - TARGET_FXSAVE_SIZE; /* * extended_size is the offset from fpstate_addr to right after the end * of the extended save states. On 32-bit that includes the legacy * FSAVE area. */ uint32_t extended_size = TARGET_FPSTATE_FXSAVE_OFFSET + xstate_size + TARGET_FP_XSTATE_MAGIC2_SIZE; /* fxsave_addr must be 64 byte aligned for xsave */ assert(!(fxsave_addr & 0x3f)); /* Zero the header, XSAVE *adds* features to an existing save state. */ memset(fxsave->xfeatures, 0, 64); cpu_x86_xsave(env, fxsave_addr); __put_user(TARGET_FP_XSTATE_MAGIC1, &fxsave->sw_reserved.magic1); __put_user(extended_size, &fxsave->sw_reserved.extended_size); __put_user(env->xcr0, &fxsave->sw_reserved.xfeatures); __put_user(xstate_size, &fxsave->sw_reserved.xstate_size); __put_user(TARGET_FP_XSTATE_MAGIC2, (uint32_t *) &fxsave->xfeatures[xfeatures_size]); } } static void setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate, CPUX86State *env, abi_ulong mask, abi_ulong fpstate_addr) { CPUState *cs = env_cpu(env); #ifndef TARGET_X86_64 uint16_t magic; /* already locked in setup_frame() */ __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); __put_user(env->regs[R_EDI], &sc->edi); __put_user(env->regs[R_ESI], &sc->esi); __put_user(env->regs[R_EBP], &sc->ebp); __put_user(env->regs[R_ESP], &sc->esp); __put_user(env->regs[R_EBX], &sc->ebx); __put_user(env->regs[R_EDX], &sc->edx); __put_user(env->regs[R_ECX], &sc->ecx); __put_user(env->regs[R_EAX], &sc->eax); __put_user(cs->exception_index, &sc->trapno); __put_user(env->error_code, &sc->err); __put_user(env->eip, &sc->eip); __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); __put_user(env->eflags, &sc->eflags); __put_user(env->regs[R_ESP], &sc->esp_at_signal); __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); cpu_x86_fsave(env, fpstate_addr, 1); fpstate->status = fpstate->sw; if (!(env->features[FEAT_1_EDX] & CPUID_FXSR)) { magic = 0xffff; } else { xsave_sigcontext(env, &fpstate->fxsave, fpstate_addr + TARGET_FPSTATE_FXSAVE_OFFSET); magic = 0; } __put_user(magic, &fpstate->magic); #else __put_user(env->regs[R_EDI], &sc->rdi); __put_user(env->regs[R_ESI], &sc->rsi); __put_user(env->regs[R_EBP], &sc->rbp); __put_user(env->regs[R_ESP], &sc->rsp); __put_user(env->regs[R_EBX], &sc->rbx); __put_user(env->regs[R_EDX], &sc->rdx); __put_user(env->regs[R_ECX], &sc->rcx); __put_user(env->regs[R_EAX], &sc->rax); __put_user(env->regs[8], &sc->r8); __put_user(env->regs[9], &sc->r9); __put_user(env->regs[10], &sc->r10); __put_user(env->regs[11], &sc->r11); __put_user(env->regs[12], &sc->r12); __put_user(env->regs[13], &sc->r13); __put_user(env->regs[14], &sc->r14); __put_user(env->regs[15], &sc->r15); __put_user(cs->exception_index, &sc->trapno); __put_user(env->error_code, &sc->err); __put_user(env->eip, &sc->rip); __put_user(env->eflags, &sc->eflags); __put_user(env->segs[R_CS].selector, &sc->cs); __put_user((uint16_t)0, &sc->gs); __put_user((uint16_t)0, &sc->fs); __put_user(env->segs[R_SS].selector, &sc->ss); xsave_sigcontext(env, fpstate, fpstate_addr); #endif __put_user(fpstate_addr, &sc->fpstate); /* non-iBCS2 extensions.. */ __put_user(mask, &sc->oldmask); __put_user(env->cr[2], &sc->cr2); } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUX86State *env, size_t fxsave_offset) { unsigned long esp; /* Default to using normal stack */ esp = get_sp_from_cpustate(env); #ifdef TARGET_X86_64 esp -= 128; /* this is the redzone */ #endif /* This is the X/Open sanctioned signal stack switching. */ if (ka->sa_flags & TARGET_SA_ONSTACK) { esp = target_sigsp(esp, ka); } else { #ifndef TARGET_X86_64 /* This is the legacy signal stack switching. */ if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && !(ka->sa_flags & TARGET_SA_RESTORER) && ka->sa_restorer) { esp = (unsigned long) ka->sa_restorer; } #endif } if (!(env->features[FEAT_1_EDX] & CPUID_FXSR)) { return (esp - (fxsave_offset + TARGET_FXSAVE_SIZE)) & -8ul; } else if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) { return ((esp - TARGET_FXSAVE_SIZE) & -16ul) - fxsave_offset; } else { size_t xstate_size = xsave_area_size(env->xcr0, false) + TARGET_FP_XSTATE_MAGIC2_SIZE; return ((esp - xstate_size) & -64ul) - fxsave_offset; } } #ifndef TARGET_X86_64 static void install_sigtramp(void *tramp) { /* This is popl %eax ; movl $syscall,%eax ; int $0x80 */ __put_user(0xb858, (uint16_t *)(tramp + 0)); __put_user(TARGET_NR_sigreturn, (int32_t *)(tramp + 2)); __put_user(0x80cd, (uint16_t *)(tramp + 6)); } static void install_rt_sigtramp(void *tramp) { /* This is movl $syscall,%eax ; int $0x80 */ __put_user(0xb8, (uint8_t *)(tramp + 0)); __put_user(TARGET_NR_rt_sigreturn, (int32_t *)(tramp + 1)); __put_user(0x80cd, (uint16_t *)(tramp + 5)); } /* compare linux/arch/i386/kernel/signal.c:setup_frame() */ void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUX86State *env) { abi_ulong frame_addr; struct sigframe *frame; int i; frame_addr = get_sigframe(ka, env, TARGET_SIGFRAME_FXSAVE_OFFSET); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; __put_user(sig, &frame->sig); setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0], frame_addr + offsetof(struct sigframe, fpstate)); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->extramask[i - 1]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { __put_user(ka->sa_restorer, &frame->pretcode); } else { /* This is no longer used, but is retained for ABI compatibility. */ install_sigtramp(frame->retcode); __put_user(default_sigreturn, &frame->pretcode); } /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->_sa_handler; cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); env->eflags &= ~TF_MASK; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: force_sigsegv(sig); } #endif /* compare linux/arch/x86/kernel/signal.c:setup_rt_frame() */ void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUX86State *env) { abi_ulong frame_addr; #ifndef TARGET_X86_64 abi_ulong addr; #endif struct rt_sigframe *frame; int i; frame_addr = get_sigframe(ka, env, TARGET_RT_SIGFRAME_FXSAVE_OFFSET); trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; /* These fields are only in rt_sigframe on 32 bit */ #ifndef TARGET_X86_64 __put_user(sig, &frame->sig); addr = frame_addr + offsetof(struct rt_sigframe, info); __put_user(addr, &frame->pinfo); addr = frame_addr + offsetof(struct rt_sigframe, uc); __put_user(addr, &frame->puc); #endif if (ka->sa_flags & TARGET_SA_SIGINFO) { tswap_siginfo(&frame->info, info); } /* Create the ucontext. */ if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) { __put_user(1, &frame->uc.tuc_flags); } else { __put_user(0, &frame->uc.tuc_flags); } __put_user(0, &frame->uc.tuc_link); target_save_altstack(&frame->uc.tuc_stack, env); setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate, env, set->sig[0], frame_addr + offsetof(struct rt_sigframe, fpstate)); for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { __put_user(ka->sa_restorer, &frame->pretcode); } else { #ifdef TARGET_X86_64 /* For x86_64, SA_RESTORER is required ABI. */ goto give_sigsegv; #else /* This is no longer used, but is retained for ABI compatibility. */ install_rt_sigtramp(frame->retcode); __put_user(default_rt_sigreturn, &frame->pretcode); #endif } /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->_sa_handler; #ifndef TARGET_X86_64 env->regs[R_EAX] = sig; env->regs[R_EDX] = frame_addr + offsetof(struct rt_sigframe, info); env->regs[R_ECX] = frame_addr + offsetof(struct rt_sigframe, uc); #else env->regs[R_EAX] = 0; env->regs[R_EDI] = sig; env->regs[R_ESI] = frame_addr + offsetof(struct rt_sigframe, info); env->regs[R_EDX] = frame_addr + offsetof(struct rt_sigframe, uc); #endif cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); cpu_x86_load_seg(env, R_SS, __USER_DS); env->eflags &= ~TF_MASK; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: force_sigsegv(sig); } static int xrstor_sigcontext(CPUX86State *env, struct target_fpstate_fxsave *fxsave, abi_ulong fxsave_addr) { if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) { uint32_t extended_size = tswapl(fxsave->sw_reserved.extended_size); uint32_t xstate_size = tswapl(fxsave->sw_reserved.xstate_size); uint32_t xfeatures_size = xstate_size - TARGET_FXSAVE_SIZE; /* Linux checks MAGIC2 using xstate_size, not extended_size. */ if (tswapl(fxsave->sw_reserved.magic1) == TARGET_FP_XSTATE_MAGIC1 && extended_size >= TARGET_FPSTATE_FXSAVE_OFFSET + xstate_size + TARGET_FP_XSTATE_MAGIC2_SIZE) { if (!access_ok(env_cpu(env), VERIFY_READ, fxsave_addr, extended_size - TARGET_FPSTATE_FXSAVE_OFFSET)) { return 1; } if (tswapl(*(uint32_t *) &fxsave->xfeatures[xfeatures_size]) == TARGET_FP_XSTATE_MAGIC2) { cpu_x86_xrstor(env, fxsave_addr); return 0; } } /* fall through to fxrstor */ } cpu_x86_fxrstor(env, fxsave_addr); return 0; } static int restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc) { int err = 1; abi_ulong fpstate_addr; unsigned int tmpflags; #ifndef TARGET_X86_64 cpu_x86_load_seg(env, R_GS, tswap16(sc->gs)); cpu_x86_load_seg(env, R_FS, tswap16(sc->fs)); cpu_x86_load_seg(env, R_ES, tswap16(sc->es)); cpu_x86_load_seg(env, R_DS, tswap16(sc->ds)); env->regs[R_EDI] = tswapl(sc->edi); env->regs[R_ESI] = tswapl(sc->esi); env->regs[R_EBP] = tswapl(sc->ebp); env->regs[R_ESP] = tswapl(sc->esp); env->regs[R_EBX] = tswapl(sc->ebx); env->regs[R_EDX] = tswapl(sc->edx); env->regs[R_ECX] = tswapl(sc->ecx); env->regs[R_EAX] = tswapl(sc->eax); env->eip = tswapl(sc->eip); #else env->regs[8] = tswapl(sc->r8); env->regs[9] = tswapl(sc->r9); env->regs[10] = tswapl(sc->r10); env->regs[11] = tswapl(sc->r11); env->regs[12] = tswapl(sc->r12); env->regs[13] = tswapl(sc->r13); env->regs[14] = tswapl(sc->r14); env->regs[15] = tswapl(sc->r15); env->regs[R_EDI] = tswapl(sc->rdi); env->regs[R_ESI] = tswapl(sc->rsi); env->regs[R_EBP] = tswapl(sc->rbp); env->regs[R_EBX] = tswapl(sc->rbx); env->regs[R_EDX] = tswapl(sc->rdx); env->regs[R_EAX] = tswapl(sc->rax); env->regs[R_ECX] = tswapl(sc->rcx); env->regs[R_ESP] = tswapl(sc->rsp); env->eip = tswapl(sc->rip); #endif cpu_x86_load_seg(env, R_CS, lduw_p(&sc->cs) | 3); cpu_x86_load_seg(env, R_SS, lduw_p(&sc->ss) | 3); tmpflags = tswapl(sc->eflags); env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); // regs->orig_eax = -1; /* disable syscall checks */ fpstate_addr = tswapl(sc->fpstate); if (fpstate_addr != 0) { struct target_fpstate *fpstate; if (!lock_user_struct(VERIFY_READ, fpstate, fpstate_addr, sizeof(struct target_fpstate))) { return err; } #ifndef TARGET_X86_64 if (!(env->features[FEAT_1_EDX] & CPUID_FXSR)) { cpu_x86_frstor(env, fpstate_addr, 1); err = 0; } else { err = xrstor_sigcontext(env, &fpstate->fxsave, fpstate_addr + TARGET_FPSTATE_FXSAVE_OFFSET); } #else err = xrstor_sigcontext(env, fpstate, fpstate_addr); #endif unlock_user_struct(fpstate, fpstate_addr, 0); } else { err = 0; } return err; } /* Note: there is no sigreturn on x86_64, there is only rt_sigreturn */ #ifndef TARGET_X86_64 long do_sigreturn(CPUX86State *env) { struct sigframe *frame; abi_ulong frame_addr = env->regs[R_ESP] - 8; target_sigset_t target_set; sigset_t set; int i; trace_user_do_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; /* set blocked signals */ __get_user(target_set.sig[0], &frame->sc.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->extramask[i - 1]); } target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); /* restore registers */ if (restore_sigcontext(env, &frame->sc)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return -QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -QEMU_ESIGRETURN; } #endif long do_rt_sigreturn(CPUX86State *env) { abi_ulong frame_addr; struct rt_sigframe *frame; sigset_t set; frame_addr = env->regs[R_ESP] - sizeof(abi_ulong); trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&set, &frame->uc.tuc_sigmask); set_sigmask(&set); if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) { goto badframe; } target_restore_altstack(&frame->uc.tuc_stack, env); unlock_user_struct(frame, frame_addr, 0); return -QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -QEMU_ESIGRETURN; } #ifndef TARGET_X86_64 void setup_sigtramp(abi_ulong sigtramp_page) { uint16_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0); assert(tramp != NULL); default_sigreturn = sigtramp_page; install_sigtramp(tramp); default_rt_sigreturn = sigtramp_page + 8; install_rt_sigtramp(tramp + 8); unlock_user(tramp, sigtramp_page, 2 * 8); } #endif