/* * ARM gdb server stub: AArch64 specific functions. * * Copyright (c) 2013 SUSE LINUX Products GmbH * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "internals.h" #include "exec/gdbstub.h" int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (n < 31) { /* Core integer register. */ return gdb_get_reg64(mem_buf, env->xregs[n]); } switch (n) { case 31: return gdb_get_reg64(mem_buf, env->xregs[31]); case 32: return gdb_get_reg64(mem_buf, env->pc); case 33: return gdb_get_reg32(mem_buf, pstate_read(env)); } /* Unknown register. */ return 0; } int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint64_t tmp; tmp = ldq_p(mem_buf); if (n < 31) { /* Core integer register. */ env->xregs[n] = tmp; return 8; } switch (n) { case 31: env->xregs[31] = tmp; return 8; case 32: env->pc = tmp; return 8; case 33: /* CPSR */ pstate_write(env, tmp); return 4; } /* Unknown register. */ return 0; } int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg) { switch (reg) { case 0 ... 31: { /* 128 bit FP register - quads are in LE order */ uint64_t *q = aa64_vfp_qreg(env, reg); return gdb_get_reg128(buf, q[1], q[0]); } case 32: /* FPSR */ return gdb_get_reg32(buf, vfp_get_fpsr(env)); case 33: /* FPCR */ return gdb_get_reg32(buf, vfp_get_fpcr(env)); default: return 0; } } int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0 ... 31: /* 128 bit FP register */ { uint64_t *q = aa64_vfp_qreg(env, reg); q[0] = ldq_le_p(buf); q[1] = ldq_le_p(buf + 8); return 16; } case 32: /* FPSR */ vfp_set_fpsr(env, ldl_p(buf)); return 4; case 33: /* FPCR */ vfp_set_fpcr(env, ldl_p(buf)); return 4; default: return 0; } } int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg) { ARMCPU *cpu = env_archcpu(env); switch (reg) { /* The first 32 registers are the zregs */ case 0 ... 31: { int vq, len = 0; for (vq = 0; vq < cpu->sve_max_vq; vq++) { len += gdb_get_reg128(buf, env->vfp.zregs[reg].d[vq * 2 + 1], env->vfp.zregs[reg].d[vq * 2]); } return len; } case 32: return gdb_get_reg32(buf, vfp_get_fpsr(env)); case 33: return gdb_get_reg32(buf, vfp_get_fpcr(env)); /* then 16 predicates and the ffr */ case 34 ... 50: { int preg = reg - 34; int vq, len = 0; for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); } return len; } case 51: { /* * We report in Vector Granules (VG) which is 64bit in a Z reg * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. */ int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1; return gdb_get_reg64(buf, vq * 2); } default: /* gdbstub asked for something out our range */ qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); break; } return 0; } int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg) { ARMCPU *cpu = env_archcpu(env); /* The first 32 registers are the zregs */ switch (reg) { /* The first 32 registers are the zregs */ case 0 ... 31: { int vq, len = 0; uint64_t *p = (uint64_t *) buf; for (vq = 0; vq < cpu->sve_max_vq; vq++) { env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; env->vfp.zregs[reg].d[vq * 2] = *p++; len += 16; } return len; } case 32: vfp_set_fpsr(env, *(uint32_t *)buf); return 4; case 33: vfp_set_fpcr(env, *(uint32_t *)buf); return 4; case 34 ... 50: { int preg = reg - 34; int vq, len = 0; uint64_t *p = (uint64_t *) buf; for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { env->vfp.pregs[preg].p[vq / 4] = *p++; len += 8; } return len; } case 51: /* cannot set vg via gdbstub */ return 0; default: /* gdbstub asked for something out our range */ break; } return 0; } int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg) { switch (reg) { case 0: /* pauth_dmask */ case 1: /* pauth_cmask */ case 2: /* pauth_dmask_high */ case 3: /* pauth_cmask_high */ /* * Note that older versions of this feature only contained * pauth_{d,c}mask, for use with Linux user processes, and * thus exclusively in the low half of the address space. * * To support system mode, and to debug kernels, two new regs * were added to cover the high half of the address space. * For the purpose of pauth_ptr_mask, we can use any well-formed * address within the address space half -- here, 0 and -1. */ { bool is_data = !(reg & 1); bool is_high = reg & 2; uint64_t mask = pauth_ptr_mask(env, -is_high, is_data); return gdb_get_reg64(buf, mask); } default: return 0; } } int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg) { /* All pseudo registers are read-only. */ return 0; } static void output_vector_union_type(GString *s, int reg_width, const char *name) { struct TypeSize { const char *gdb_type; short size; char sz, suffix; }; static const struct TypeSize vec_lanes[] = { /* quads */ { "uint128", 128, 'q', 'u' }, { "int128", 128, 'q', 's' }, /* 64 bit */ { "ieee_double", 64, 'd', 'f' }, { "uint64", 64, 'd', 'u' }, { "int64", 64, 'd', 's' }, /* 32 bit */ { "ieee_single", 32, 's', 'f' }, { "uint32", 32, 's', 'u' }, { "int32", 32, 's', 's' }, /* 16 bit */ { "ieee_half", 16, 'h', 'f' }, { "uint16", 16, 'h', 'u' }, { "int16", 16, 'h', 's' }, /* bytes */ { "uint8", 8, 'b', 'u' }, { "int8", 8, 'b', 's' }, }; static const char suf[] = { 'b', 'h', 's', 'd', 'q' }; int i, j; /* First define types and totals in a whole VL */ for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { g_string_append_printf(s, "", name, vec_lanes[i].sz, vec_lanes[i].suffix, vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size); } /* * Now define a union for each size group containing unsigned and * signed and potentially float versions of each size from 128 to * 8 bits. */ for (i = 0; i < ARRAY_SIZE(suf); i++) { int bits = 8 << i; g_string_append_printf(s, "", name, suf[i]); for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) { if (vec_lanes[j].size == bits) { g_string_append_printf(s, "", vec_lanes[j].suffix, name, vec_lanes[j].sz, vec_lanes[j].suffix); } } g_string_append(s, ""); } /* And now the final union of unions */ g_string_append_printf(s, "", name); for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) { g_string_append_printf(s, "", suf[i], name, suf[i]); } g_string_append(s, ""); } int arm_gen_dynamic_svereg_xml(CPUState *cs, int orig_base_reg) { ARMCPU *cpu = ARM_CPU(cs); GString *s = g_string_new(NULL); DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml; int reg_width = cpu->sve_max_vq * 128; int pred_width = cpu->sve_max_vq * 16; int base_reg = orig_base_reg; int i; g_string_printf(s, ""); g_string_append_printf(s, ""); g_string_append_printf(s, ""); /* Create the vector union type. */ output_vector_union_type(s, reg_width, "svev"); /* Create the predicate vector type. */ g_string_append_printf(s, "", pred_width / 8); /* Define the vector registers. */ for (i = 0; i < 32; i++) { g_string_append_printf(s, "", i, reg_width, base_reg++); } /* fpscr & status registers */ g_string_append_printf(s, "", base_reg++); g_string_append_printf(s, "", base_reg++); /* Define the predicate registers. */ for (i = 0; i < 16; i++) { g_string_append_printf(s, "", i, pred_width, base_reg++); } g_string_append_printf(s, "", pred_width, base_reg++); /* Define the vector length pseudo-register. */ g_string_append_printf(s, "", base_reg++); g_string_append_printf(s, ""); info->desc = g_string_free(s, false); info->num = base_reg - orig_base_reg; return info->num; }