/* * QEMU ARM CPU -- internal functions and types * * Copyright (c) 2014 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * * * This header defines functions, types, etc which need to be shared * between different source files within target/arm/ but which are * private to it and not required by the rest of QEMU. */ #ifndef TARGET_ARM_INTERNALS_H #define TARGET_ARM_INTERNALS_H #include "hw/registerfields.h" #include "tcg/tcg-gvec-desc.h" #include "syndrome.h" /* register banks for CPU modes */ #define BANK_USRSYS 0 #define BANK_SVC 1 #define BANK_ABT 2 #define BANK_UND 3 #define BANK_IRQ 4 #define BANK_FIQ 5 #define BANK_HYP 6 #define BANK_MON 7 static inline bool excp_is_internal(int excp) { /* Return true if this exception number represents a QEMU-internal * exception that will not be passed to the guest. */ return excp == EXCP_INTERRUPT || excp == EXCP_HLT || excp == EXCP_DEBUG || excp == EXCP_HALTED || excp == EXCP_EXCEPTION_EXIT || excp == EXCP_KERNEL_TRAP || excp == EXCP_SEMIHOST; } /* Scale factor for generic timers, ie number of ns per tick. * This gives a 62.5MHz timer. */ #define GTIMER_SCALE 16 /* Bit definitions for the v7M CONTROL register */ FIELD(V7M_CONTROL, NPRIV, 0, 1) FIELD(V7M_CONTROL, SPSEL, 1, 1) FIELD(V7M_CONTROL, FPCA, 2, 1) FIELD(V7M_CONTROL, SFPA, 3, 1) /* Bit definitions for v7M exception return payload */ FIELD(V7M_EXCRET, ES, 0, 1) FIELD(V7M_EXCRET, RES0, 1, 1) FIELD(V7M_EXCRET, SPSEL, 2, 1) FIELD(V7M_EXCRET, MODE, 3, 1) FIELD(V7M_EXCRET, FTYPE, 4, 1) FIELD(V7M_EXCRET, DCRS, 5, 1) FIELD(V7M_EXCRET, S, 6, 1) FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ /* Minimum value which is a magic number for exception return */ #define EXC_RETURN_MIN_MAGIC 0xff000000 /* Minimum number which is a magic number for function or exception return * when using v8M security extension */ #define FNC_RETURN_MIN_MAGIC 0xfefffffe /* We use a few fake FSR values for internal purposes in M profile. * M profile cores don't have A/R format FSRs, but currently our * get_phys_addr() code assumes A/R profile and reports failures via * an A/R format FSR value. We then translate that into the proper * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). * Mostly the FSR values we use for this are those defined for v7PMSA, * since we share some of that codepath. A few kinds of fault are * only for M profile and have no A/R equivalent, though, so we have * to pick a value from the reserved range (which we never otherwise * generate) to use for these. * These values will never be visible to the guest. */ #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ /** * raise_exception: Raise the specified exception. * Raise a guest exception with the specified value, syndrome register * and target exception level. This should be called from helper functions, * and never returns because we will longjump back up to the CPU main loop. */ void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el); /* * Similarly, but also use unwinding to restore cpu state. */ void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el, uintptr_t ra); /* * For AArch64, map a given EL to an index in the banked_spsr array. * Note that this mapping and the AArch32 mapping defined in bank_number() * must agree such that the AArch64<->AArch32 SPSRs have the architecturally * mandated mapping between each other. */ static inline unsigned int aarch64_banked_spsr_index(unsigned int el) { static const unsigned int map[4] = { [1] = BANK_SVC, /* EL1. */ [2] = BANK_HYP, /* EL2. */ [3] = BANK_MON, /* EL3. */ }; assert(el >= 1 && el <= 3); return map[el]; } /* Map CPU modes onto saved register banks. */ static inline int bank_number(int mode) { switch (mode) { case ARM_CPU_MODE_USR: case ARM_CPU_MODE_SYS: return BANK_USRSYS; case ARM_CPU_MODE_SVC: return BANK_SVC; case ARM_CPU_MODE_ABT: return BANK_ABT; case ARM_CPU_MODE_UND: return BANK_UND; case ARM_CPU_MODE_IRQ: return BANK_IRQ; case ARM_CPU_MODE_FIQ: return BANK_FIQ; case ARM_CPU_MODE_HYP: return BANK_HYP; case ARM_CPU_MODE_MON: return BANK_MON; } g_assert_not_reached(); } /** * r14_bank_number: Map CPU mode onto register bank for r14 * * Given an AArch32 CPU mode, return the index into the saved register * banks to use for the R14 (LR) in that mode. This is the same as * bank_number(), except for the special case of Hyp mode, where * R14 is shared with USR and SYS, unlike its R13 and SPSR. * This should be used as the index into env->banked_r14[], and * bank_number() used for the index into env->banked_r13[] and * env->banked_spsr[]. */ static inline int r14_bank_number(int mode) { return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); } void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); void arm_translate_init(void); #ifdef CONFIG_TCG void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); #endif /* CONFIG_TCG */ /** * aarch64_sve_zcr_get_valid_len: * @cpu: cpu context * @start_len: maximum len to consider * * Return the maximum supported sve vector length <= @start_len. * Note that both @start_len and the return value are in units * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128. */ uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len); enum arm_fprounding { FPROUNDING_TIEEVEN, FPROUNDING_POSINF, FPROUNDING_NEGINF, FPROUNDING_ZERO, FPROUNDING_TIEAWAY, FPROUNDING_ODD }; int arm_rmode_to_sf(int rmode); static inline void aarch64_save_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->sp_el[el] = env->xregs[31]; } else { env->sp_el[0] = env->xregs[31]; } } static inline void aarch64_restore_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->xregs[31] = env->sp_el[el]; } else { env->xregs[31] = env->sp_el[0]; } } static inline void update_spsel(CPUARMState *env, uint32_t imm) { unsigned int cur_el = arm_current_el(env); /* Update PSTATE SPSel bit; this requires us to update the * working stack pointer in xregs[31]. */ if (!((imm ^ env->pstate) & PSTATE_SP)) { return; } aarch64_save_sp(env, cur_el); env->pstate = deposit32(env->pstate, 0, 1, imm); /* We rely on illegal updates to SPsel from EL0 to get trapped * at translation time. */ assert(cur_el >= 1 && cur_el <= 3); aarch64_restore_sp(env, cur_el); } /* * arm_pamax * @cpu: ARMCPU * * Returns the implementation defined bit-width of physical addresses. * The ARMv8 reference manuals refer to this as PAMax(). */ unsigned int arm_pamax(ARMCPU *cpu); /* Return true if extended addresses are enabled. * This is always the case if our translation regime is 64 bit, * but depends on TTBCR.EAE for 32 bit. */ static inline bool extended_addresses_enabled(CPUARMState *env) { TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; return arm_el_is_aa64(env, 1) || (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); } /* Update a QEMU watchpoint based on the information the guest has set in the * DBGWCR_EL1 and DBGWVR_EL1 registers. */ void hw_watchpoint_update(ARMCPU *cpu, int n); /* Update the QEMU watchpoints for every guest watchpoint. This does a * complete delete-and-reinstate of the QEMU watchpoint list and so is * suitable for use after migration or on reset. */ void hw_watchpoint_update_all(ARMCPU *cpu); /* Update a QEMU breakpoint based on the information the guest has set in the * DBGBCR_EL1 and DBGBVR_EL1 registers. */ void hw_breakpoint_update(ARMCPU *cpu, int n); /* Update the QEMU breakpoints for every guest breakpoint. This does a * complete delete-and-reinstate of the QEMU breakpoint list and so is * suitable for use after migration or on reset. */ void hw_breakpoint_update_all(ARMCPU *cpu); /* Callback function for checking if a breakpoint should trigger. */ bool arm_debug_check_breakpoint(CPUState *cs); /* Callback function for checking if a watchpoint should trigger. */ bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); /* Adjust addresses (in BE32 mode) before testing against watchpoint * addresses. */ vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); /* Callback function for when a watchpoint or breakpoint triggers. */ void arm_debug_excp_handler(CPUState *cs); #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) { return false; } static inline void arm_handle_psci_call(ARMCPU *cpu) { g_assert_not_reached(); } #else /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ bool arm_is_psci_call(ARMCPU *cpu, int excp_type); /* Actually handle a PSCI call */ void arm_handle_psci_call(ARMCPU *cpu); #endif /** * arm_clear_exclusive: clear the exclusive monitor * @env: CPU env * Clear the CPU's exclusive monitor, like the guest CLREX instruction. */ static inline void arm_clear_exclusive(CPUARMState *env) { env->exclusive_addr = -1; } /** * ARMFaultType: type of an ARM MMU fault * This corresponds to the v8A pseudocode's Fault enumeration, * with extensions for QEMU internal conditions. */ typedef enum ARMFaultType { ARMFault_None, ARMFault_AccessFlag, ARMFault_Alignment, ARMFault_Background, ARMFault_Domain, ARMFault_Permission, ARMFault_Translation, ARMFault_AddressSize, ARMFault_SyncExternal, ARMFault_SyncExternalOnWalk, ARMFault_SyncParity, ARMFault_SyncParityOnWalk, ARMFault_AsyncParity, ARMFault_AsyncExternal, ARMFault_Debug, ARMFault_TLBConflict, ARMFault_Lockdown, ARMFault_Exclusive, ARMFault_ICacheMaint, ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ } ARMFaultType; /** * ARMMMUFaultInfo: Information describing an ARM MMU Fault * @type: Type of fault * @level: Table walk level (for translation, access flag and permission faults) * @domain: Domain of the fault address (for non-LPAE CPUs only) * @s2addr: Address that caused a fault at stage 2 * @stage2: True if we faulted at stage 2 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk * @s1ns: True if we faulted on a non-secure IPA while in secure state * @ea: True if we should set the EA (external abort type) bit in syndrome */ typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; struct ARMMMUFaultInfo { ARMFaultType type; target_ulong s2addr; int level; int domain; bool stage2; bool s1ptw; bool s1ns; bool ea; }; /** * arm_fi_to_sfsc: Convert fault info struct to short-format FSC * Compare pseudocode EncodeSDFSC(), though unlike that function * we set up a whole FSR-format code including domain field and * putting the high bit of the FSC into bit 10. */ static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) { uint32_t fsc; switch (fi->type) { case ARMFault_None: return 0; case ARMFault_AccessFlag: fsc = fi->level == 1 ? 0x3 : 0x6; break; case ARMFault_Alignment: fsc = 0x1; break; case ARMFault_Permission: fsc = fi->level == 1 ? 0xd : 0xf; break; case ARMFault_Domain: fsc = fi->level == 1 ? 0x9 : 0xb; break; case ARMFault_Translation: fsc = fi->level == 1 ? 0x5 : 0x7; break; case ARMFault_SyncExternal: fsc = 0x8 | (fi->ea << 12); break; case ARMFault_SyncExternalOnWalk: fsc = fi->level == 1 ? 0xc : 0xe; fsc |= (fi->ea << 12); break; case ARMFault_SyncParity: fsc = 0x409; break; case ARMFault_SyncParityOnWalk: fsc = fi->level == 1 ? 0x40c : 0x40e; break; case ARMFault_AsyncParity: fsc = 0x408; break; case ARMFault_AsyncExternal: fsc = 0x406 | (fi->ea << 12); break; case ARMFault_Debug: fsc = 0x2; break; case ARMFault_TLBConflict: fsc = 0x400; break; case ARMFault_Lockdown: fsc = 0x404; break; case ARMFault_Exclusive: fsc = 0x405; break; case ARMFault_ICacheMaint: fsc = 0x4; break; case ARMFault_Background: fsc = 0x0; break; case ARMFault_QEMU_NSCExec: fsc = M_FAKE_FSR_NSC_EXEC; break; case ARMFault_QEMU_SFault: fsc = M_FAKE_FSR_SFAULT; break; default: /* Other faults can't occur in a context that requires a * short-format status code. */ g_assert_not_reached(); } fsc |= (fi->domain << 4); return fsc; } /** * arm_fi_to_lfsc: Convert fault info struct to long-format FSC * Compare pseudocode EncodeLDFSC(), though unlike that function * we fill in also the LPAE bit 9 of a DFSR format. */ static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) { uint32_t fsc; switch (fi->type) { case ARMFault_None: return 0; case ARMFault_AddressSize: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b101001; } else { fsc = fi->level; } break; case ARMFault_AccessFlag: assert(fi->level >= 0 && fi->level <= 3); fsc = 0b001000 | fi->level; break; case ARMFault_Permission: assert(fi->level >= 0 && fi->level <= 3); fsc = 0b001100 | fi->level; break; case ARMFault_Translation: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b101011; } else { fsc = 0b000100 | fi->level; } break; case ARMFault_SyncExternal: fsc = 0x10 | (fi->ea << 12); break; case ARMFault_SyncExternalOnWalk: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b010011; } else { fsc = 0b010100 | fi->level; } fsc |= fi->ea << 12; break; case ARMFault_SyncParity: fsc = 0x18; break; case ARMFault_SyncParityOnWalk: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b011011; } else { fsc = 0b011100 | fi->level; } break; case ARMFault_AsyncParity: fsc = 0x19; break; case ARMFault_AsyncExternal: fsc = 0x11 | (fi->ea << 12); break; case ARMFault_Alignment: fsc = 0x21; break; case ARMFault_Debug: fsc = 0x22; break; case ARMFault_TLBConflict: fsc = 0x30; break; case ARMFault_Lockdown: fsc = 0x34; break; case ARMFault_Exclusive: fsc = 0x35; break; default: /* Other faults can't occur in a context that requires a * long-format status code. */ g_assert_not_reached(); } fsc |= 1 << 9; return fsc; } static inline bool arm_extabort_type(MemTxResult result) { /* The EA bit in syndromes and fault status registers is an * IMPDEF classification of external aborts. ARM implementations * usually use this to indicate AXI bus Decode error (0) or * Slave error (1); in QEMU we follow that. */ return result != MEMTX_DECODE_ERROR; } #ifdef CONFIG_USER_ONLY void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, MMUAccessType access_type, bool maperr, uintptr_t ra); void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, MMUAccessType access_type, uintptr_t ra); #else bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); #endif static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) { return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; } static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) { if (arm_feature(env, ARM_FEATURE_M)) { return mmu_idx | ARM_MMU_IDX_M; } else { return mmu_idx | ARM_MMU_IDX_A; } } static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) { /* AArch64 is always a-profile. */ return mmu_idx | ARM_MMU_IDX_A; } int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); /* * Return the MMU index for a v7M CPU with all relevant information * manually specified. */ ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, bool secstate, bool priv, bool negpri); /* * Return the MMU index for a v7M CPU in the specified security and * privilege state. */ ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, bool secstate, bool priv); /* Return the MMU index for a v7M CPU in the specified security state */ ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); /* Return true if the stage 1 translation regime is using LPAE format page * tables */ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); /* Raise a data fault alignment exception for the specified virtual address */ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) QEMU_NORETURN; /* arm_cpu_do_transaction_failed: handle a memory system error response * (eg "no device/memory present at address") by raising an external abort * exception */ void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr); /* Call any registered EL change hooks */ static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) { ARMELChangeHook *hook, *next; QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { hook->hook(cpu, hook->opaque); } } static inline void arm_call_el_change_hook(ARMCPU *cpu) { ARMELChangeHook *hook, *next; QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { hook->hook(cpu, hook->opaque); } } /* Return true if this address translation regime has two ranges. */ static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_Stage1_SE0: case ARMMMUIdx_Stage1_SE1: case ARMMMUIdx_Stage1_SE1_PAN: case ARMMMUIdx_E10_0: case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_E20_0: case ARMMMUIdx_E20_2: case ARMMMUIdx_E20_2_PAN: case ARMMMUIdx_SE10_0: case ARMMMUIdx_SE10_1: case ARMMMUIdx_SE10_1_PAN: case ARMMMUIdx_SE20_0: case ARMMMUIdx_SE20_2: case ARMMMUIdx_SE20_2_PAN: return true; default: return false; } } /* Return true if this address translation regime is secure */ static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_E10_0: case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_E20_0: case ARMMMUIdx_E20_2: case ARMMMUIdx_E20_2_PAN: case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_E2: case ARMMMUIdx_Stage2: case ARMMMUIdx_MPrivNegPri: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MPriv: case ARMMMUIdx_MUser: return false; case ARMMMUIdx_SE3: case ARMMMUIdx_SE10_0: case ARMMMUIdx_SE10_1: case ARMMMUIdx_SE10_1_PAN: case ARMMMUIdx_SE20_0: case ARMMMUIdx_SE20_2: case ARMMMUIdx_SE20_2_PAN: case ARMMMUIdx_Stage1_SE0: case ARMMMUIdx_Stage1_SE1: case ARMMMUIdx_Stage1_SE1_PAN: case ARMMMUIdx_SE2: case ARMMMUIdx_Stage2_S: case ARMMMUIdx_MSPrivNegPri: case ARMMMUIdx_MSUserNegPri: case ARMMMUIdx_MSPriv: case ARMMMUIdx_MSUser: return true; default: g_assert_not_reached(); } } static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_Stage1_SE1_PAN: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_E20_2_PAN: case ARMMMUIdx_SE10_1_PAN: case ARMMMUIdx_SE20_2_PAN: return true; default: return false; } } /* Return the exception level which controls this address translation regime */ static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_SE20_0: case ARMMMUIdx_SE20_2: case ARMMMUIdx_SE20_2_PAN: case ARMMMUIdx_E20_0: case ARMMMUIdx_E20_2: case ARMMMUIdx_E20_2_PAN: case ARMMMUIdx_Stage2: case ARMMMUIdx_Stage2_S: case ARMMMUIdx_SE2: case ARMMMUIdx_E2: return 2; case ARMMMUIdx_SE3: return 3; case ARMMMUIdx_SE10_0: case ARMMMUIdx_Stage1_SE0: return arm_el_is_aa64(env, 3) ? 1 : 3; case ARMMMUIdx_SE10_1: case ARMMMUIdx_SE10_1_PAN: case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_Stage1_SE1: case ARMMMUIdx_Stage1_SE1_PAN: case ARMMMUIdx_E10_0: case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_MPrivNegPri: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MPriv: case ARMMMUIdx_MUser: case ARMMMUIdx_MSPrivNegPri: case ARMMMUIdx_MSUserNegPri: case ARMMMUIdx_MSPriv: case ARMMMUIdx_MSUser: return 1; default: g_assert_not_reached(); } } /* Return the TCR controlling this translation regime */ static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) { if (mmu_idx == ARMMMUIdx_Stage2) { return &env->cp15.vtcr_el2; } if (mmu_idx == ARMMMUIdx_Stage2_S) { /* * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but * those are not currently used by QEMU, so just return VSTCR_EL2. */ return &env->cp15.vstcr_el2; } return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; } /* Return the FSR value for a debug exception (watchpoint, hardware * breakpoint or BKPT insn) targeting the specified exception level. */ static inline uint32_t arm_debug_exception_fsr(CPUARMState *env) { ARMMMUFaultInfo fi = { .type = ARMFault_Debug }; int target_el = arm_debug_target_el(env); bool using_lpae = false; if (target_el == 2 || arm_el_is_aa64(env, target_el)) { using_lpae = true; } else { if (arm_feature(env, ARM_FEATURE_LPAE) && (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) { using_lpae = true; } } if (using_lpae) { return arm_fi_to_lfsc(&fi); } else { return arm_fi_to_sfsc(&fi); } } /** * arm_num_brps: Return number of implemented breakpoints. * Note that the ID register BRPS field is "number of bps - 1", * and we return the actual number of breakpoints. */ static inline int arm_num_brps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; } } /** * arm_num_wrps: Return number of implemented watchpoints. * Note that the ID register WRPS field is "number of wps - 1", * and we return the actual number of watchpoints. */ static inline int arm_num_wrps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; } } /** * arm_num_ctx_cmps: Return number of implemented context comparators. * Note that the ID register CTX_CMPS field is "number of cmps - 1", * and we return the actual number of comparators. */ static inline int arm_num_ctx_cmps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; } } /** * v7m_using_psp: Return true if using process stack pointer * Return true if the CPU is currently using the process stack * pointer, or false if it is using the main stack pointer. */ static inline bool v7m_using_psp(CPUARMState *env) { /* Handler mode always uses the main stack; for thread mode * the CONTROL.SPSEL bit determines the answer. * Note that in v7M it is not possible to be in Handler mode with * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. */ return !arm_v7m_is_handler_mode(env) && env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; } /** * v7m_sp_limit: Return SP limit for current CPU state * Return the SP limit value for the current CPU security state * and stack pointer. */ static inline uint32_t v7m_sp_limit(CPUARMState *env) { if (v7m_using_psp(env)) { return env->v7m.psplim[env->v7m.secure]; } else { return env->v7m.msplim[env->v7m.secure]; } } /** * v7m_cpacr_pass: * Return true if the v7M CPACR permits access to the FPU for the specified * security state and privilege level. */ static inline bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv) { switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { case 0: case 2: /* UNPREDICTABLE: we treat like 0 */ return false; case 1: return is_priv; case 3: return true; default: g_assert_not_reached(); } } /** * aarch32_mode_name(): Return name of the AArch32 CPU mode * @psr: Program Status Register indicating CPU mode * * Returns, for debug logging purposes, a printable representation * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by * the low bits of the specified PSR. */ static inline const char *aarch32_mode_name(uint32_t psr) { static const char cpu_mode_names[16][4] = { "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", "???", "???", "hyp", "und", "???", "???", "???", "sys" }; return cpu_mode_names[psr & 0xf]; } /** * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request * * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. * Must be called with the iothread lock held. */ void arm_cpu_update_virq(ARMCPU *cpu); /** * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request * * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. * Must be called with the iothread lock held. */ void arm_cpu_update_vfiq(ARMCPU *cpu); /** * arm_mmu_idx_el: * @env: The cpu environment * @el: The EL to use. * * Return the full ARMMMUIdx for the translation regime for EL. */ ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); /** * arm_mmu_idx: * @env: The cpu environment * * Return the full ARMMMUIdx for the current translation regime. */ ARMMMUIdx arm_mmu_idx(CPUARMState *env); /** * arm_stage1_mmu_idx: * @env: The cpu environment * * Return the ARMMMUIdx for the stage1 traversal for the current regime. */ #ifdef CONFIG_USER_ONLY static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) { return ARMMMUIdx_Stage1_E0; } #else ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); #endif /** * arm_mmu_idx_is_stage1_of_2: * @mmu_idx: The ARMMMUIdx to test * * Return true if @mmu_idx is a NOTLB mmu_idx that is the * first stage of a two stage regime. */ static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_Stage1_SE0: case ARMMMUIdx_Stage1_SE1: case ARMMMUIdx_Stage1_SE1_PAN: return true; default: return false; } } static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, const ARMISARegisters *id) { uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; if ((features >> ARM_FEATURE_V4T) & 1) { valid |= CPSR_T; } if ((features >> ARM_FEATURE_V5) & 1) { valid |= CPSR_Q; /* V5TE in reality*/ } if ((features >> ARM_FEATURE_V6) & 1) { valid |= CPSR_E | CPSR_GE; } if ((features >> ARM_FEATURE_THUMB2) & 1) { valid |= CPSR_IT; } if (isar_feature_aa32_jazelle(id)) { valid |= CPSR_J; } if (isar_feature_aa32_pan(id)) { valid |= CPSR_PAN; } if (isar_feature_aa32_dit(id)) { valid |= CPSR_DIT; } if (isar_feature_aa32_ssbs(id)) { valid |= CPSR_SSBS; } return valid; } static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) { uint32_t valid; valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; if (isar_feature_aa64_bti(id)) { valid |= PSTATE_BTYPE; } if (isar_feature_aa64_pan(id)) { valid |= PSTATE_PAN; } if (isar_feature_aa64_uao(id)) { valid |= PSTATE_UAO; } if (isar_feature_aa64_dit(id)) { valid |= PSTATE_DIT; } if (isar_feature_aa64_ssbs(id)) { valid |= PSTATE_SSBS; } if (isar_feature_aa64_mte(id)) { valid |= PSTATE_TCO; } return valid; } /* * Parameters of a given virtual address, as extracted from the * translation control register (TCR) for a given regime. */ typedef struct ARMVAParameters { unsigned tsz : 8; unsigned ps : 3; unsigned sh : 2; unsigned select : 1; bool tbi : 1; bool epd : 1; bool hpd : 1; bool using16k : 1; bool using64k : 1; bool tsz_oob : 1; /* tsz has been clamped to legal range */ bool ds : 1; } ARMVAParameters; ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, ARMMMUIdx mmu_idx, bool data); static inline int exception_target_el(CPUARMState *env) { int target_el = MAX(1, arm_current_el(env)); /* * No such thing as secure EL1 if EL3 is aarch32, * so update the target EL to EL3 in this case. */ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { target_el = 3; } return target_el; } /* Determine if allocation tags are available. */ static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, uint64_t sctlr) { if (el < 3 && arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_ATA)) { return false; } if (el < 2 && arm_is_el2_enabled(env)) { uint64_t hcr = arm_hcr_el2_eff(env); if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { return false; } } sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); return sctlr != 0; } #ifndef CONFIG_USER_ONLY /* Security attributes for an address, as returned by v8m_security_lookup. */ typedef struct V8M_SAttributes { bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ bool ns; bool nsc; uint8_t sregion; bool srvalid; uint8_t iregion; bool irvalid; } V8M_SAttributes; void v8m_security_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, V8M_SAttributes *sattrs); bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, bool *is_subpage, ARMMMUFaultInfo *fi, uint32_t *mregion); /* Cacheability and shareability attributes for a memory access */ typedef struct ARMCacheAttrs { unsigned int attrs:8; /* as in the MAIR register encoding */ unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ } ARMCacheAttrs; bool get_phys_addr(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) __attribute__((nonnull)); void arm_log_exception(CPUState *cs); #endif /* !CONFIG_USER_ONLY */ /* * The log2 of the words in the tag block, for GMID_EL1.BS. * The is the maximum, 256 bytes, which manipulates 64-bits of tags. */ #define GMID_EL1_BS 6 /* We associate one allocation tag per 16 bytes, the minimum. */ #define LOG2_TAG_GRANULE 4 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) /* * SVE predicates are 1/8 the size of SVE vectors, and cannot use * the same simd_desc() encoding due to restrictions on size. * Use these instead. */ FIELD(PREDDESC, OPRSZ, 0, 6) FIELD(PREDDESC, ESZ, 6, 2) FIELD(PREDDESC, DATA, 8, 24) /* * The SVE simd_data field, for memory ops, contains either * rd (5 bits) or a shift count (2 bits). */ #define SVE_MTEDESC_SHIFT 5 /* Bits within a descriptor passed to the helper_mte_check* functions. */ FIELD(MTEDESC, MIDX, 0, 4) FIELD(MTEDESC, TBI, 4, 2) FIELD(MTEDESC, TCMA, 6, 2) FIELD(MTEDESC, WRITE, 8, 1) FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */ bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); static inline int allocation_tag_from_addr(uint64_t ptr) { return extract64(ptr, 56, 4); } static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) { return deposit64(ptr, 56, 4, rtag); } /* Return true if tbi bits mean that the access is checked. */ static inline bool tbi_check(uint32_t desc, int bit55) { return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; } /* Return true if tcma bits mean that the access is unchecked. */ static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) { /* * We had extracted bit55 and ptr_tag for other reasons, so fold * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. */ bool match = ((ptr_tag + bit55) & 0xf) == 0; bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; return tcma && match; } /* * For TBI, ideally, we would do nothing. Proper behaviour on fault is * for the tag to be present in the FAR_ELx register. But for user-only * mode, we do not have a TLB with which to implement this, so we must * remove the top byte. */ static inline uint64_t useronly_clean_ptr(uint64_t ptr) { #ifdef CONFIG_USER_ONLY /* TBI0 is known to be enabled, while TBI1 is disabled. */ ptr &= sextract64(ptr, 0, 56); #endif return ptr; } static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) { #ifdef CONFIG_USER_ONLY int64_t clean_ptr = sextract64(ptr, 0, 56); if (tbi_check(desc, clean_ptr < 0)) { ptr = clean_ptr; } #endif return ptr; } /* Values for M-profile PSR.ECI for MVE insns */ enum MVEECIState { ECI_NONE = 0, /* No completed beats */ ECI_A0 = 1, /* Completed: A0 */ ECI_A0A1 = 2, /* Completed: A0, A1 */ /* 3 is reserved */ ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ /* All other values reserved */ }; /* Definitions for the PMU registers */ #define PMCRN_MASK 0xf800 #define PMCRN_SHIFT 11 #define PMCRLC 0x40 #define PMCRDP 0x20 #define PMCRX 0x10 #define PMCRD 0x8 #define PMCRC 0x4 #define PMCRP 0x2 #define PMCRE 0x1 /* * Mask of PMCR bits writeable by guest (not including WO bits like C, P, * which can be written as 1 to trigger behaviour but which stay RAZ). */ #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) #define PMXEVTYPER_P 0x80000000 #define PMXEVTYPER_U 0x40000000 #define PMXEVTYPER_NSK 0x20000000 #define PMXEVTYPER_NSU 0x10000000 #define PMXEVTYPER_NSH 0x08000000 #define PMXEVTYPER_M 0x04000000 #define PMXEVTYPER_MT 0x02000000 #define PMXEVTYPER_EVTCOUNT 0x0000ffff #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ PMXEVTYPER_M | PMXEVTYPER_MT | \ PMXEVTYPER_EVTCOUNT) #define PMCCFILTR 0xf8000000 #define PMCCFILTR_M PMXEVTYPER_M #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) static inline uint32_t pmu_num_counters(CPUARMState *env) { return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; } /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ static inline uint64_t pmu_counter_mask(CPUARMState *env) { return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); } #ifdef TARGET_AARCH64 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg); int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg); int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg); int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg); #endif #endif