/* * QEMU ARM CPU -- internal functions and types * * Copyright (c) 2014 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * * * This header defines functions, types, etc which need to be shared * between different source files within target/arm/ but which are * private to it and not required by the rest of QEMU. */ #ifndef TARGET_ARM_INTERNALS_H #define TARGET_ARM_INTERNALS_H #include "hw/registerfields.h" #include "tcg/tcg-gvec-desc.h" #include "syndrome.h" #include "cpu-features.h" /* register banks for CPU modes */ #define BANK_USRSYS 0 #define BANK_SVC 1 #define BANK_ABT 2 #define BANK_UND 3 #define BANK_IRQ 4 #define BANK_FIQ 5 #define BANK_HYP 6 #define BANK_MON 7 static inline bool excp_is_internal(int excp) { /* Return true if this exception number represents a QEMU-internal * exception that will not be passed to the guest. */ return excp == EXCP_INTERRUPT || excp == EXCP_HLT || excp == EXCP_DEBUG || excp == EXCP_HALTED || excp == EXCP_EXCEPTION_EXIT || excp == EXCP_KERNEL_TRAP || excp == EXCP_SEMIHOST; } /* Scale factor for generic timers, ie number of ns per tick. * This gives a 62.5MHz timer. */ #define GTIMER_SCALE 16 /* Bit definitions for the v7M CONTROL register */ FIELD(V7M_CONTROL, NPRIV, 0, 1) FIELD(V7M_CONTROL, SPSEL, 1, 1) FIELD(V7M_CONTROL, FPCA, 2, 1) FIELD(V7M_CONTROL, SFPA, 3, 1) /* Bit definitions for v7M exception return payload */ FIELD(V7M_EXCRET, ES, 0, 1) FIELD(V7M_EXCRET, RES0, 1, 1) FIELD(V7M_EXCRET, SPSEL, 2, 1) FIELD(V7M_EXCRET, MODE, 3, 1) FIELD(V7M_EXCRET, FTYPE, 4, 1) FIELD(V7M_EXCRET, DCRS, 5, 1) FIELD(V7M_EXCRET, S, 6, 1) FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ /* Minimum value which is a magic number for exception return */ #define EXC_RETURN_MIN_MAGIC 0xff000000 /* Minimum number which is a magic number for function or exception return * when using v8M security extension */ #define FNC_RETURN_MIN_MAGIC 0xfefffffe /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ FIELD(DBGWCR, E, 0, 1) FIELD(DBGWCR, PAC, 1, 2) FIELD(DBGWCR, LSC, 3, 2) FIELD(DBGWCR, BAS, 5, 8) FIELD(DBGWCR, HMC, 13, 1) FIELD(DBGWCR, SSC, 14, 2) FIELD(DBGWCR, LBN, 16, 4) FIELD(DBGWCR, WT, 20, 1) FIELD(DBGWCR, MASK, 24, 5) FIELD(DBGWCR, SSCE, 29, 1) /* We use a few fake FSR values for internal purposes in M profile. * M profile cores don't have A/R format FSRs, but currently our * get_phys_addr() code assumes A/R profile and reports failures via * an A/R format FSR value. We then translate that into the proper * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). * Mostly the FSR values we use for this are those defined for v7PMSA, * since we share some of that codepath. A few kinds of fault are * only for M profile and have no A/R equivalent, though, so we have * to pick a value from the reserved range (which we never otherwise * generate) to use for these. * These values will never be visible to the guest. */ #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ /** * raise_exception: Raise the specified exception. * Raise a guest exception with the specified value, syndrome register * and target exception level. This should be called from helper functions, * and never returns because we will longjump back up to the CPU main loop. */ G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el); /* * Similarly, but also use unwinding to restore cpu state. */ G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el, uintptr_t ra); /* * For AArch64, map a given EL to an index in the banked_spsr array. * Note that this mapping and the AArch32 mapping defined in bank_number() * must agree such that the AArch64<->AArch32 SPSRs have the architecturally * mandated mapping between each other. */ static inline unsigned int aarch64_banked_spsr_index(unsigned int el) { static const unsigned int map[4] = { [1] = BANK_SVC, /* EL1. */ [2] = BANK_HYP, /* EL2. */ [3] = BANK_MON, /* EL3. */ }; assert(el >= 1 && el <= 3); return map[el]; } /* Map CPU modes onto saved register banks. */ static inline int bank_number(int mode) { switch (mode) { case ARM_CPU_MODE_USR: case ARM_CPU_MODE_SYS: return BANK_USRSYS; case ARM_CPU_MODE_SVC: return BANK_SVC; case ARM_CPU_MODE_ABT: return BANK_ABT; case ARM_CPU_MODE_UND: return BANK_UND; case ARM_CPU_MODE_IRQ: return BANK_IRQ; case ARM_CPU_MODE_FIQ: return BANK_FIQ; case ARM_CPU_MODE_HYP: return BANK_HYP; case ARM_CPU_MODE_MON: return BANK_MON; } g_assert_not_reached(); } /** * r14_bank_number: Map CPU mode onto register bank for r14 * * Given an AArch32 CPU mode, return the index into the saved register * banks to use for the R14 (LR) in that mode. This is the same as * bank_number(), except for the special case of Hyp mode, where * R14 is shared with USR and SYS, unlike its R13 and SPSR. * This should be used as the index into env->banked_r14[], and * bank_number() used for the index into env->banked_r13[] and * env->banked_spsr[]. */ static inline int r14_bank_number(int mode) { return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); } void arm_cpu_register(const ARMCPUInfo *info); void aarch64_cpu_register(const ARMCPUInfo *info); void register_cp_regs_for_features(ARMCPU *cpu); void init_cpreg_list(ARMCPU *cpu); void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); void arm_translate_init(void); void arm_restore_state_to_opc(CPUState *cs, const TranslationBlock *tb, const uint64_t *data); #ifdef CONFIG_TCG void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); #endif /* CONFIG_TCG */ typedef enum ARMFPRounding { FPROUNDING_TIEEVEN, FPROUNDING_POSINF, FPROUNDING_NEGINF, FPROUNDING_ZERO, FPROUNDING_TIEAWAY, FPROUNDING_ODD } ARMFPRounding; extern const FloatRoundMode arm_rmode_to_sf_map[6]; static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode) { assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map)); return arm_rmode_to_sf_map[rmode]; } static inline void aarch64_save_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->sp_el[el] = env->xregs[31]; } else { env->sp_el[0] = env->xregs[31]; } } static inline void aarch64_restore_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->xregs[31] = env->sp_el[el]; } else { env->xregs[31] = env->sp_el[0]; } } static inline void update_spsel(CPUARMState *env, uint32_t imm) { unsigned int cur_el = arm_current_el(env); /* Update PSTATE SPSel bit; this requires us to update the * working stack pointer in xregs[31]. */ if (!((imm ^ env->pstate) & PSTATE_SP)) { return; } aarch64_save_sp(env, cur_el); env->pstate = deposit32(env->pstate, 0, 1, imm); /* We rely on illegal updates to SPsel from EL0 to get trapped * at translation time. */ assert(cur_el >= 1 && cur_el <= 3); aarch64_restore_sp(env, cur_el); } /* * arm_pamax * @cpu: ARMCPU * * Returns the implementation defined bit-width of physical addresses. * The ARMv8 reference manuals refer to this as PAMax(). */ unsigned int arm_pamax(ARMCPU *cpu); /* Return true if extended addresses are enabled. * This is always the case if our translation regime is 64 bit, * but depends on TTBCR.EAE for 32 bit. */ static inline bool extended_addresses_enabled(CPUARMState *env) { uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; if (arm_feature(env, ARM_FEATURE_PMSA) && arm_feature(env, ARM_FEATURE_V8)) { return true; } return arm_el_is_aa64(env, 1) || (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); } /* Update a QEMU watchpoint based on the information the guest has set in the * DBGWCR_EL1 and DBGWVR_EL1 registers. */ void hw_watchpoint_update(ARMCPU *cpu, int n); /* Update the QEMU watchpoints for every guest watchpoint. This does a * complete delete-and-reinstate of the QEMU watchpoint list and so is * suitable for use after migration or on reset. */ void hw_watchpoint_update_all(ARMCPU *cpu); /* Update a QEMU breakpoint based on the information the guest has set in the * DBGBCR_EL1 and DBGBVR_EL1 registers. */ void hw_breakpoint_update(ARMCPU *cpu, int n); /* Update the QEMU breakpoints for every guest breakpoint. This does a * complete delete-and-reinstate of the QEMU breakpoint list and so is * suitable for use after migration or on reset. */ void hw_breakpoint_update_all(ARMCPU *cpu); /* Callback function for checking if a breakpoint should trigger. */ bool arm_debug_check_breakpoint(CPUState *cs); /* Callback function for checking if a watchpoint should trigger. */ bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); /* Adjust addresses (in BE32 mode) before testing against watchpoint * addresses. */ vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); /* Callback function for when a watchpoint or breakpoint triggers. */ void arm_debug_excp_handler(CPUState *cs); #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) { return false; } static inline void arm_handle_psci_call(ARMCPU *cpu) { g_assert_not_reached(); } #else /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ bool arm_is_psci_call(ARMCPU *cpu, int excp_type); /* Actually handle a PSCI call */ void arm_handle_psci_call(ARMCPU *cpu); #endif /** * arm_clear_exclusive: clear the exclusive monitor * @env: CPU env * Clear the CPU's exclusive monitor, like the guest CLREX instruction. */ static inline void arm_clear_exclusive(CPUARMState *env) { env->exclusive_addr = -1; } /** * ARMFaultType: type of an ARM MMU fault * This corresponds to the v8A pseudocode's Fault enumeration, * with extensions for QEMU internal conditions. */ typedef enum ARMFaultType { ARMFault_None, ARMFault_AccessFlag, ARMFault_Alignment, ARMFault_Background, ARMFault_Domain, ARMFault_Permission, ARMFault_Translation, ARMFault_AddressSize, ARMFault_SyncExternal, ARMFault_SyncExternalOnWalk, ARMFault_SyncParity, ARMFault_SyncParityOnWalk, ARMFault_AsyncParity, ARMFault_AsyncExternal, ARMFault_Debug, ARMFault_TLBConflict, ARMFault_UnsuppAtomicUpdate, ARMFault_Lockdown, ARMFault_Exclusive, ARMFault_ICacheMaint, ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ ARMFault_GPCFOnWalk, ARMFault_GPCFOnOutput, } ARMFaultType; typedef enum ARMGPCF { GPCF_None, GPCF_AddressSize, GPCF_Walk, GPCF_EABT, GPCF_Fail, } ARMGPCF; /** * ARMMMUFaultInfo: Information describing an ARM MMU Fault * @type: Type of fault * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}. * @level: Table walk level (for translation, access flag and permission faults) * @domain: Domain of the fault address (for non-LPAE CPUs only) * @s2addr: Address that caused a fault at stage 2 * @paddr: physical address that caused a fault for gpc * @paddr_space: physical address space that caused a fault for gpc * @stage2: True if we faulted at stage 2 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk * @s1ns: True if we faulted on a non-secure IPA while in secure state * @ea: True if we should set the EA (external abort type) bit in syndrome */ typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; struct ARMMMUFaultInfo { ARMFaultType type; ARMGPCF gpcf; target_ulong s2addr; target_ulong paddr; ARMSecuritySpace paddr_space; int level; int domain; bool stage2; bool s1ptw; bool s1ns; bool ea; }; /** * arm_fi_to_sfsc: Convert fault info struct to short-format FSC * Compare pseudocode EncodeSDFSC(), though unlike that function * we set up a whole FSR-format code including domain field and * putting the high bit of the FSC into bit 10. */ static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) { uint32_t fsc; switch (fi->type) { case ARMFault_None: return 0; case ARMFault_AccessFlag: fsc = fi->level == 1 ? 0x3 : 0x6; break; case ARMFault_Alignment: fsc = 0x1; break; case ARMFault_Permission: fsc = fi->level == 1 ? 0xd : 0xf; break; case ARMFault_Domain: fsc = fi->level == 1 ? 0x9 : 0xb; break; case ARMFault_Translation: fsc = fi->level == 1 ? 0x5 : 0x7; break; case ARMFault_SyncExternal: fsc = 0x8 | (fi->ea << 12); break; case ARMFault_SyncExternalOnWalk: fsc = fi->level == 1 ? 0xc : 0xe; fsc |= (fi->ea << 12); break; case ARMFault_SyncParity: fsc = 0x409; break; case ARMFault_SyncParityOnWalk: fsc = fi->level == 1 ? 0x40c : 0x40e; break; case ARMFault_AsyncParity: fsc = 0x408; break; case ARMFault_AsyncExternal: fsc = 0x406 | (fi->ea << 12); break; case ARMFault_Debug: fsc = 0x2; break; case ARMFault_TLBConflict: fsc = 0x400; break; case ARMFault_Lockdown: fsc = 0x404; break; case ARMFault_Exclusive: fsc = 0x405; break; case ARMFault_ICacheMaint: fsc = 0x4; break; case ARMFault_Background: fsc = 0x0; break; case ARMFault_QEMU_NSCExec: fsc = M_FAKE_FSR_NSC_EXEC; break; case ARMFault_QEMU_SFault: fsc = M_FAKE_FSR_SFAULT; break; default: /* Other faults can't occur in a context that requires a * short-format status code. */ g_assert_not_reached(); } fsc |= (fi->domain << 4); return fsc; } /** * arm_fi_to_lfsc: Convert fault info struct to long-format FSC * Compare pseudocode EncodeLDFSC(), though unlike that function * we fill in also the LPAE bit 9 of a DFSR format. */ static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) { uint32_t fsc; switch (fi->type) { case ARMFault_None: return 0; case ARMFault_AddressSize: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b101001; } else { fsc = fi->level; } break; case ARMFault_AccessFlag: assert(fi->level >= 0 && fi->level <= 3); fsc = 0b001000 | fi->level; break; case ARMFault_Permission: assert(fi->level >= 0 && fi->level <= 3); fsc = 0b001100 | fi->level; break; case ARMFault_Translation: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b101011; } else { fsc = 0b000100 | fi->level; } break; case ARMFault_SyncExternal: fsc = 0x10 | (fi->ea << 12); break; case ARMFault_SyncExternalOnWalk: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b010011; } else { fsc = 0b010100 | fi->level; } fsc |= fi->ea << 12; break; case ARMFault_SyncParity: fsc = 0x18; break; case ARMFault_SyncParityOnWalk: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b011011; } else { fsc = 0b011100 | fi->level; } break; case ARMFault_AsyncParity: fsc = 0x19; break; case ARMFault_AsyncExternal: fsc = 0x11 | (fi->ea << 12); break; case ARMFault_Alignment: fsc = 0x21; break; case ARMFault_Debug: fsc = 0x22; break; case ARMFault_TLBConflict: fsc = 0x30; break; case ARMFault_UnsuppAtomicUpdate: fsc = 0x31; break; case ARMFault_Lockdown: fsc = 0x34; break; case ARMFault_Exclusive: fsc = 0x35; break; case ARMFault_GPCFOnWalk: assert(fi->level >= -1 && fi->level <= 3); if (fi->level < 0) { fsc = 0b100011; } else { fsc = 0b100100 | fi->level; } break; case ARMFault_GPCFOnOutput: fsc = 0b101000; break; default: /* Other faults can't occur in a context that requires a * long-format status code. */ g_assert_not_reached(); } fsc |= 1 << 9; return fsc; } static inline bool arm_extabort_type(MemTxResult result) { /* The EA bit in syndromes and fault status registers is an * IMPDEF classification of external aborts. ARM implementations * usually use this to indicate AXI bus Decode error (0) or * Slave error (1); in QEMU we follow that. */ return result != MEMTX_DECODE_ERROR; } #ifdef CONFIG_USER_ONLY void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, MMUAccessType access_type, bool maperr, uintptr_t ra); void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, MMUAccessType access_type, uintptr_t ra); #else bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); #endif static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) { return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; } static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) { if (arm_feature(env, ARM_FEATURE_M)) { return mmu_idx | ARM_MMU_IDX_M; } else { return mmu_idx | ARM_MMU_IDX_A; } } static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) { /* AArch64 is always a-profile. */ return mmu_idx | ARM_MMU_IDX_A; } int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); /* Return the MMU index for a v7M CPU in the specified security state */ ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); /* * Return true if the stage 1 translation regime is using LPAE * format page tables */ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); /* Raise a data fault alignment exception for the specified virtual address */ G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); #ifndef CONFIG_USER_ONLY /* arm_cpu_do_transaction_failed: handle a memory system error response * (eg "no device/memory present at address") by raising an external abort * exception */ void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr); #endif /* Call any registered EL change hooks */ static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) { ARMELChangeHook *hook, *next; QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { hook->hook(cpu, hook->opaque); } } static inline void arm_call_el_change_hook(ARMCPU *cpu) { ARMELChangeHook *hook, *next; QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { hook->hook(cpu, hook->opaque); } } /* Return true if this address translation regime has two ranges. */ static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_E10_0: case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_E20_0: case ARMMMUIdx_E20_2: case ARMMMUIdx_E20_2_PAN: return true; default: return false; } } static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_E20_2_PAN: return true; default: return false; } } static inline bool regime_is_stage2(ARMMMUIdx mmu_idx) { return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; } /* Return the exception level which controls this address translation regime */ static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_E20_0: case ARMMMUIdx_E20_2: case ARMMMUIdx_E20_2_PAN: case ARMMMUIdx_Stage2: case ARMMMUIdx_Stage2_S: case ARMMMUIdx_E2: return 2; case ARMMMUIdx_E3: return 3; case ARMMMUIdx_E10_0: case ARMMMUIdx_Stage1_E0: return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_MPrivNegPri: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MPriv: case ARMMMUIdx_MUser: case ARMMMUIdx_MSPrivNegPri: case ARMMMUIdx_MSUserNegPri: case ARMMMUIdx_MSPriv: case ARMMMUIdx_MSUser: return 1; default: g_assert_not_reached(); } } static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_E20_0: case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_MUser: case ARMMMUIdx_MSUser: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MSUserNegPri: return true; default: return false; case ARMMMUIdx_E10_0: case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: g_assert_not_reached(); } } /* Return the SCTLR value which controls this address translation regime */ static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) { return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; } /* * These are the fields in VTCR_EL2 which affect both the Secure stage 2 * and the Non-Secure stage 2 translation regimes (and hence which are * not present in VSTCR_EL2). */ #define VTCR_SHARED_FIELD_MASK \ (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ R_VTCR_DS_MASK) /* Return the value of the TCR controlling this translation regime */ static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) { if (mmu_idx == ARMMMUIdx_Stage2) { return env->cp15.vtcr_el2; } if (mmu_idx == ARMMMUIdx_Stage2_S) { /* * Secure stage 2 shares fields from VTCR_EL2. We merge those * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format * value so the callers don't need to special case this. * * If a future architecture change defines bits in VSTCR_EL2 that * overlap with these VTCR_EL2 fields we may need to revisit this. */ uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; return v; } return env->cp15.tcr_el[regime_el(env, mmu_idx)]; } /* Return true if the translation regime is using LPAE format page tables */ static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) { int el = regime_el(env, mmu_idx); if (el == 2 || arm_el_is_aa64(env, el)) { return true; } if (arm_feature(env, ARM_FEATURE_PMSA) && arm_feature(env, ARM_FEATURE_V8)) { return true; } if (arm_feature(env, ARM_FEATURE_LPAE) && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) { return true; } return false; } /** * arm_num_brps: Return number of implemented breakpoints. * Note that the ID register BRPS field is "number of bps - 1", * and we return the actual number of breakpoints. */ static inline int arm_num_brps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; } } /** * arm_num_wrps: Return number of implemented watchpoints. * Note that the ID register WRPS field is "number of wps - 1", * and we return the actual number of watchpoints. */ static inline int arm_num_wrps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; } } /** * arm_num_ctx_cmps: Return number of implemented context comparators. * Note that the ID register CTX_CMPS field is "number of cmps - 1", * and we return the actual number of comparators. */ static inline int arm_num_ctx_cmps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; } } /** * v7m_using_psp: Return true if using process stack pointer * Return true if the CPU is currently using the process stack * pointer, or false if it is using the main stack pointer. */ static inline bool v7m_using_psp(CPUARMState *env) { /* Handler mode always uses the main stack; for thread mode * the CONTROL.SPSEL bit determines the answer. * Note that in v7M it is not possible to be in Handler mode with * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. */ return !arm_v7m_is_handler_mode(env) && env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; } /** * v7m_sp_limit: Return SP limit for current CPU state * Return the SP limit value for the current CPU security state * and stack pointer. */ static inline uint32_t v7m_sp_limit(CPUARMState *env) { if (v7m_using_psp(env)) { return env->v7m.psplim[env->v7m.secure]; } else { return env->v7m.msplim[env->v7m.secure]; } } /** * v7m_cpacr_pass: * Return true if the v7M CPACR permits access to the FPU for the specified * security state and privilege level. */ static inline bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv) { switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { case 0: case 2: /* UNPREDICTABLE: we treat like 0 */ return false; case 1: return is_priv; case 3: return true; default: g_assert_not_reached(); } } /** * aarch32_mode_name(): Return name of the AArch32 CPU mode * @psr: Program Status Register indicating CPU mode * * Returns, for debug logging purposes, a printable representation * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by * the low bits of the specified PSR. */ static inline const char *aarch32_mode_name(uint32_t psr) { static const char cpu_mode_names[16][4] = { "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", "???", "???", "hyp", "und", "???", "???", "???", "sys" }; return cpu_mode_names[psr & 0xf]; } /** * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request * * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. * Must be called with the iothread lock held. */ void arm_cpu_update_virq(ARMCPU *cpu); /** * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request * * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. * Must be called with the iothread lock held. */ void arm_cpu_update_vfiq(ARMCPU *cpu); /** * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit * * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, * following a change to the HCR_EL2.VSE bit. */ void arm_cpu_update_vserr(ARMCPU *cpu); /** * arm_mmu_idx_el: * @env: The cpu environment * @el: The EL to use. * * Return the full ARMMMUIdx for the translation regime for EL. */ ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); /** * arm_mmu_idx: * @env: The cpu environment * * Return the full ARMMMUIdx for the current translation regime. */ ARMMMUIdx arm_mmu_idx(CPUARMState *env); /** * arm_stage1_mmu_idx: * @env: The cpu environment * * Return the ARMMMUIdx for the stage1 traversal for the current regime. */ #ifdef CONFIG_USER_ONLY static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) { return ARMMMUIdx_Stage1_E0; } static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) { return ARMMMUIdx_Stage1_E0; } #else ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); #endif /** * arm_mmu_idx_is_stage1_of_2: * @mmu_idx: The ARMMMUIdx to test * * Return true if @mmu_idx is a NOTLB mmu_idx that is the * first stage of a two stage regime. */ static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: return true; default: return false; } } static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, const ARMISARegisters *id) { uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; if ((features >> ARM_FEATURE_V4T) & 1) { valid |= CPSR_T; } if ((features >> ARM_FEATURE_V5) & 1) { valid |= CPSR_Q; /* V5TE in reality*/ } if ((features >> ARM_FEATURE_V6) & 1) { valid |= CPSR_E | CPSR_GE; } if ((features >> ARM_FEATURE_THUMB2) & 1) { valid |= CPSR_IT; } if (isar_feature_aa32_jazelle(id)) { valid |= CPSR_J; } if (isar_feature_aa32_pan(id)) { valid |= CPSR_PAN; } if (isar_feature_aa32_dit(id)) { valid |= CPSR_DIT; } if (isar_feature_aa32_ssbs(id)) { valid |= CPSR_SSBS; } return valid; } static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) { uint32_t valid; valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; if (isar_feature_aa64_bti(id)) { valid |= PSTATE_BTYPE; } if (isar_feature_aa64_pan(id)) { valid |= PSTATE_PAN; } if (isar_feature_aa64_uao(id)) { valid |= PSTATE_UAO; } if (isar_feature_aa64_dit(id)) { valid |= PSTATE_DIT; } if (isar_feature_aa64_ssbs(id)) { valid |= PSTATE_SSBS; } if (isar_feature_aa64_mte(id)) { valid |= PSTATE_TCO; } return valid; } /* Granule size (i.e. page size) */ typedef enum ARMGranuleSize { /* Same order as TG0 encoding */ Gran4K, Gran64K, Gran16K, GranInvalid, } ARMGranuleSize; /** * arm_granule_bits: Return address size of the granule in bits * * Return the address size of the granule in bits. This corresponds * to the pseudocode TGxGranuleBits(). */ static inline int arm_granule_bits(ARMGranuleSize gran) { switch (gran) { case Gran64K: return 16; case Gran16K: return 14; case Gran4K: return 12; default: g_assert_not_reached(); } } /* * Parameters of a given virtual address, as extracted from the * translation control register (TCR) for a given regime. */ typedef struct ARMVAParameters { unsigned tsz : 8; unsigned ps : 3; unsigned sh : 2; unsigned select : 1; bool tbi : 1; bool epd : 1; bool hpd : 1; bool tsz_oob : 1; /* tsz has been clamped to legal range */ bool ds : 1; bool ha : 1; bool hd : 1; ARMGranuleSize gran : 2; } ARMVAParameters; /** * aa64_va_parameters: Return parameters for an AArch64 virtual address * @env: CPU * @va: virtual address to look up * @mmu_idx: determines translation regime to use * @data: true if this is a data access * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob) */ ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, ARMMMUIdx mmu_idx, bool data, bool el1_is_aa32); int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx); /* Determine if allocation tags are available. */ static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, uint64_t sctlr) { if (el < 3 && arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_ATA)) { return false; } if (el < 2 && arm_is_el2_enabled(env)) { uint64_t hcr = arm_hcr_el2_eff(env); if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { return false; } } sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); return sctlr != 0; } #ifndef CONFIG_USER_ONLY /* Security attributes for an address, as returned by v8m_security_lookup. */ typedef struct V8M_SAttributes { bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ bool ns; bool nsc; uint8_t sregion; bool srvalid; uint8_t iregion; bool irvalid; } V8M_SAttributes; void v8m_security_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, bool secure, V8M_SAttributes *sattrs); /* Cacheability and shareability attributes for a memory access */ typedef struct ARMCacheAttrs { /* * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] * Otherwise, attrs is the same as the MAIR_EL1 8-bit format */ unsigned int attrs:8; unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ bool is_s2_format:1; } ARMCacheAttrs; /* Fields that are valid upon success. */ typedef struct GetPhysAddrResult { CPUTLBEntryFull f; ARMCacheAttrs cacheattrs; } GetPhysAddrResult; /** * get_phys_addr: get the physical address for a virtual address * @env: CPUARMState * @address: virtual address to get physical address for * @access_type: 0 for read, 1 for write, 2 for execute * @mmu_idx: MMU index indicating required translation regime * @result: set on translation success. * @fi: set to fault info if the translation fails * * Find the physical address corresponding to the given virtual address, * by doing a translation table walk on MMU based systems or using the * MPU state on MPU based systems. * * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, * prot and page_size may not be filled in, and the populated fsr value provides * information on why the translation aborted, in the format of a * DFSR/IFSR fault register, with the following caveats: * * we honour the short vs long DFSR format differences. * * the WnR bit is never set (the caller must do this). * * for PSMAv5 based systems we don't bother to return a full FSR format * value. */ bool get_phys_addr(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, GetPhysAddrResult *result, ARMMMUFaultInfo *fi) __attribute__((nonnull)); /** * get_phys_addr_with_space_nogpc: get the physical address for a virtual * address * @env: CPUARMState * @address: virtual address to get physical address for * @access_type: 0 for read, 1 for write, 2 for execute * @mmu_idx: MMU index indicating required translation regime * @space: security space for the access * @result: set on translation success. * @fi: set to fault info if the translation fails * * Similar to get_phys_addr, but use the given security space and don't perform * a Granule Protection Check on the resulting address. */ bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, ARMSecuritySpace space, GetPhysAddrResult *result, ARMMMUFaultInfo *fi) __attribute__((nonnull)); bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, bool is_secure, GetPhysAddrResult *result, ARMMMUFaultInfo *fi, uint32_t *mregion); void arm_log_exception(CPUState *cs); #endif /* !CONFIG_USER_ONLY */ /* * SVE predicates are 1/8 the size of SVE vectors, and cannot use * the same simd_desc() encoding due to restrictions on size. * Use these instead. */ FIELD(PREDDESC, OPRSZ, 0, 6) FIELD(PREDDESC, ESZ, 6, 2) FIELD(PREDDESC, DATA, 8, 24) /* * The SVE simd_data field, for memory ops, contains either * rd (5 bits) or a shift count (2 bits). */ #define SVE_MTEDESC_SHIFT 5 /* Bits within a descriptor passed to the helper_mte_check* functions. */ FIELD(MTEDESC, MIDX, 0, 4) FIELD(MTEDESC, TBI, 4, 2) FIELD(MTEDESC, TCMA, 6, 2) FIELD(MTEDESC, WRITE, 8, 1) FIELD(MTEDESC, ALIGN, 9, 3) FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */ bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); /** * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation * @env: CPU env * @ptr: start address of memory region (dirty pointer) * @size: length of region (guaranteed not to cross a page boundary) * @desc: MTEDESC descriptor word (0 means no MTE checks) * Returns: the size of the region that can be copied without hitting * an MTE tag failure * * Note that we assume that the caller has already checked the TBI * and TCMA bits with mte_checks_needed() and an MTE check is definitely * required. */ uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, uint32_t desc); /** * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS * operation going in the reverse direction * @env: CPU env * @ptr: *end* address of memory region (dirty pointer) * @size: length of region (guaranteed not to cross a page boundary) * @desc: MTEDESC descriptor word (0 means no MTE checks) * Returns: the size of the region that can be copied without hitting * an MTE tag failure * * Note that we assume that the caller has already checked the TBI * and TCMA bits with mte_checks_needed() and an MTE check is definitely * required. */ uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, uint32_t desc); /** * mte_check_fail: Record an MTE tag check failure * @env: CPU env * @desc: MTEDESC descriptor word * @dirty_ptr: Failing dirty address * @ra: TCG retaddr * * This may never return (if the MTE tag checks are configured to fault). */ void mte_check_fail(CPUARMState *env, uint32_t desc, uint64_t dirty_ptr, uintptr_t ra); /** * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation * @env: CPU env * @dirty_ptr: Start address of memory region (dirty pointer) * @size: length of region (guaranteed not to cross page boundary) * @desc: MTEDESC descriptor word */ void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size, uint32_t desc); static inline int allocation_tag_from_addr(uint64_t ptr) { return extract64(ptr, 56, 4); } static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) { return deposit64(ptr, 56, 4, rtag); } /* Return true if tbi bits mean that the access is checked. */ static inline bool tbi_check(uint32_t desc, int bit55) { return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; } /* Return true if tcma bits mean that the access is unchecked. */ static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) { /* * We had extracted bit55 and ptr_tag for other reasons, so fold * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. */ bool match = ((ptr_tag + bit55) & 0xf) == 0; bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; return tcma && match; } /* * For TBI, ideally, we would do nothing. Proper behaviour on fault is * for the tag to be present in the FAR_ELx register. But for user-only * mode, we do not have a TLB with which to implement this, so we must * remove the top byte. */ static inline uint64_t useronly_clean_ptr(uint64_t ptr) { #ifdef CONFIG_USER_ONLY /* TBI0 is known to be enabled, while TBI1 is disabled. */ ptr &= sextract64(ptr, 0, 56); #endif return ptr; } static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) { #ifdef CONFIG_USER_ONLY int64_t clean_ptr = sextract64(ptr, 0, 56); if (tbi_check(desc, clean_ptr < 0)) { ptr = clean_ptr; } #endif return ptr; } /* Values for M-profile PSR.ECI for MVE insns */ enum MVEECIState { ECI_NONE = 0, /* No completed beats */ ECI_A0 = 1, /* Completed: A0 */ ECI_A0A1 = 2, /* Completed: A0, A1 */ /* 3 is reserved */ ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ /* All other values reserved */ }; /* Definitions for the PMU registers */ #define PMCRN_MASK 0xf800 #define PMCRN_SHIFT 11 #define PMCRLP 0x80 #define PMCRLC 0x40 #define PMCRDP 0x20 #define PMCRX 0x10 #define PMCRD 0x8 #define PMCRC 0x4 #define PMCRP 0x2 #define PMCRE 0x1 /* * Mask of PMCR bits writable by guest (not including WO bits like C, P, * which can be written as 1 to trigger behaviour but which stay RAZ). */ #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) #define PMXEVTYPER_P 0x80000000 #define PMXEVTYPER_U 0x40000000 #define PMXEVTYPER_NSK 0x20000000 #define PMXEVTYPER_NSU 0x10000000 #define PMXEVTYPER_NSH 0x08000000 #define PMXEVTYPER_M 0x04000000 #define PMXEVTYPER_MT 0x02000000 #define PMXEVTYPER_EVTCOUNT 0x0000ffff #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ PMXEVTYPER_M | PMXEVTYPER_MT | \ PMXEVTYPER_EVTCOUNT) #define PMCCFILTR 0xf8000000 #define PMCCFILTR_M PMXEVTYPER_M #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) static inline uint32_t pmu_num_counters(CPUARMState *env) { ARMCPU *cpu = env_archcpu(env); return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; } /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ static inline uint64_t pmu_counter_mask(CPUARMState *env) { return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); } #ifdef TARGET_AARCH64 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg); int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg); int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg); int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg); int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg); int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg); void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); void aarch64_max_tcg_initfn(Object *obj); void aarch64_add_pauth_properties(Object *obj); void aarch64_add_sve_properties(Object *obj); void aarch64_add_sme_properties(Object *obj); #endif /* Read the CONTROL register as the MRS instruction would. */ uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure); /* * Return a pointer to the location where we currently store the * stack pointer for the requested security state and thread mode. * This pointer will become invalid if the CPU state is updated * such that the stack pointers are switched around (eg changing * the SPSEL control bit). */ uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure, bool threadmode, bool spsel); bool el_is_in_host(CPUARMState *env, int el); void aa32_max_features(ARMCPU *cpu); int exception_target_el(CPUARMState *env); bool arm_singlestep_active(CPUARMState *env); bool arm_generate_debug_exceptions(CPUARMState *env); /** * pauth_ptr_mask: * @param: parameters defining the MMU setup * * Return a mask of the address bits that contain the authentication code, * given the MMU config defined by @param. */ static inline uint64_t pauth_ptr_mask(ARMVAParameters param) { int bot_pac_bit = 64 - param.tsz; int top_pac_bit = 64 - 8 * param.tbi; return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit); } /* Add the cpreg definitions for debug related system registers */ void define_debug_regs(ARMCPU *cpu); /* Effective value of MDCR_EL2 */ static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) { return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; } /* Powers of 2 for sve_vq_map et al. */ #define SVE_VQ_POW2_MAP \ ((1 << (1 - 1)) | (1 << (2 - 1)) | \ (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) /* * Return true if it is possible to take a fine-grained-trap to EL2. */ static inline bool arm_fgt_active(CPUARMState *env, int el) { /* * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps * that can affect EL0, but it is harmless to do the test also for * traps on registers that are only accessible at EL1 because if the test * returns true then we can't be executing at EL1 anyway. * FGT traps only happen when EL2 is enabled and EL1 is AArch64; * traps from AArch32 only happen for the EL0 is AArch32 case. */ return cpu_isar_feature(aa64_fgt, env_archcpu(env)) && el < 2 && arm_is_el2_enabled(env) && arm_el_is_aa64(env, 1) && (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN)); } void assert_hflags_rebuild_correctly(CPUARMState *env); /* * Although the ARM implementation of hardware assisted debugging * allows for different breakpoints per-core, the current GDB * interface treats them as a global pool of registers (which seems to * be the case for x86, ppc and s390). As a result we store one copy * of registers which is used for all active cores. * * Write access is serialised by virtue of the GDB protocol which * updates things. Read access (i.e. when the values are copied to the * vCPU) is also gated by GDB's run control. * * This is not unreasonable as most of the time debugging kernels you * never know which core will eventually execute your function. */ typedef struct { uint64_t bcr; uint64_t bvr; } HWBreakpoint; /* * The watchpoint registers can cover more area than the requested * watchpoint so we need to store the additional information * somewhere. We also need to supply a CPUWatchpoint to the GDB stub * when the watchpoint is hit. */ typedef struct { uint64_t wcr; uint64_t wvr; CPUWatchpoint details; } HWWatchpoint; /* Maximum and current break/watch point counts */ extern int max_hw_bps, max_hw_wps; extern GArray *hw_breakpoints, *hw_watchpoints; #define cur_hw_wps (hw_watchpoints->len) #define cur_hw_bps (hw_breakpoints->len) #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) bool find_hw_breakpoint(CPUState *cpu, target_ulong pc); int insert_hw_breakpoint(target_ulong pc); int delete_hw_breakpoint(target_ulong pc); bool check_watchpoint_in_range(int i, target_ulong addr); CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr); int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type); int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type); #endif