/* * crypto_helper.c - emulate v8 Crypto Extensions instructions * * Copyright (C) 2013 - 2018 Linaro Ltd * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "tcg/tcg-gvec-desc.h" #include "crypto/aes-round.h" #include "crypto/sm4.h" #include "vec_internal.h" union CRYPTO_STATE { uint8_t bytes[16]; uint32_t words[4]; uint64_t l[2]; }; #if HOST_BIG_ENDIAN #define CR_ST_BYTE(state, i) ((state).bytes[(15 - (i)) ^ 8]) #define CR_ST_WORD(state, i) ((state).words[(3 - (i)) ^ 2]) #else #define CR_ST_BYTE(state, i) ((state).bytes[i]) #define CR_ST_WORD(state, i) ((state).words[i]) #endif /* * The caller has not been converted to full gvec, and so only * modifies the low 16 bytes of the vector register. */ static void clear_tail_16(void *vd, uint32_t desc) { int opr_sz = simd_oprsz(desc); int max_sz = simd_maxsz(desc); assert(opr_sz == 16); clear_tail(vd, opr_sz, max_sz); } static const AESState aes_zero = { }; void HELPER(crypto_aese)(void *vd, void *vn, void *vm, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); for (i = 0; i < opr_sz; i += 16) { AESState *ad = (AESState *)(vd + i); AESState *st = (AESState *)(vn + i); AESState *rk = (AESState *)(vm + i); AESState t; /* * Our uint64_t are in the wrong order for big-endian. * The Arm AddRoundKey comes first, while the API AddRoundKey * comes last: perform the xor here, and provide zero to API. */ if (HOST_BIG_ENDIAN) { t.d[0] = st->d[1] ^ rk->d[1]; t.d[1] = st->d[0] ^ rk->d[0]; aesenc_SB_SR_AK(&t, &t, &aes_zero, false); ad->d[0] = t.d[1]; ad->d[1] = t.d[0]; } else { t.v = st->v ^ rk->v; aesenc_SB_SR_AK(ad, &t, &aes_zero, false); } } clear_tail(vd, opr_sz, simd_maxsz(desc)); } void HELPER(crypto_aesd)(void *vd, void *vn, void *vm, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); for (i = 0; i < opr_sz; i += 16) { AESState *ad = (AESState *)(vd + i); AESState *st = (AESState *)(vn + i); AESState *rk = (AESState *)(vm + i); AESState t; /* Our uint64_t are in the wrong order for big-endian. */ if (HOST_BIG_ENDIAN) { t.d[0] = st->d[1] ^ rk->d[1]; t.d[1] = st->d[0] ^ rk->d[0]; aesdec_ISB_ISR_AK(&t, &t, &aes_zero, false); ad->d[0] = t.d[1]; ad->d[1] = t.d[0]; } else { t.v = st->v ^ rk->v; aesdec_ISB_ISR_AK(ad, &t, &aes_zero, false); } } clear_tail(vd, opr_sz, simd_maxsz(desc)); } void HELPER(crypto_aesmc)(void *vd, void *vm, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); for (i = 0; i < opr_sz; i += 16) { AESState *ad = (AESState *)(vd + i); AESState *st = (AESState *)(vm + i); AESState t; /* Our uint64_t are in the wrong order for big-endian. */ if (HOST_BIG_ENDIAN) { t.d[0] = st->d[1]; t.d[1] = st->d[0]; aesenc_MC(&t, &t, false); ad->d[0] = t.d[1]; ad->d[1] = t.d[0]; } else { aesenc_MC(ad, st, false); } } clear_tail(vd, opr_sz, simd_maxsz(desc)); } void HELPER(crypto_aesimc)(void *vd, void *vm, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); for (i = 0; i < opr_sz; i += 16) { AESState *ad = (AESState *)(vd + i); AESState *st = (AESState *)(vm + i); AESState t; /* Our uint64_t are in the wrong order for big-endian. */ if (HOST_BIG_ENDIAN) { t.d[0] = st->d[1]; t.d[1] = st->d[0]; aesdec_IMC(&t, &t, false); ad->d[0] = t.d[1]; ad->d[1] = t.d[0]; } else { aesdec_IMC(ad, st, false); } } clear_tail(vd, opr_sz, simd_maxsz(desc)); } /* * SHA-1 logical functions */ static uint32_t cho(uint32_t x, uint32_t y, uint32_t z) { return (x & (y ^ z)) ^ z; } static uint32_t par(uint32_t x, uint32_t y, uint32_t z) { return x ^ y ^ z; } static uint32_t maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | ((x | y) & z); } void HELPER(crypto_sha1su0)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *d = vd, *n = vn, *m = vm; uint64_t d0, d1; d0 = d[1] ^ d[0] ^ m[0]; d1 = n[0] ^ d[1] ^ m[1]; d[0] = d0; d[1] = d1; clear_tail_16(vd, desc); } static inline void crypto_sha1_3reg(uint64_t *rd, uint64_t *rn, uint64_t *rm, uint32_t desc, uint32_t (*fn)(union CRYPTO_STATE *d)) { union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE n = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; int i; for (i = 0; i < 4; i++) { uint32_t t = fn(&d); t += rol32(CR_ST_WORD(d, 0), 5) + CR_ST_WORD(n, 0) + CR_ST_WORD(m, i); CR_ST_WORD(n, 0) = CR_ST_WORD(d, 3); CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2); CR_ST_WORD(d, 2) = ror32(CR_ST_WORD(d, 1), 2); CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0); CR_ST_WORD(d, 0) = t; } rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(rd, desc); } static uint32_t do_sha1c(union CRYPTO_STATE *d) { return cho(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3)); } void HELPER(crypto_sha1c)(void *vd, void *vn, void *vm, uint32_t desc) { crypto_sha1_3reg(vd, vn, vm, desc, do_sha1c); } static uint32_t do_sha1p(union CRYPTO_STATE *d) { return par(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3)); } void HELPER(crypto_sha1p)(void *vd, void *vn, void *vm, uint32_t desc) { crypto_sha1_3reg(vd, vn, vm, desc, do_sha1p); } static uint32_t do_sha1m(union CRYPTO_STATE *d) { return maj(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3)); } void HELPER(crypto_sha1m)(void *vd, void *vn, void *vm, uint32_t desc) { crypto_sha1_3reg(vd, vn, vm, desc, do_sha1m); } void HELPER(crypto_sha1h)(void *vd, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rm = vm; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; CR_ST_WORD(m, 0) = ror32(CR_ST_WORD(m, 0), 2); CR_ST_WORD(m, 1) = CR_ST_WORD(m, 2) = CR_ST_WORD(m, 3) = 0; rd[0] = m.l[0]; rd[1] = m.l[1]; clear_tail_16(vd, desc); } void HELPER(crypto_sha1su1)(void *vd, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rm = vm; union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; CR_ST_WORD(d, 0) = rol32(CR_ST_WORD(d, 0) ^ CR_ST_WORD(m, 1), 1); CR_ST_WORD(d, 1) = rol32(CR_ST_WORD(d, 1) ^ CR_ST_WORD(m, 2), 1); CR_ST_WORD(d, 2) = rol32(CR_ST_WORD(d, 2) ^ CR_ST_WORD(m, 3), 1); CR_ST_WORD(d, 3) = rol32(CR_ST_WORD(d, 3) ^ CR_ST_WORD(d, 0), 1); rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(vd, desc); } /* * The SHA-256 logical functions, according to * http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf */ static uint32_t S0(uint32_t x) { return ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22); } static uint32_t S1(uint32_t x) { return ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25); } static uint32_t s0(uint32_t x) { return ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3); } static uint32_t s1(uint32_t x) { return ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10); } void HELPER(crypto_sha256h)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t *rm = vm; union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE n = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; int i; for (i = 0; i < 4; i++) { uint32_t t = cho(CR_ST_WORD(n, 0), CR_ST_WORD(n, 1), CR_ST_WORD(n, 2)) + CR_ST_WORD(n, 3) + S1(CR_ST_WORD(n, 0)) + CR_ST_WORD(m, i); CR_ST_WORD(n, 3) = CR_ST_WORD(n, 2); CR_ST_WORD(n, 2) = CR_ST_WORD(n, 1); CR_ST_WORD(n, 1) = CR_ST_WORD(n, 0); CR_ST_WORD(n, 0) = CR_ST_WORD(d, 3) + t; t += maj(CR_ST_WORD(d, 0), CR_ST_WORD(d, 1), CR_ST_WORD(d, 2)) + S0(CR_ST_WORD(d, 0)); CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2); CR_ST_WORD(d, 2) = CR_ST_WORD(d, 1); CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0); CR_ST_WORD(d, 0) = t; } rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(vd, desc); } void HELPER(crypto_sha256h2)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t *rm = vm; union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE n = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; int i; for (i = 0; i < 4; i++) { uint32_t t = cho(CR_ST_WORD(d, 0), CR_ST_WORD(d, 1), CR_ST_WORD(d, 2)) + CR_ST_WORD(d, 3) + S1(CR_ST_WORD(d, 0)) + CR_ST_WORD(m, i); CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2); CR_ST_WORD(d, 2) = CR_ST_WORD(d, 1); CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0); CR_ST_WORD(d, 0) = CR_ST_WORD(n, 3 - i) + t; } rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(vd, desc); } void HELPER(crypto_sha256su0)(void *vd, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rm = vm; union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; CR_ST_WORD(d, 0) += s0(CR_ST_WORD(d, 1)); CR_ST_WORD(d, 1) += s0(CR_ST_WORD(d, 2)); CR_ST_WORD(d, 2) += s0(CR_ST_WORD(d, 3)); CR_ST_WORD(d, 3) += s0(CR_ST_WORD(m, 0)); rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(vd, desc); } void HELPER(crypto_sha256su1)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t *rm = vm; union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE n = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; CR_ST_WORD(d, 0) += s1(CR_ST_WORD(m, 2)) + CR_ST_WORD(n, 1); CR_ST_WORD(d, 1) += s1(CR_ST_WORD(m, 3)) + CR_ST_WORD(n, 2); CR_ST_WORD(d, 2) += s1(CR_ST_WORD(d, 0)) + CR_ST_WORD(n, 3); CR_ST_WORD(d, 3) += s1(CR_ST_WORD(d, 1)) + CR_ST_WORD(m, 0); rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(vd, desc); } /* * The SHA-512 logical functions (same as above but using 64-bit operands) */ static uint64_t cho512(uint64_t x, uint64_t y, uint64_t z) { return (x & (y ^ z)) ^ z; } static uint64_t maj512(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | ((x | y) & z); } static uint64_t S0_512(uint64_t x) { return ror64(x, 28) ^ ror64(x, 34) ^ ror64(x, 39); } static uint64_t S1_512(uint64_t x) { return ror64(x, 14) ^ ror64(x, 18) ^ ror64(x, 41); } static uint64_t s0_512(uint64_t x) { return ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7); } static uint64_t s1_512(uint64_t x) { return ror64(x, 19) ^ ror64(x, 61) ^ (x >> 6); } void HELPER(crypto_sha512h)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t *rm = vm; uint64_t d0 = rd[0]; uint64_t d1 = rd[1]; d1 += S1_512(rm[1]) + cho512(rm[1], rn[0], rn[1]); d0 += S1_512(d1 + rm[0]) + cho512(d1 + rm[0], rm[1], rn[0]); rd[0] = d0; rd[1] = d1; clear_tail_16(vd, desc); } void HELPER(crypto_sha512h2)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t *rm = vm; uint64_t d0 = rd[0]; uint64_t d1 = rd[1]; d1 += S0_512(rm[0]) + maj512(rn[0], rm[1], rm[0]); d0 += S0_512(d1) + maj512(d1, rm[0], rm[1]); rd[0] = d0; rd[1] = d1; clear_tail_16(vd, desc); } void HELPER(crypto_sha512su0)(void *vd, void *vn, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t d0 = rd[0]; uint64_t d1 = rd[1]; d0 += s0_512(rd[1]); d1 += s0_512(rn[0]); rd[0] = d0; rd[1] = d1; clear_tail_16(vd, desc); } void HELPER(crypto_sha512su1)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t *rm = vm; rd[0] += s1_512(rn[0]) + rm[0]; rd[1] += s1_512(rn[1]) + rm[1]; clear_tail_16(vd, desc); } void HELPER(crypto_sm3partw1)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t *rm = vm; union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE n = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; uint32_t t; t = CR_ST_WORD(d, 0) ^ CR_ST_WORD(n, 0) ^ ror32(CR_ST_WORD(m, 1), 17); CR_ST_WORD(d, 0) = t ^ ror32(t, 17) ^ ror32(t, 9); t = CR_ST_WORD(d, 1) ^ CR_ST_WORD(n, 1) ^ ror32(CR_ST_WORD(m, 2), 17); CR_ST_WORD(d, 1) = t ^ ror32(t, 17) ^ ror32(t, 9); t = CR_ST_WORD(d, 2) ^ CR_ST_WORD(n, 2) ^ ror32(CR_ST_WORD(m, 3), 17); CR_ST_WORD(d, 2) = t ^ ror32(t, 17) ^ ror32(t, 9); t = CR_ST_WORD(d, 3) ^ CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(d, 0), 17); CR_ST_WORD(d, 3) = t ^ ror32(t, 17) ^ ror32(t, 9); rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(vd, desc); } void HELPER(crypto_sm3partw2)(void *vd, void *vn, void *vm, uint32_t desc) { uint64_t *rd = vd; uint64_t *rn = vn; uint64_t *rm = vm; union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE n = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; uint32_t t = CR_ST_WORD(n, 0) ^ ror32(CR_ST_WORD(m, 0), 25); CR_ST_WORD(d, 0) ^= t; CR_ST_WORD(d, 1) ^= CR_ST_WORD(n, 1) ^ ror32(CR_ST_WORD(m, 1), 25); CR_ST_WORD(d, 2) ^= CR_ST_WORD(n, 2) ^ ror32(CR_ST_WORD(m, 2), 25); CR_ST_WORD(d, 3) ^= CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(m, 3), 25) ^ ror32(t, 17) ^ ror32(t, 2) ^ ror32(t, 26); rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(vd, desc); } static inline void QEMU_ALWAYS_INLINE crypto_sm3tt(uint64_t *rd, uint64_t *rn, uint64_t *rm, uint32_t desc, uint32_t opcode) { union CRYPTO_STATE d = { .l = { rd[0], rd[1] } }; union CRYPTO_STATE n = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; uint32_t imm2 = simd_data(desc); uint32_t t; assert(imm2 < 4); if (opcode == 0 || opcode == 2) { /* SM3TT1A, SM3TT2A */ t = par(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1)); } else if (opcode == 1) { /* SM3TT1B */ t = maj(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1)); } else if (opcode == 3) { /* SM3TT2B */ t = cho(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1)); } else { qemu_build_not_reached(); } t += CR_ST_WORD(d, 0) + CR_ST_WORD(m, imm2); CR_ST_WORD(d, 0) = CR_ST_WORD(d, 1); if (opcode < 2) { /* SM3TT1A, SM3TT1B */ t += CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(d, 3), 20); CR_ST_WORD(d, 1) = ror32(CR_ST_WORD(d, 2), 23); } else { /* SM3TT2A, SM3TT2B */ t += CR_ST_WORD(n, 3); t ^= rol32(t, 9) ^ rol32(t, 17); CR_ST_WORD(d, 1) = ror32(CR_ST_WORD(d, 2), 13); } CR_ST_WORD(d, 2) = CR_ST_WORD(d, 3); CR_ST_WORD(d, 3) = t; rd[0] = d.l[0]; rd[1] = d.l[1]; clear_tail_16(rd, desc); } #define DO_SM3TT(NAME, OPCODE) \ void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ { crypto_sm3tt(vd, vn, vm, desc, OPCODE); } DO_SM3TT(crypto_sm3tt1a, 0) DO_SM3TT(crypto_sm3tt1b, 1) DO_SM3TT(crypto_sm3tt2a, 2) DO_SM3TT(crypto_sm3tt2b, 3) #undef DO_SM3TT static void do_crypto_sm4e(uint64_t *rd, uint64_t *rn, uint64_t *rm) { union CRYPTO_STATE d = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE n = { .l = { rm[0], rm[1] } }; uint32_t t, i; for (i = 0; i < 4; i++) { t = CR_ST_WORD(d, (i + 1) % 4) ^ CR_ST_WORD(d, (i + 2) % 4) ^ CR_ST_WORD(d, (i + 3) % 4) ^ CR_ST_WORD(n, i); t = sm4_subword(t); CR_ST_WORD(d, i) ^= t ^ rol32(t, 2) ^ rol32(t, 10) ^ rol32(t, 18) ^ rol32(t, 24); } rd[0] = d.l[0]; rd[1] = d.l[1]; } void HELPER(crypto_sm4e)(void *vd, void *vn, void *vm, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); for (i = 0; i < opr_sz; i += 16) { do_crypto_sm4e(vd + i, vn + i, vm + i); } clear_tail(vd, opr_sz, simd_maxsz(desc)); } static void do_crypto_sm4ekey(uint64_t *rd, uint64_t *rn, uint64_t *rm) { union CRYPTO_STATE d; union CRYPTO_STATE n = { .l = { rn[0], rn[1] } }; union CRYPTO_STATE m = { .l = { rm[0], rm[1] } }; uint32_t t, i; d = n; for (i = 0; i < 4; i++) { t = CR_ST_WORD(d, (i + 1) % 4) ^ CR_ST_WORD(d, (i + 2) % 4) ^ CR_ST_WORD(d, (i + 3) % 4) ^ CR_ST_WORD(m, i); t = sm4_subword(t); CR_ST_WORD(d, i) ^= t ^ rol32(t, 13) ^ rol32(t, 23); } rd[0] = d.l[0]; rd[1] = d.l[1]; } void HELPER(crypto_sm4ekey)(void *vd, void *vn, void* vm, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); for (i = 0; i < opr_sz; i += 16) { do_crypto_sm4ekey(vd + i, vn + i, vm + i); } clear_tail(vd, opr_sz, simd_maxsz(desc)); } void HELPER(crypto_rax1)(void *vd, void *vn, void *vm, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); uint64_t *d = vd, *n = vn, *m = vm; for (i = 0; i < opr_sz / 8; ++i) { d[i] = n[i] ^ rol64(m[i], 1); } clear_tail(vd, opr_sz, simd_maxsz(desc)); }