/* * ARM hflags * * This code is licensed under the GNU GPL v2 or later. * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "qemu/osdep.h" #include "cpu.h" #include "internals.h" #include "cpu-features.h" #include "exec/helper-proto.h" #include "cpregs.h" static inline bool fgt_svc(CPUARMState *env, int el) { /* * Assuming fine-grained-traps are active, return true if we * should be trapping on SVC instructions. Only AArch64 can * trap on an SVC at EL1, but we don't need to special-case this * because if this is AArch32 EL1 then arm_fgt_active() is false. * We also know el is 0 or 1. */ return el == 0 ? FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) : FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1); } /* Return true if memory alignment should be enforced. */ static bool aprofile_require_alignment(CPUARMState *env, int el, uint64_t sctlr) { #ifdef CONFIG_USER_ONLY return false; #else /* Check the alignment enable bit. */ if (sctlr & SCTLR_A) { return true; } /* * With PMSA, when the MPU is disabled, all memory types in the * default map are Normal, so don't need aligment enforcing. */ if (arm_feature(env, ARM_FEATURE_PMSA)) { return false; } /* * With VMSA, if translation is disabled, then the default memory type * is Device(-nGnRnE) instead of Normal, which requires that alignment * be enforced. Since this affects all ram, it is most efficient * to handle this during translation. */ if (sctlr & SCTLR_M) { /* Translation enabled: memory type in PTE via MAIR_ELx. */ return false; } if (el < 2 && (arm_hcr_el2_eff(env) & (HCR_DC | HCR_VM))) { /* Stage 2 translation enabled: memory type in PTE. */ return false; } return true; #endif } static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, ARMMMUIdx mmu_idx, CPUARMTBFlags flags) { DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); if (arm_singlestep_active(env)) { DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); } return flags; } static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, ARMMMUIdx mmu_idx, CPUARMTBFlags flags) { bool sctlr_b = arm_sctlr_b(env); if (sctlr_b) { DP_TBFLAG_A32(flags, SCTLR__B, 1); } if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { DP_TBFLAG_ANY(flags, BE_DATA, 1); } DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); return rebuild_hflags_common(env, fp_el, mmu_idx, flags); } static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, ARMMMUIdx mmu_idx) { CPUARMTBFlags flags = {}; uint32_t ccr = env->v7m.ccr[env->v7m.secure]; /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); } if (arm_v7m_is_handler_mode(env)) { DP_TBFLAG_M32(flags, HANDLER, 1); } /* * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN * is suppressing them because the requested execution priority * is less than 0. */ if (arm_feature(env, ARM_FEATURE_V8) && !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { DP_TBFLAG_M32(flags, STACKCHECK, 1); } if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { DP_TBFLAG_M32(flags, SECURE, 1); } return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); } /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ static bool sme_fa64(CPUARMState *env, int el) { if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { return false; } if (el <= 1 && !el_is_in_host(env, el)) { if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { return false; } } if (el <= 2 && arm_is_el2_enabled(env)) { if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { return false; } } if (arm_feature(env, ARM_FEATURE_EL3)) { if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { return false; } } return true; } static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, ARMMMUIdx mmu_idx) { CPUARMTBFlags flags = {}; int el = arm_current_el(env); uint64_t sctlr = arm_sctlr(env, el); if (aprofile_require_alignment(env, el, sctlr)) { DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); } if (arm_el_is_aa64(env, 1)) { DP_TBFLAG_A32(flags, VFPEN, 1); } if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) && (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); } if (arm_fgt_active(env, el)) { DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); if (fgt_svc(env, el)) { DP_TBFLAG_ANY(flags, FGT_SVC, 1); } } if (env->uncached_cpsr & CPSR_IL) { DP_TBFLAG_ANY(flags, PSTATE__IL, 1); } /* * The SME exception we are testing for is raised via * AArch64.CheckFPAdvSIMDEnabled(), as called from * AArch32.CheckAdvSIMDOrFPEnabled(). */ if (el == 0 && FIELD_EX64(env->svcr, SVCR, SM) && (!arm_is_el2_enabled(env) || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) && arm_el_is_aa64(env, 1) && !sme_fa64(env, el)) { DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); } return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); } static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, ARMMMUIdx mmu_idx) { CPUARMTBFlags flags = {}; ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); uint64_t tcr = regime_tcr(env, mmu_idx); uint64_t hcr = arm_hcr_el2_eff(env); uint64_t sctlr; int tbii, tbid; DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); /* Get control bits for tagged addresses. */ tbid = aa64_va_parameter_tbi(tcr, mmu_idx); tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); DP_TBFLAG_A64(flags, TBII, tbii); DP_TBFLAG_A64(flags, TBID, tbid); if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { int sve_el = sve_exception_el(env, el); /* * If either FP or SVE are disabled, translator does not need len. * If SVE EL > FP EL, FP exception has precedence, and translator * does not need SVE EL. Save potential re-translations by forcing * the unneeded data to zero. */ if (fp_el != 0) { if (sve_el > fp_el) { sve_el = 0; } } else if (sve_el == 0) { DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); } DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); } if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { int sme_el = sme_exception_el(env, el); bool sm = FIELD_EX64(env->svcr, SVCR, SM); DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); if (sme_el == 0) { /* Similarly, do not compute SVL if SME is disabled. */ int svl = sve_vqm1_for_el_sm(env, el, true); DP_TBFLAG_A64(flags, SVL, svl); if (sm) { /* If SVE is disabled, we will not have set VL above. */ DP_TBFLAG_A64(flags, VL, svl); } } if (sm) { DP_TBFLAG_A64(flags, PSTATE_SM, 1); DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); } DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); } sctlr = regime_sctlr(env, stage1); if (aprofile_require_alignment(env, el, sctlr)) { DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); } if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { DP_TBFLAG_ANY(flags, BE_DATA, 1); } if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { /* * In order to save space in flags, we record only whether * pauth is "inactive", meaning all insns are implemented as * a nop, or "active" when some action must be performed. * The decision of which action to take is left to a helper. */ if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); } } if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { DP_TBFLAG_A64(flags, BT, 1); } } if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) { if (sctlr & SCTLR_nAA) { DP_TBFLAG_A64(flags, NAA, 1); } } /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ if (!(env->pstate & PSTATE_UAO)) { switch (mmu_idx) { case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: /* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */ if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) { DP_TBFLAG_A64(flags, UNPRIV, 1); } break; case ARMMMUIdx_E20_2: case ARMMMUIdx_E20_2_PAN: /* * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is * gated by HCR_EL2. == '11', and so is LDTR. */ if (env->cp15.hcr_el2 & HCR_TGE) { DP_TBFLAG_A64(flags, UNPRIV, 1); } break; default: break; } } if (env->pstate & PSTATE_IL) { DP_TBFLAG_ANY(flags, PSTATE__IL, 1); } if (arm_fgt_active(env, el)) { DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) { DP_TBFLAG_A64(flags, TRAP_ERET, 1); } if (fgt_svc(env, el)) { DP_TBFLAG_ANY(flags, FGT_SVC, 1); } } /* * ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care * of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present. */ if (el == 1 && (hcr & HCR_NV)) { DP_TBFLAG_A64(flags, TRAP_ERET, 1); DP_TBFLAG_A64(flags, NV, 1); if (hcr & HCR_NV1) { DP_TBFLAG_A64(flags, NV1, 1); } if (hcr & HCR_NV2) { DP_TBFLAG_A64(flags, NV2, 1); if (hcr & HCR_E2H) { DP_TBFLAG_A64(flags, NV2_MEM_E20, 1); } if (env->cp15.sctlr_el[2] & SCTLR_EE) { DP_TBFLAG_A64(flags, NV2_MEM_BE, 1); } } } if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { /* * Set MTE_ACTIVE if any access may be Checked, and leave clear * if all accesses must be Unchecked: * 1) If no TBI, then there are no tags in the address to check, * 2) If Tag Check Override, then all accesses are Unchecked, * 3) If Tag Check Fail == 0, then Checked access have no effect, * 4) If no Allocation Tag Access, then all accesses are Unchecked. */ if (allocation_tag_access_enabled(env, el, sctlr)) { DP_TBFLAG_A64(flags, ATA, 1); if (tbid && !(env->pstate & PSTATE_TCO) && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); if (!EX_TBFLAG_A64(flags, UNPRIV)) { /* * In non-unpriv contexts (eg EL0), unpriv load/stores * act like normal ones; duplicate the MTE info to * avoid translate-a64.c having to check UNPRIV to see * whether it is OK to index into MTE_ACTIVE[]. */ DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); } } } /* And again for unprivileged accesses, if required. */ if (EX_TBFLAG_A64(flags, UNPRIV) && tbid && !(env->pstate & PSTATE_TCO) && (sctlr & SCTLR_TCF0) && allocation_tag_access_enabled(env, 0, sctlr)) { DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); } /* * For unpriv tag-setting accesses we also need ATA0. Again, in * contexts where unpriv and normal insns are the same we * duplicate the ATA bit to save effort for translate-a64.c. */ if (EX_TBFLAG_A64(flags, UNPRIV)) { if (allocation_tag_access_enabled(env, 0, sctlr)) { DP_TBFLAG_A64(flags, ATA0, 1); } } else { DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA)); } /* Cache TCMA as well as TBI. */ DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); } return rebuild_hflags_common(env, fp_el, mmu_idx, flags); } static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) { int el = arm_current_el(env); int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); if (is_a64(env)) { return rebuild_hflags_a64(env, el, fp_el, mmu_idx); } else if (arm_feature(env, ARM_FEATURE_M)) { return rebuild_hflags_m32(env, fp_el, mmu_idx); } else { return rebuild_hflags_a32(env, fp_el, mmu_idx); } } void arm_rebuild_hflags(CPUARMState *env) { env->hflags = rebuild_hflags_internal(env); } /* * If we have triggered a EL state change we can't rely on the * translator having passed it to us, we need to recompute. */ void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) { int el = arm_current_el(env); int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); } void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) { int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); } /* * If we have triggered a EL state change we can't rely on the * translator having passed it to us, we need to recompute. */ void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) { int el = arm_current_el(env); int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); } void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) { int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); } void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) { int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); } void assert_hflags_rebuild_correctly(CPUARMState *env) { #ifdef CONFIG_DEBUG_TCG CPUARMTBFlags c = env->hflags; CPUARMTBFlags r = rebuild_hflags_internal(env); if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { fprintf(stderr, "TCG hflags mismatch " "(current:(0x%08x,0x" TARGET_FMT_lx ")" " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", c.flags, c.flags2, r.flags, r.flags2); abort(); } #endif }